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Abstract
Climate warming and increasing variability challenges the electricity supply in warm seasons. A
good quantitative representation of the relationship between warm-season electricity consumption
and weather condition provides necessary information for long-term electricity planning and
short-term electricity management. In this study, an extended version of cooling degree days
(ECDD) is proposed for better characterisation of this relationship. The ECDD includes
temperature, residual temperature and specific humidity effects. The residual temperature is
introduced for the first time to reflect the building thermal inertia effect on electricity
consumption. The study is based on the electricity consumption data of four multiple-street city
blocks and three office buildings.

It is found that the residual temperature effect is about 20% of the current-day temperature
effect at the block scale, and increases with a large variation at the building scale. Investigation of
this residual temperature effect provides insight to the influence of building designs and
structures on electricity consumption. The specific humidity effect appears to be more important
at the building scale than at the block scale. A building with high energy performance does not
necessarily have low specific humidity dependence. The new ECDD better reflects the weather
dependence of electricity consumption than the conventional CDD method.
1. Introduction

Electricity consumption responds to weather con-
ditions and thus to climate change (Eskeland and
Mideksa 2010, Mirasgedis et al 2007, Sailor 2001,
Sailor and Pavlova 2003, Semmler et al 2010, Wang et
al 2010, Zhou et al 2013). Currently climate warming
results in an increasing demand for cooling energy
consumption (Ahmed et al 2012, Franco and Sanstad
2008, Howden and Crimp 2001, Sailor and Pavlova
2003). The increased interannual variability in climate
conditions particularly during summer periods also
has a significant negative impact on electricity demand
(Mirasgedis et al 2007).

Urban areas house 54% of the world’s population
and consume 75% of global energy resources (Gago
© 2017 IOP Publishing Ltd
et al 2013). Urban heat island (UHI) effects further
increase energy demand for electricity in warm climate
areas and in warm seasons (Gago et al 2013, Li et al
2014, Lowe 2016, Santamouris 2014), particularly in
city centres where high-rise commercial buildings are
concentrated (Hirano and Fujita 2012).

A better prediction of the impacts of climate
change on electricity consumption depends on an
improved understanding andmodelling of the weather
dependence of electricity consumption. This weather
sensitivity is also important for the short-term
prediction of electricity consumption (Beccali et al
2008). Numerical models have been developed to
investigate the effects of future changes of climate and/
or urban development on energy consumption,
including building energy performance modelling
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(Ahn et al 2016, Soebarto and Guan 2013, Stavrakakis
et al 2016), coupled climate and energy consumption
modelling (Salamanca et al 2015), and coupled
climate, energy consumption, and economic model-
ling (Labriet et al 2015). These models provide useful
tools to investigate the complex and dynamic
relationship between energy consumption and other
relevant factors. However, they often have extensive
data requirements, and thus are costly in terms of both
time and resources. Alternatively, simple methods,
such as those based on regression or empirical indices,
provide parsimonious and inexpensive tools for urban
managers and policy makers (Walter and Sohn 2016).

Potential meteorological factors influencing elec-
tricity consumption include temperature, humidity,
wind and solar exposure (Huang et al 1987), of which
air temperature and humidity are commonly reported
as significant factors (Chen et al 2012, Guan et al 2014,
Ihara et al 2008). In warm seasons, electricity
consumption increases with air temperature when
daily temperature rises above a certain threshold. This
threshold is referred to as the base temperature for
cooling energy demand. This is commonly used to
calculate cooling degree days (CDD) to estimate the
electricity consumption (Ahmed et al 2012,
Al-Hadhrami 2013, Beccali et al 2008, Huang et al
1987, Kadioglu and Sen 1999, Krese et al 2011, Lee et al
2014, Mirasgedis et al 2007, Tselepidaki et al 1994,
Valor et al 2001), although using direct meteorological
data is often recommended in the first instance
(Hekkenberg et al 2009).

However, it is found that the base temperatures
(as daily mean temperatures) reported in the
literature vary over a range from as low as 12.9 °C
(Krese et al 2011) to as high as 22 °C (Beccali et al
2008) (table 1). A large proportion of this range is
beyond the common-sense temperature threshold for
cooling requirements. We certainly do not need any
cooling air conditioning for a day with mean
temperature at say 15 °C. Multiple factors may have
led to such a large range of the apparent base
temperature, including: (1) an industry-sector elec-
tricity consumption component with a low base
temperature (e.g. refrigerators); (2) anthropogenic
heat releases in buildings; (3) building heat inertia;
(4) adaptive human comfort levels, and (5) local
outdoor cooling sources (e.g. green infrastructures).
These factors are explained in more detail in the
following paragraphs.

