ON (ANTI-)MULTIPLICATIVE GENERALIZED DERIVATIONS

Daniel Eremita and Dijana Ilišević
University of Maribor, Slovenia and University of Zagreb, Croatia

Abstract

Let R be a semiprime ring and let $F, f: R \rightarrow R$ be (not necessarily additive) maps satisfying $F(x y)=F(x) y+x f(y)$ for all $x, y \in R$. Suppose that there are integers m and n such that $F(u v)=$ $m F(u) F(v)+n F(v) F(u)$ for all u, v in some nonzero ideal I of R. Under some mild assumptions on R, we prove that there exists $c \in C\left(I^{\perp \perp}\right)$ such that $c=(m+n) c^{2}, n c\left[I^{\perp \perp}, I^{\perp \perp}\right]=0$ and $F(x)=c x$ for all $x \in I^{\perp \perp}$. The main result is then applied to the case when F is multiplicative or anti-multiplicative on I.

1. Introduction

Let R be an associative ring not necessarily with an identity element. Recall that a ring R is a prime ring if $a R b=0$ (where $a, b \in R$) implies $a=0$ or $b=0$, and R is a semiprime ring if $a R a=0$ (where $a \in R$) implies $a=0$. A ring R is said to be n-torsion free (n is an integer) if $n a=0$ (where $a \in R$) implies $a=0$. For $a, b \in R$ we shall write $[a, b]=a b-b a$.

Let M be an R-bimodule. Recall that an additive map $d: R \rightarrow M$ is called a derivation if $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$. An additive map $D: R \rightarrow M$ is a generalized derivation if there exists a derivation $d: R \rightarrow M$ such that $D(x y)=D(x) y+x d(y)$ for all $x, y \in R$ (this notion was introduced by Brešar in [4]). Obviously, each derivation is also a generalized derivation.

A map φ from R to a ring R^{\prime} is called multiplicative (resp. antimultiplicative) if $\varphi(x y)=\varphi(x) \varphi(y)($ resp. $\varphi(x y)=\varphi(y) \varphi(x))$ for all $x, y \in$

[^0]R. Thus, $\varphi: R \rightarrow R^{\prime}$ is a homomorphism (resp. an anti-homomorphism) of rings if it is both additive and multiplicative (resp. anti-multiplicative). An additive $\operatorname{map} \varphi: R \rightarrow R^{\prime}$ is called a Jordan homomorphism if $\varphi(x y+y x)=$ $\varphi(x) \varphi(y)+\varphi(y) \varphi(x)$ for all $x, y \in R$. If R^{\prime} is 2-torsion free then φ is a Jordan homomorphism if and only if $\varphi\left(x^{2}\right)=\varphi(x)^{2}$ for all $x \in R$.

In 1989 Bell and Kappe ([3]) obtained the following result: if d is a derivation and d is also a homomorphism or an anti-homomorphism of a semiprime ring R, then $d=0$. In case R is prime they have proved that a derivation $d: R \rightarrow R$, which is a homomorphism or an anti-homomorphism on some nonzero right ideal I of R, must be the zero map. This result was later generalized and extended by many authors ($[1,6-8,11,12]$, etc.) In 2004 Rehman ([11]) treated the problem of describing a generalized derivation D of a prime ring R which is also a homomorphism or an anti-homomorphism on a nonzero ideal I of R. Later, Gusić in [8] considered a slightly more general problem and obtained the following result.

Theorem 1.1 (I. Gusić). Let F and f be arbitrary maps of a prime ring R such that

$$
\begin{equation*}
F(x y)=F(x) y+x f(y) \quad \text { for all } x, y \in R \tag{1.1}
\end{equation*}
$$

Suppose that I is a nonzero ideal of R. Then the following holds.
(a) If F is multiplicative on I then $f=0$, and $F=0$ or $F=i d$.
(b) If F is anti-multiplicative on I then $f=0$, and $F=0$ or $F=$ id. Moreover, in the latter case R is commutative.

Note that additivity of the maps F and f is not assumed in Theorem 1.1. However, assuming that F and f satisfy (1.1) and F is multiplicative or anti-multiplicative on a nonzero ideal I of R implies in particular that both F and f are automatically additive.

The aim of this paper is to generalize the result of Gusic ([8]) to semiprime rings. Moreover, instead of assuming that F is either multiplicative or antimultiplicative on a nonzero ideal I of a semiprime ring R we consider the following more general condition:

$$
\begin{equation*}
F(u v)=m F(u) F(v)+n F(v) F(u) \quad \text { for all } u, v \in I \tag{1.2}
\end{equation*}
$$

where m and n are fixed integers (see Theorem 3.3). In particular, we shall see that both F and f are automatically additive on $I^{\perp \perp}$. Typical maps satisfying (1.1) and (1.2) are those of the form $x \mapsto c x$ when restricted to I, with c satisfying $c=(m+n) c^{2},[c, I]=0$ and $n c[I, I]=0$. We shall prove that, under certain mild conditions, these maps are basically the only examples of maps satisfying (1.1) and (1.2) and that (1.2) holds for all $u, v \in I^{\perp \perp}$ as well (see Theorem 3.3).

2. Preliminaries

From now on R denotes an arbitrary semiprime ring. Our main result relies on the following characterization of generalized derivations of a semiprime ring which was obtained by Lee ([10, Theorem 3]).

THEOREM 2.1 (T.-K. Lee). Let I be a dense right ideal of a semiprime ring R. Suppose that $D: I \rightarrow Q_{m r}(R)$ is a generalized derivation with its associated derivation d. Then both D and d can be uniquely extended to a generalized derivation and a derivation of $Q_{m r}(R)$, respectively, and there exists $q \in Q_{m r}(R)$ such that

$$
D(x)=q x+d(x)
$$

for all $x \in Q_{m r}(R)$.
Recall that a right ideal I of R is said to be dense if given any $0 \neq r_{1} \in R$, $r_{2} \in R$ there exists $r \in R$ such that $r_{1} r \neq 0$ and $r_{2} r \in I$. One defines a dense left ideal in an analogous fashion. Let us also mention that an ideal I of R is called essential if for every nonzero ideal J of R we have $I \cap J \neq 0$. Let I be any ideal of a semiprime ring R. Then I is dense as a right ideal if and only if I is dense as a left ideal if and only if I is essential ideal. Moreover, the left, the right and the two-sided annihilator of I in R coincide. We denote this annihilator by I^{\perp}. We remark that $I \cap I^{\perp}=0$ and also that $I \oplus I^{\perp}$ is always an essential ideal of R. Thus, I is essential if and only if $I^{\perp}=0$. We write $I^{\perp \perp}$ for $\left(I^{\perp}\right)^{\perp}$. Note that each nonzero ideal I of a semiprime ring R is an essential ideal of $I^{\perp \perp}$.

By $Q_{m r}(R)$ we denote the maximal right ring of quotients (or Utumi right ring of quotients) of R. For an account on the theory of maximal rings of quotients of semiprime rings the reader is referred to [2]. Let us just recall here that any semiprime ring R can be considered as a subring of its maximal right ring of quotients $Q_{m r}(R)$. It turns out that $Q_{m r}(R)$ is a semiprime ring (or a prime ring if R is prime) with the identity element. By $C(R)$ we denote the center of $Q_{m r}(R)$, which is called the extended centroid of R. It turns out that $C(R)$ is a field if and only if R is prime. Furthermore, for any essential ideal I of R and any $q \in Q_{m r}(R), q I q=0$ implies $q=0$. Namely, assume that $q I q=0$ for some $q \neq 0$. Then there would exist $x \in I$ such that $0 \neq q x \in R$ (see [2, Proposition 2.1.7]). Therefore, $0 \neq(q x) R(q x) \subseteq q I q x$ and this would yield $q I q \neq 0$, a contradiction.

3. The results

Lemma 3.1. Let R be a semiprime ring and suppose that $F: R \rightarrow R$ and $f: R \rightarrow R$ are maps satisfying

$$
F(x y)=F(x) y+x f(y) \quad \text { for all } x, y \in R .
$$

Then $f(x y)=f(x) y+x f(y)$ for all $x, y \in R$.
Proof. For all $x, y, z \in R$ we have

$$
\begin{aligned}
x(f(y z)-f(y) z-y f(z))= & F(x y z)-F(x) y z-F(x y) z \\
& +F(x) y z-F(x y z)+F(x y) z=0
\end{aligned}
$$

Since R is semiprime it follows that $f(x y)=f(x) y+x f(y)$ for all $x, y \in R$.

Lemma 3.2. Let R be a semiprime ring and suppose that $F: R \rightarrow R$ and $f: R \rightarrow R$ are maps satisfying

$$
F(x y)=F(x) y+x f(y) \quad \text { for all } x, y \in R
$$

Then for each ideal I of R the following holds:
(i) $F\left(I^{\perp}\right) \subseteq I^{\perp}$ and $f\left(I^{\perp}\right) \subseteq I^{\perp}$,
(ii) $F\left(I^{\perp \perp}\right) \subseteq I^{\perp \perp}$ and $f\left(I^{\perp \perp}\right) \subseteq I^{\perp \perp}$,
(iii) if F is additive on I then F and f are additive on $I^{\perp \perp}$.

Proof. Let $u \in I^{\perp}$ and $v \in I$. Then $F(u) v \in I$. Since $F(0)=0$, we have $F(u) v+u f(v)=0$. This implies $F(u) v=-u f(v) \in I \cap I^{\perp}=0$. Since $u \in I^{\perp}$ and $v \in I$ are arbitrary, it follows $F\left(I^{\perp}\right) \subseteq I^{\perp}$. Similarly, $v f(u)=-F(v) u \in I \cap I^{\perp}=0$. Hence, $I f\left(I^{\perp}\right)=0$ and so $f\left(I^{\perp}\right) \subseteq I^{\perp}$. Thus, (i) holds true.

Replacing I by I^{\perp} in (i) we obtain (ii).
Next, suppose that F is additive on I. Consequently, for all $x, y \in I^{\perp \perp}$ and $u \in I$ we have

$$
\begin{aligned}
(F(x+y)-F(x)-F(y)) u & =F((x+y) u)-(x+y) f(u)-F(x u)+x f(u) \\
& -F(y u)+y f(u) \\
& =F(x u+y u)-F(x u)-F(y u)=0 .
\end{aligned}
$$