Certain industries operate electrical appliances
(refrigerators) with low base temperatures. Using the
electricity data aggregated from different sectors can
lead to a lower base temperature, than commonly seen
in commercial, office and residential buildings. This
problem can be addressed when electricity data from
different sectors are analysed separately.

Heat release from building occupants, electrical
appliances and lighting can increase indoor temper-
atures above the outdoor ambient temperature, and
2

this in turn can trigger air conditioning operation
when the outdoor temperature is still low. To include
this effect, information of detailed building occupants
and their activities are required, which is often difficult
to obtain.

In addition, buildings store heat during the
daytime and release it slowly during the night, with
residual heat being retained, quite often for several
days. Therefore, for a given day, indoor temperature is
influenced by outdoor temperature and the residual
heat stored in the building from previous days. This
storage of heat can contribute to increasing air
conditioning requirements even when the current
outdoor temperature is low. The effect of residual heat
in electricity consumption can be examined using the
temperature difference between the present and
previous days.

This temperature difference is referred to as the
residual temperature. It can be calculated as:

DTi;j ¼ Ti�j � Ti ð1Þ
where DTi,j is the residual temperature in the ith day
resulting from the (i�j)th day. If the residual
temperature effect on electricity consumption is
significant, it should be examined to understand the
variation of its effect across different building sectors,
urban forms, climates, building materials and designs.
This effect can be readily incorporated into weather-
dependent electricity demand modelling without
requiring additional data.

Water vapour in the air may condense to liquid
water and release heat when air conditioning is in
operation to cool indoor temperatures. Thus, electric-
ity consumption can increase with specific humidity
(or water vapour concentration) in warm seasons
when cooling air conditioning is applied. Theoretical-
ly, the amount of heat release from this condensation
can be calculated from the latent enthalpy of the air.
Thus, latent enthalpy has been used to quantify the
specific humidity effect (Huang et al 1987, Krese et al
2011, Sailor 2001). Given a fixed specific humidity,
latent enthalpy does not vary much (less than 5%) for
a normal air temperature range. Thus, specific
humidity has been associated directly with electricity
consumption in warm seasons (Guan et al 2014, Ihara
et al 2008).

Outdoor cooling sources, such as sea breezes and
parkland irrigation, may lead to a higher apparent base
temperature locally if a weather station beyond such a
cooling influence is used as the reference. Meanwhile,
these cooling sources often occur in company with an
increase in specific humidity. In terms of the effect on
electricity consumption, this increased specific humidi-
ty counteracts the cooling effect. To better estimate the
benefit of these cooling sources in summer, the specific
humidity effect should be considered in common
weather dependent indicators, such as CDD.

Adaptive human comfort refers to how the human
body adapts to its outdoor and indoor climate



Table 1. Summary of selected published studies showing a range of base temperatures.

Area Electricity data Predictor variables under

consideration

Base temperature Relationship Reference

USA Weekly, for the whole country Population-weighted CDD 18.3 °C Linear with CDD Le Comte and Warren (1981)

USA Monthly Population-weighted CDD 18.3 °C Nonlinear, due to market saturation Sailor and Pavlova (2003)

Spain Daily, for the whole country, 1983–1999 Population-weighted daily

mean temperature

18 °C Nonlinear, HDD and CDD are used Valor et al (2001)

Greece Daily, 1993–2003 HDD, CDD, GDP,

population, energy intensity

18.5 °C Linear Mirasgedis et al (2007)

Palermo, Italy Hourly, for a district, June 2002-Sept

2003

Daily mean temperature 22 °C for CDD and 18.7 °C for HDD Linear with HDD and CDD;

Neural network modelling with weather

variables

Beccali et al (2008)

Athens and London Hourly, 1997–2001 Daily mean temperature 20 °C for Athens

16 °C for London

HDD and CDD are used Psiloglou et al (2009)

Slovenia 15-min, two buildings (office A and

hotel B), a few time intervals in 2007

and 2010

CDD

Enthalpy latent days

A: 5.14 g/kg, 12.9 °C

B: 7.14 g/kg, 16.1 °C

Linear with CDD and ELD Krese et al (2011)

Lebanon Monthly, 1992–1999 Monthly average temperature,

relative humidity, clearness

index

Humidity and clearness index are not

significant. Rationing changes the

temperature dependence

Badr and Nasr (2001)

South Korea Monthly in different regions, 2001–2010 Daily mean temperature Varied between areas, 16.2 °C–19.4 °C,

base temperature increases with annual

mean temperature

Linear with HDD and CDD Lee et al (2014)

Tokyo Hourly, three business blocks, 2002 Daily mean temperature,

specific humidity

Base temperature 15.0 °C and 21.3 °C

Base humidity 9.9 g/kg

Piece-wise linear regression with T and q Ihara et al (2008)