Since $F\left(I^{\perp \perp}\right) \subseteq I^{\perp \perp}$ and since I is an essential ideal of a semiprime ring $I^{\perp \perp}$ it follows that $F(x+y)=F(x)+F(y)$ for all $x, y \in I^{\perp \perp}$. Therefore, F is additive on $I^{\perp \perp}$. Consequently,

$$
\begin{aligned}
x(f(y+z)-f(y)-f(z)) & =F(x(y+z))-F(x)(y+z)-F(x y)+F(x) y \\
& -F(x z)+F(x) z \\
& =0
\end{aligned}
$$

for all $x \in R, y, z \in I^{\perp \perp}$. Thus, f is additive on $I^{\perp \perp}$.
We are now ready to prove our main result.
Theorem 3.3. Let I be a nonzero ideal of a semiprime ring R. Let F : $R \rightarrow R$ and $f: R \rightarrow R$ be maps satisfying

$$
F(x y)=F(x) y+x f(y) \quad \text { for all } x, y \in R .
$$

Suppose that there are integers m and n such that R is $(m+n)$-torsion free and

$$
\begin{equation*}
F(u v)=m F(u) F(v)+n F(v) F(u) \quad \text { for all } u, v \in I \tag{3.3}
\end{equation*}
$$

Then F and f are additive on $I^{\perp \perp}$.
Furthermore, suppose that at least one of the following holds:
(i) $m=0$,
(ii) $n=0$,
(iii) R is 2 -torsion free and m-torsion free,
(iv) R is 2-torsion free and n-torsion free.

Then $f\left(I^{\perp \perp}\right)=0$ and there exists $c \in C\left(I^{\perp \perp}\right)$ such that $c=(m+n) c^{2}$, $n c\left[I^{\perp \perp}, I^{\perp \perp}\right]=0$ and $F(x)=c x$ for all $x \in I^{\perp \perp}$. In particular, identity (3.3) holds for all $u, v \in I^{\perp \perp}$.

The proof of Theorem 3.3 consists of several steps.
Step 1. Maps F and f are additive on $I^{\perp \perp}$.
Proof. For $x, y \in R$, by $G(x, y)$ we denote $F(x+y)-F(x)-F(y)$. First notice that $G(x z, y z)=G(x, y) z$ for all $x, y, z \in R$. For all $x, y, z \in I$ we have

$$
\begin{aligned}
m G(x, y) F(z)+n F(z) G(x, y) & =F(x z+y z)-F(x z)-F(y z) \\
& =G(x z, y z)=G(x, y) z
\end{aligned}
$$

This further implies

$$
\begin{align*}
& m G(x, y) G(z, u)+n G(z, u) G(x, y) \\
& \quad=G(x, y)(z+u)-G(x, y) z-G(x, y) u=0 \tag{3.4}
\end{align*}
$$

for all $x, y, z, u \in I$. In particular, $(m+n) G(x, y)^{2}=0$. Since R is $(m+n)-$ torsion free we get $G(x, y)^{2}=0$. Obviously, (3.4) implies

$$
(m+n)(G(x, y) G(z, u)+G(z, u) G(x, y))=0
$$

and hence

$$
\begin{equation*}
G(x, y) G(z, u)+G(z, u) G(x, y)=0 \tag{3.5}
\end{equation*}
$$

for all $x, y, z, u \in I$. Let $w \in R$. Setting $x=z w, y=u w$ in (3.5) we get

$$
G(z, u) w G(z, u)=0
$$

Consequently, $G(z, u) R G(z, u)=0$ for all $z, u \in I$ and hence $G(I, I)=0$. Thus, F is additive on I. According to Lemma 3.2 we may now conclude that both F and f are additive on $I^{\perp \perp}$.

STEP 2. There exists $q \in Q_{m r}\left(I^{\perp \perp}\right)$ such that $F(x)=q x+f(x)$ for all $x \in I^{\perp \perp}$.

Proof. Since F and f are additive on $I^{\perp \perp}$ and since $F\left(I^{\perp \perp}\right) \subseteq I^{\perp \perp}$, and $f\left(I^{\perp \perp}\right) \subseteq I^{\perp \perp}$ (see Lemma 3.2), we may consider $\left.F\right|_{I^{\perp \perp}}$ as a generalized derivation and $\left.f\right|_{I^{\perp \perp}}$ as its corresponding derivation, both mapping from $I^{\perp \perp}$ to $I^{\perp \perp}$. Hence we may apply T.-K. Lee's result [10, Theorem 3] (see also Theorem 2.1) to conclude that there exists $q \in Q_{m r}\left(I^{\perp \perp}\right)$ such that $F(x)=q x+f(x)$ for all $x \in I^{\perp \perp}$.

Step 3. If $f\left(I^{\perp \perp}\right)=0$, then there exists $q \in C\left(I^{\perp \perp}\right)$ such that $q=$ $(m+n) q^{2}$ and $n q^{2}\left[I^{\perp \perp}, I^{\perp \perp}\right]=0$.

Proof. We have $F(x)=q x$ for all $x \in I^{\perp \perp}$. Thus,

$$
\begin{equation*}
q u v=m q u q v+n q v q u \tag{3.6}
\end{equation*}
$$

for all $u, v \in I$. Interchanging the roles of u and v, we get

$$
\begin{equation*}
q v u=m q v q u+n q u q v, \tag{3.7}
\end{equation*}
$$

and adding up (3.6) and (3.7) we obtain

$$
\begin{equation*}
q u v+q v u=(m+n) q u q v+(m+n) q v q u . \tag{3.8}
\end{equation*}
$$

Multiplying (3.8) with $w \in R$ from the right, we get

$$
\begin{equation*}
q u v w+q v u w=(m+n) q u q v w+(m+n) q v q u w . \tag{3.9}
\end{equation*}
$$

Replacing v by $v w$ in (3.8), we get

$$
\begin{equation*}
q u v w+q v w u=(m+n) q u q v w+(m+n) q v w q u . \tag{3.10}
\end{equation*}
$$

Subtracting (3.10) from (3.9) yields

$$
q v[u, w]=(m+n) q v[q u, w],
$$

that is

$$
q v([u, w]-(m+n)[q u, w])=0 .
$$

Replacing u by $u r, r \in R$, we get

$$
q v([u, w] r+u[r, w]-(m+n)[q u, w] r-(m+n) q u[r, w])=0
$$

which implies

$$
\begin{equation*}
(q v-(m+n) q v q) u[r, w]=0 . \tag{3.11}
\end{equation*}
$$

Replacing v by $v x, x \in I^{\perp \perp}$, in (3.11), we get

$$
\begin{equation*}
(q v x-(m+n) q v x q) u[r, w]=0 . \tag{3.12}
\end{equation*}
$$

Replacing u by $x u$ in (3.11), we get

$$
\begin{equation*}
(q v x-(m+n) q v q x) u[r, w]=0 . \tag{3.13}
\end{equation*}
$$

Subtracting (3.13) from (3.12) yields, since R is $(m+n)$-torsion free,

$$
\begin{equation*}
q v[q, x] u[r, w]=0 \tag{3.14}
\end{equation*}
$$

for all $u, v \in I, w, r \in R$ and $x \in I^{\perp \perp}$. Setting $r=q x$ and $w=x$ in (3.14) we obtain

$$
q v[q, x] u[q, x] x=0
$$

for all $u, v \in I$ and $x \in I^{\perp \perp}$. In particular,

$$
q v[q, x] x u q v[q, x] x=0
$$

for all $u, v \in I$ and $x \in I^{\perp \perp}$. This implies $q I[q, x] x=0$ for each $x \in I^{\perp \perp}$. Consequently,

$$
[q, x] x I[q, x] x=0
$$

and hence $[q, x] x=0$ for each $x \in I^{\perp \perp}$. Linearizing this identity we obtain

$$
\begin{equation*}
[q, x] y+[q, y] x=0 \tag{3.15}
\end{equation*}
$$

for all $x, y \in I^{\perp \perp}$. Setting $y=q x$ in (3.15) we obtain $[q, x] q x=0$ and hence $[q, x]^{2}=0$ for all $x \in I^{\perp \perp}$. Now, (3.15) implies $[q, x][q, y] x=0$ which in turn gives

$$
\begin{equation*}
[q, x][q, y] z+[q, z][q, y] x=0 \tag{3.16}
\end{equation*}
$$

for all $x, y, z \in I^{\perp \perp}$. Setting $y=z x$ in (3.16) we get

$$
\begin{aligned}
0 & =[q, x][q, z x] z+[q, z][q, z x] x \\
& =[q, x] z[q, x] z+[q, x][q, z] x z+[q, z] z[q, x] x+[q, z][q, z] x^{2}
\end{aligned}
$$

Since $[q, x] x=0,[q, x]^{2}=0$, and $[q, x][q, z] x=0$ it follows that

$$
\begin{equation*}
[q, x] z[q, x] z=0 \tag{3.17}
\end{equation*}
$$

for all $x, z \in I^{\perp \perp}$. Let $t \in R$. Replacing z by $z+z t$ in (3.17) we see that

$$
[q, x] z t[q, x] z=0
$$

for all $x, z \in I^{\perp \perp}, t \in R$. Since R is semiprime and $\left[q, I^{\perp \perp}\right] I^{\perp \perp} \subseteq R$ it follows that $\left[q, I^{\perp \perp}\right] I^{\perp \perp}=0$. Since $\left[q, I^{\perp \perp}\right] \in Q_{m r}\left(I^{\perp \perp}\right)$, this yields $\left[q, I^{\perp \perp}\right]=0$. Thus, $q \in C\left(I^{\perp \perp}\right)$.

Now, (3.3) implies

$$
\begin{equation*}
\left(q-(m+n) q^{2}\right) u^{2}=0 \tag{3.18}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left(q-(m+n) q^{2}\right)(u v+v u)=0 \tag{3.19}
\end{equation*}
$$

for all $u, v \in I$. Let $\alpha=q-(m+n) q^{2} \in C\left(I^{\perp \perp}\right)$. Setting $v=u r$ in (3.19), where $r \in R$, we get $\alpha u r u=0$. Consequently, $\alpha u R \alpha u=0$ for all $u \in I$. This implies $\alpha I=0$ and hence $\alpha=0$. Thus, $q=(m+n) q^{2}$.

Since $q \in C\left(I^{\perp \perp}\right)$ and $q=(m+n) q^{2}$, (3.6) implies

$$
\begin{equation*}
m q^{2} u v+n q^{2} v u=q u v=m q^{2} u v+n q^{2} u v \tag{3.20}
\end{equation*}
$$

for all $u, v \in I$. Hence, $n q^{2}[I, I]=0$. Now, for all $u, v \in I$ and $w, w^{\prime} \in I^{\perp \perp}$ we have

$$
0=n q^{2}[u, w v]=n q^{2}[u, w] v+n q^{2} w[u, v]=n q^{2}[u, w] v
$$

This implies $n q^{2}[u, w]=0$. Thus, $n q^{2}\left[I, I^{\perp \perp}\right]=0$ and so

$$
0=n q^{2}\left[u w^{\prime}, w\right]=n q^{2}[u, w] w^{\prime}+n q^{2} u\left[w^{\prime}, w\right]=n q^{2} u\left[w^{\prime}, w\right]
$$

for all $u \in I$ and $w, w^{\prime} \in I^{\perp \perp}$. Hence, $n q^{2} I\left[I^{\perp \perp}, I^{\perp \perp}\right]=0$, which further implies $\operatorname{In} q^{2}\left[I^{\perp \perp}, I^{\perp \perp}\right]=0$ and finally $n q^{2}\left[I^{\perp \perp}, I^{\perp \perp}\right]=0$.

STEP 4. If $n=0$, then $f\left(I^{\perp \perp}\right)=0$ and there exists $c \in C\left(I^{\perp \perp}\right)$ such that $c=m c^{2}$ and $F(x)=c x$ for all $x \in I^{\perp \perp}$.

Proof. By Step 2, there exists $c \in Q_{m r}\left(I^{\perp \perp}\right)$ such that $F(x)=c x+$ $f(x)$ for all $x \in I^{\perp \perp}$. Calculating $F(x y z)$ in two different ways:

$$
\begin{aligned}
F(x y z) & =m F(x y) F(z)=m((c x y+f(x y))(c z+f(z))) \\
& =m((c x y+f(x y)) c z+c x y f(z)+f(x y) f(z))
\end{aligned}
$$

and

$$
\begin{aligned}
F(x y z) & =m F(x) F(y z)=m((c x+f(x))(c y z+f(y z))) \\
& =m((c x+f(x)) c y z+c x f(y z)+f(x) f(y z))
\end{aligned}
$$

we get, since R is m-torsion free,

$$
\begin{aligned}
0 & =((c x y+f(x y)) c-(c x+f(x)) c y) z+c x y f(z)-c x f(y z)+f(x y) f(z) \\
& -f(x) f(y z)
\end{aligned}
$$

for all $x, z \in I, y \in I^{\perp \perp}$. Recall that $\left.f\right|_{I^{\perp \perp}}$ is a derivation (see Lemma 3.1, Lemma 3.2 and Step 1). Consequently,

$$
\begin{aligned}
0= & ((c x y+f(x y)) c-(c x+f(x)) c y) z-c x f(y) z+f(x) y f(z) \\
& +x f(y) f(z)-f(x) y f(z)-f(x) f(y) z \\
= & ((c x y+f(x y)) c-(c x+f(x)) c y-c x f(y)-f(x) f(y)) z+x f(y) f(z)
\end{aligned}
$$

for all $x, z \in I, y \in I^{\perp \perp}$. Let

$$
\begin{aligned}
G(x, y, z)= & ((c x y+f(x y)) c-(c x+f(x)) c y-c x f(y)-f(x) f(y)) z \\
& +x f(y) f(z)
\end{aligned}
$$

Since $G\left(I, I^{\perp \perp}, I\right)=0$, we have

$$
\begin{aligned}
0 & =G(x, y, z y)-G(x, y, z) y \\
& =x f(y) f(z y)-x f(y) f(z) y \\
& =x f(y) z f(y)
\end{aligned}
$$

for all $x, z \in I, y \in I^{\perp \perp}$. Thus, $I f(y) I f(y)=0$ for each $y \in I^{\perp \perp}$. Since $f\left(I^{\perp \perp}\right) \subseteq I^{\perp \perp}$ it follows that $f\left(I^{\perp \perp}\right)=0$. It remains to apply Step 3 .

Step 5. If $m=0$, then $f\left(I^{\perp \perp}\right)=0$ and there exists $c \in C\left(I^{\perp \perp}\right)$ such that $c=n c^{2}, c\left[I^{\perp \perp}, I^{\perp \perp}\right]=0$ and $F(x)=c x$ for all $x \in I^{\perp \perp}$.

Proof. By Step 2, there exists $c \in Q_{m r}\left(I^{\perp \perp}\right)$ such that $F(x)=c x+$ $f(x)$ for all $x \in I^{\perp \perp}$. We can express $F(u x v)$, with $u, v, x \in I$, in the following two ways:

$$
\begin{aligned}
F(u x v) & =n F(v) F(u x)=n F(v) F(u) x+n F(v) u f(x) \\
& =F(u v) x+n F(v) u f(x)
\end{aligned}
$$

and

$$
F(u x v)=F(u) x v+u f(x v)=F(u) x v+u f(x) v+u x f(v) .
$$

Consequently,

$$
F(u v) x=F(u) x v+u f(x) v+u x f(v)-n F(v) u f(x) .
$$

On the other hand

$$
F(u v) x=F(u) v x+u f(v) x .
$$

Comparing the last two identities we obtain

$$
\begin{equation*}
F(u)[v, x]=u(f(x) v+x f(v)-f(v) x)-n F(v) u f(x) \tag{3.21}
\end{equation*}
$$

for all $u, v, x \in I$. Let $w, z \in I$. Since $F\left(I^{2}\right) \subseteq I$, inserting $x=v$ and $u=$ $F(w z)$ in (3.21) we get

$$
\begin{aligned}
0 & =n F(v) F(w z) f(v)-F(w z) v f(v) \\
& =(F(w z v)-F(w z) v) f(v) \\
& =w z f(v) f(v)
\end{aligned}
$$

Thus, $I^{2} f(v)^{2}=0$ and hence $f(v)^{2}=0$ for each $v \in I$. Since f is additive on I it follows that $f(u) f(v)+f(v) f(u)=0$ for all $u, v \in I$. Consequently,

$$
\begin{align*}
& f(u) f(w) w f(v) f(u) \tag{3.22}\\
& \quad=f(u) f(w) f(w v) f(u)-f(u) f(w) f(w) v f(u)=0
\end{align*}
$$

and similarly $f(u) f(v) w f(w) f(u)=0$ for all $u, v, w \in I$. Replacing w by $w+v$ in (3.22) we obtain

$$
f(u) f(w) v f(v) f(u)+f(u) f(v) w f(v) f(u)=0
$$

which yields

$$
f(u) f(v) w f(u) f(v)=0
$$

for all $u, v, w \in I$. Consequently, $f(I) f(I)=0$. Thus, for all $u, v \in I$ we have

$$
f(u) v f(u)=f(u) f(v u)-f(u) f(v) u=0
$$

which in turn implies $f(I)=0$. Hence, $f(x) u=f(x u)-x f(u)=0$ for all $x \in I^{\perp \perp}$ and so $f\left(I^{\perp \perp}\right)=0$. Step 3 finishes the proof.

STEP 6. The map $(m+n) F: I \rightarrow R$ is a Jordan homomorphism. Furthermore, if R is 2-torsion free, then $F(x y x)=(m+n)^{2} F(x) F(y) F(x)$ for all $x, y \in I$.

Proof. By (3.3), for all $u \in I$,

$$
F\left(u^{2}\right)=(m+n) F(u)^{2} .
$$

According to Step 1, the map F is additive on I. Hence, the map $(m+n) F$: $I \rightarrow R$ is a Jordan homomorphism. The second statement follows from e.g. [9, Lemma 3.1].

Step 7. If R is 2-torsion free and $w \in I$ is such that $m n F(w x w)=0$ for all $x \in I$, then $m n F(w)=0$.

Proof. By (3.3), for all $x, z \in I, m n F(w x w z)=0$. Thus,

$$
0=m n F(w x w z)=m n F(w x w) z+m n w x w f(z)=m n w x w f(z)
$$

which implies

$$
(m n w f(z)) I(m n w f(z))=0
$$

Since $\operatorname{mnw} f(z) \in I$, this yields $\operatorname{mnw} f(z)=0$. Therefore, $m n F(w z)=$ $m n F(w) z$ for all $z \in I$. Then, by Step 6 , for all $z \in I$,

$$
\begin{aligned}
0 & =m n F(w(w z) w)=(m+n)^{2} m n F(w) F(w z) F(w) \\
& =(m+n)^{2} m n F(w)^{2} z F(w)
\end{aligned}
$$

Since $F(I) \subseteq I^{\perp \perp}$, and R is $(m+n)$-torsion free, we conclude $m n F(w)^{2}=0$. Now we have

$$
\begin{aligned}
0 & =m n F(w z w)=m^{2} n F(w z) F(w)+m n^{2} F(w) F(w z) \\
& =m^{2} n F(w) z F(w)+m n^{2} F(w)^{2} z=m^{2} n F(w) z F(w)
\end{aligned}
$$

Finally, $(m n F(w)) I(m n F(w))=0$ which implies $m n F(w)=0$.
Step 8. If $m n F([u, v])=0$ for all $u, v \in I$, then $m n[F(u), F(v)]=0$ for all $u, v \in I$.

Proof. By (3.3), $\operatorname{mnF}([u, v] w)=0$ for all $u, v, w \in I$. Consequently, for all $u, v, x \in I$ and $w \in I^{\perp \perp}$ we have

$$
m n[u, x] v f(w)=m n(F([u, x] v w)-F([u, x] v) w)=0
$$

Hence, $(m n[u, x] f(w)) I(m n[u, x] f(w))=0$ and so $m n[u, x] f(w)=0$ for all $u, x \in I, w \in I^{\perp \perp}$. According to Lemma 3.2, $f(I) \subseteq I^{\perp \perp}$. Consequently, for all $u, v, x, z \in I$ we have

$$
\begin{aligned}
0 & =m n f([u, x] v f(z)) \\
& =m n f([u, x]) v f(z)+m n[u, x] f(v) f(z)+m n[u, x] v f(f(z)) \\
& =m n f([u, x]) v f(z)
\end{aligned}
$$

which implies $\operatorname{mnf}([u, x])=0$ for all $u, x \in I$. Since, by (3.3), $\operatorname{mnF}(w[u, v])=$ 0 for all $u, v, w \in I$, we have $\operatorname{mnF}(w)[u, v]=0$ for all $u, v, w \in I$. This implies $m n F(w) u[x, v]=0$ for all $x \in I^{\perp \perp}$, and $u, v, w \in I$. In particular, we have $\operatorname{mn} F(w) u[m n F(w), v]=0$ for all $u, v, w \in I$, since $F(I) \subseteq I^{\perp \perp}$. Therefore, $[\operatorname{mnF}(w), I] I[\operatorname{mnF}(w), I]=0$ and so $[\operatorname{mnF}(w), I]=0$. Hence, $\left[m n F(w), I I^{\perp \perp}\right]=0$, which in turn implies $I\left[m n F(w), I^{\perp \perp}\right]=0$. This yields $\left[m n F(w), I^{\perp \perp}\right]=0$. In particular, $[m n F(u), F(v)]=0$ for all $u, v \in I$.

Step 9. If R is 2-torsion free, then $m n[F(u), F(v)]=0$ for all $u, v \in I$.
Proof. According to Step 6, the map $(m+n) F: I \rightarrow R$ is a Jordan homomorphism. By e.g. [9, Lemma 3.4], for all $u, v, x \in I$,

$$
\begin{aligned}
& \left((m+n) F(u v)-(m+n)^{2} F(u) F(v)\right)(m+n) F(x) \\
& \times\left((m+n) F(u v)-(m+n)^{2} F(v) F(u)\right) \\
& +\left((m+n) F(u v)-(m+n)^{2} F(v) F(u)\right)(m+n) F(x) \\
& \times\left((m+n) F(u v)-(m+n)^{2} F(u) F(v)\right)=0 .
\end{aligned}
$$

Since R is $(m+n)$-torsion free, this implies

$$
\begin{aligned}
& (F(u v)-(m+n) F(u) F(v)) F(x)(F(u v)-(m+n) F(v) F(u)) \\
& +(F(u v)-(m+n) F(v) F(u)) F(x)(F(u v)-(m+n) F(u) F(v))=0 .
\end{aligned}
$$

By (3.3), this yields

$$
m n([F(v), F(u)] F(x)[F(u), F(v)]+[F(u), F(v)] F(x)[F(v), F(u)])=0
$$

that is, since R is 2 -torsion free,

$$
\begin{equation*}
m n([F(u), F(v)] F(x)[F(u), F(v)])=0 \tag{3.23}
\end{equation*}
$$

for all $u, v, x \in I$. By (3.3), for all $u, v \in I$,

$$
(m-n)[F(u), F(v)]=F([u, v])
$$

and so (3.23) yields

$$
m n F([u, v]) F(x) F([u, v])=0
$$

for all $u, v, x \in I$. By Step 6 ,

$$
m n F([u, v] x[u, v])=0
$$

for all $u, v, x \in I$. Step 7 implies $m n F([u, v])=0$ for all $u, v \in I$. Finally Step 8 yields $m n[F(u), F(v)]=0$ for all $u, v \in I$.

Step 10. If R is 2-torsion free and m-torsion free, then $f\left(I^{\perp \perp}\right)=0$ and there exists $c \in C\left(I^{\perp \perp}\right)$ such that $c=(m+n) c^{2}$ and $F(x)=c x$ for all $x \in I^{\perp \perp}$. Furthermore, $n c\left[I^{\perp \perp}, I^{\perp \perp}\right]=0$ and (3.3) holds for all $u, v \in I^{\perp \perp}$.

Proof. By Step $9, n F(v) F(u)=n F(u) F(v)$ for all $u, v \in I$. Then (3.3) implies

$$
F(u v)=(m+n) F(u) F(v)
$$

for all $u, v \in I$. Using Step 4 with the integers $(m+n)$ and 0 , we see that $f\left(I^{\perp \perp}\right)=0$ and there exists $c \in C\left(I^{\perp \perp}\right)$ such that $c=(m+n) c^{2}$ and $F(x)=c x$ for all $x \in I^{\perp \perp}$. Then

$$
n c^{2} v u=n(c v)(c u)=n F(v) F(u)=n F(u) F(v)=n(c u)(c v)=n c^{2} u v
$$

for all $u, v \in I$. Thus $n c^{2}[I, I]=0$. In particular, $n c^{2}\left[I, I I^{\perp \perp}\right]=0$, which further implies $\operatorname{Inc} c^{2}\left[I, I^{\perp \perp}\right]=0$. Hence, $n c^{2}\left[I, I^{\perp \perp}\right]=0$. This yields, using a similar argument as before, that $n c^{2}\left[I^{\perp \perp}, I^{\perp \perp}\right]=0$. Obviously, this implies that the ideal generated by $n c\left[I^{\perp \perp}, I^{\perp \perp}\right]$ is a nilpotent ideal of the semiprime ring $I^{\perp \perp}$ and so it is the zero ideal. Thus, $n c\left[I^{\perp \perp}, I^{\perp \perp}\right]=0$.

STEP 11. If R is 2-torsion free and n-torsion free, then $f\left(I^{\perp \perp}\right)=0$ and there exists $c \in C\left(I^{\perp \perp}\right)$ such that $c=(m+n) c^{2}$ and $F(x)=c x$ for all $x \in I^{\perp \perp}$. Furthermore, $c\left[I^{\perp \perp}, I^{\perp \perp}\right]=0$ and (3.3) holds for all $u, v \in I^{\perp \perp}$.

Proof. By Step 9, $m F(u) F(v)=m F(v) F(u)$ for all $u, v \in I$. Then (3.3) implies

$$
F(u v)=(m+n) F(v) F(u)
$$

for all $u, v \in I$. Using Step 5 with the integers 0 and $(m+n)$, we see that $f\left(I^{\perp \perp}\right)=0$ and there exists $c \in C\left(I^{\perp \perp}\right)$ such that $c=(m+n) c^{2}$, $c\left[I^{\perp \perp}, I^{\perp \perp}\right]=0$ and $F(x)=c x$ for all $x \in I^{\perp \perp}$.

Hence, we have proved Theorem 3.3.
We now consider two special cases, when F is multiplicative or antimultiplicative on I. Using Theorem 3.3 we obtain the following.

Corollary 3.4. Let I be a nonzero ideal of a semiprime ring R. Let $F: R \rightarrow R$ and $f: R \rightarrow R$ be maps satisfying

$$
F(x y)=F(x) y+x f(y) \quad \text { for all } x, y \in R .
$$

Then the following holds.
(i) If F is multiplicative on I then $f\left(I^{\perp \perp}\right)=0$ and there exists an idempotent $c \in C\left(I^{\perp \perp}\right)$ such that $F(x)=c x$ for all $x \in I^{\perp \perp}$. Furthermore, F is multiplicative on $I^{\perp \perp}$.
(ii) If F is anti-multiplicative on I, then $f\left(I^{\perp \perp}\right)=0$ and there exists an idempotent $c \in C\left(I^{\perp \perp}\right)$ such that $c\left[I^{\perp \perp}, I^{\perp \perp}\right]=0$ and $F(x)=c x$ for all $x \in I^{\perp \perp}$. Furthermore, F is multiplicative and anti-multiplicative on $I^{\perp \perp}$.

Suppose that I is an essential ideal of a semiprime ring R. Then $I^{\perp}=0$ and $I^{\perp \perp}=R$. Thus, Corollary 3.4 yields the following result.

Corollary 3.5. Let I be an essential ideal of a semiprime ring R. Let $F: R \rightarrow R$ and $f: R \rightarrow R$ be maps satisfying

$$
F(x y)=F(x) y+x f(y) \quad \text { for all } x, y \in R .
$$

Then the following holds.
(i) If F is multiplicative on I then $f=0$ and there exists an idempotent $c \in C(R)$ such that $F(x)=c x$ for all $x \in R$. Furthermore, F is multiplicative on R.
(ii) If F is anti-multiplicative on I then $f=0$ and there exists an idempotent $c \in C(R)$ such that $c[R, R]=0$ and $F(x)=c x$ for all $x \in R$. Furthermore, F is multiplicative and anti-multiplicative on R.

Remark 3.6. Suppose that R is a prime ring. Then each nonzero ideal of R is essential and $C(R)$ is a field. Thus, Corollary 3.5 yields the result of Gusić [8] (see Theorem 1.1).

The following example (cf. [5]) shows that the assumptions that F is multiplicative or anti-multiplicative on I in Corollary 3.4 cannot be replaced by $F\left(x^{2}\right)=F(x)^{2}$ for all $x \in I$.

Example 3.7. Let $\mathcal{A}=\mathbb{F}\langle X, Y\rangle$ be the free algebra in noncommuting indeterminates X and Y over a field \mathbb{F}. Let \mathcal{A}_{1} be a subalgebra of \mathcal{A} generated by X and Y, that is, $\mathcal{A}_{1}=X \mathcal{A}+Y \mathcal{A}$. We define $F: \mathcal{A}_{1} \rightarrow \mathcal{A}_{1}$ by

$$
F(p)= \begin{cases}p & \text { if } p \in X \mathcal{A} \\ 0 & \text { if } p \notin X \mathcal{A}\end{cases}
$$

Then $F(p q)=F(p) q$ for all $p, q \in \mathcal{A}_{1}$ and $F\left(p^{2}\right)=F(p)^{2}$ for all $p \in \mathcal{A}_{1}$. Suppose that there exists an idempotent $c \in C\left(\mathcal{A}_{1}\right)$ such that $F(p)=c p$ for all $p \in \mathcal{A}_{1}$. Then $0=F(p)=c p$ for all $p \notin X \mathcal{A}$. In particular, $c(X+Y)=0$ and $c Y=0$, which implies $c X=0$. Then $X=F(X)=c X=0$, a contradiction.

References

[1] A. Asma, N. Rehman and A. Shakir, On Lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Math. Hungar. 101 (2003), 79-82.
[2] K. I. Beidar, W. S. Martindale, III and A. V. Mikhalev, Rings with generalized identities, Marcel Dekker, Inc., 1996.
[3] H. E. Bell and L.-C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), 339-346.
[4] M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), 89-93.
[5] D. Eremita and D. Ilišević, On additivity of centralisers, Bull. Austral. Math. Soc. 74 (2006), 177-184.
[6] V. de Filippis, Generalized derivations as Jordan homomorphisms on Lie ideals and right ideals, Acta Math. Sin. (Engl. Ser.) 25 (2009), 1965-1974.
[7] O. Gëlbasi and K. Kaya, On Lie ideals with generalized derivations, Siberian Math. J. 47 (2006), 862-866.
[8] I. Gusić, A note on generalized derivations of prime rings, Glas. Mat. Ser. III 40(60) (2005), 47-49.
[9] I. N. Herstein, Topics in ring theory, The University of Chicago Press, Chicago, 1969.
[10] T.-K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999), 4057-4073.
[11] N. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms, Glas. Mat. Ser. III 39(59) (2004), 27-30.
[12] Y. Wang and H. You, Derivations as homomorphisms or anti-homomorphisms on Lie ideals, Acta Math. Sin. (Engl. Ser.) 23 (2007), 1149-1152.
D. Eremita

Department of Mathematics and Computer Science
FNM, University of Maribor
2000 Maribor
Slovenia
E-mail: daniel.eremita@uni-mb.si
D. Ilišević

Department of Mathematics
University of Zagreb
Bijenička 30, P.O.Box 335, 10002 Zagreb
Croatia
E-mail: ilisevic@math.hr
Received: 29.10.2010.
Revised: 18.12.2010.

[^0]: 2010 Mathematics Subject Classification. 16U99, 16N60, 39B52, 47B47.
 Key words and phrases. Additivity, ring, semiprime ring, prime ring, derivation, generalized derivation, homomorphism, anti-homomorphism.

 The second author was supported by the Ministry of Science, Education and Sports of the Republic of Croatia (project No. 037-0372784-2757).