Tokyo Office building energy consumption at

14:00h

Instantaneous temperature 17.25 °C Piece-wise linear regression with T Hirano and Fujita (2012)

Brisbane, Sydney,

Melbourne and Adelaide

Australia

Half-hourly electricity demand for 1999

and 2000, aggregated to weekly values

Daily data aggregated to

weekly for analysis

Brisbane: 18.6 °C

Sydney: 17.5 °C

Melbourne: 16.9 °C

Adelaide: 16.8 °C

Linear with CDD, HDD, THI and VPD

depending on locations

Howden and Crimp (2001)

New South Wales Daily data for the whole state,

1999–2010

HDD, CDD, price,

population, Gross State

Product

14.3 °C Ahmed et al (2012)

Adelaide, South

Australia

Hourly, three buildings

for one year

Daytime temperature and

specific humidity

17 °C daytime temperature Linear Guan et al 2014

Adelaide, South

Australia

Hourly, multiple street blocks, five years Daily temperature, specific

humidity and residual

temperature

Base temperature 15.0 °C, base humidity

7.5 g/kg

Linear This study
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(Taleghani et al 2013). Thus, the human comfort
temperature may vary spatially, which may be reflected
in the spatial variation of base temperature for cooling
demand. For example, Lee et al (2014) reports that the
base temperature for cooling demand within South
Korea increases with mean annual temperature
(table 1). Adaptive human comfort may vary
seasonally (Kumar et al 2016, Yang et al 2015, Yun
et al 2016), leading to seasonally varying base
temperatures for cooling demand. However, this
apparent temporally varying base temperature can
be a result of seasonal effects of other climate variables
(e.g. humidity and wind). In buildings with central air
conditioning systems in the study area (and probably
many other areas), the effect of this temporal adaptive
comfort has not yet been incorporated in air
conditioning operations. Given this complexity and
the lack of a well-defined effective seasonal base
temperature for cooling in the study area, the possible
effect of seasonal varying base temperature is not
considered in this study.

The objectives of this study are (1) to examine
and quantify the residual temperature effect on
electricity consumption in warm days, (2) to quantify
the specific humidity effect on the electricity
consumption at both the street-block and building
levels, and (3) to incorporate the residual temperature
and specific humidity into defining the cooling
degree days for modelling weather-dependent
electricity consumption.

The analysis is primarily based on daily electricity
consumption of multiple street blocks in the central
business district (CBD) of Adelaide, South Australia,
with individual buildings being investigated for
comparison. This comparison is particularly impor-
tant for examining the specific humidity effect.
Condensation from cooling air conditioners inside
buildings may evaporate and absorb heat from the
environment. It is hypothesized that the specific
humidity effect is smaller at the street-block scale than
at the building scale.
2. Methodology
2.1. Data
Half-hourly electricity consumption data were
obtained from South Australia Power Networks for
four subzones in the Adelaide CBD for 2010–2015.
Each subzone covers an area of multiple street blocks
(figure 1). The four subzones are shown in figure 1 as
Whitmore Square 66/11 kV (WS), Coromandel Place
66/11 kV (CP), East Terrace 66/11 kV (ET) and
Hindley Street 66/11 kV (HS). Because of the spatial
overlap of the electricity supply subzones, it is difficult
to describe the accurate building composition for each
subzone. In general, theWS and ETsubzones include a
significant portion of private residential buildings,
while the HS and CP subzones are primarily composed
4

of commercial, education, non-private residential, and
public institution buildings. The WS subzone includes
a few high-rise office buildings and some commercial
building blocks (figure 1).

Sub-hourly electricity consumption data from
three office buildings in the Adelaide CBD were
obtained from the relevant building owners/managers.
These data have been used to examine temperature
and humidity effects on electricity consumption in a
previous study (Guan et al 2014), which includes
details of the building descriptions. Here, the data are
used to examine the residual temperature effects and
to investigate the difference in weather dependence
between the building and block levels. The three
buildings (denoted as A, B and C, which is the same as
in (Guan et al 2014)) are located within an area of
600m (north–south) by 250m (east–west). Building A
is a 10-storey structure, constructed within the last
10 years. Building B has nine storeys and was
constructed in the 1970s, with a few floors being
retrofitted to improve energy performance in the early
2000s. Building C has 18 storeys and was constructed
in the 1960s. The combination of buildings A, B and C
is estimated to be a close approximation of the average
office building stock in Adelaide (Guan et al 2014).

Hourly weather data was obtained from the Kent
Town Bureau of Meteorology station, located approx-
imately two kilometres from the CBD.

2.2. Method
As cooling electricity consumption is investigated in
this study, the analysis is performed on the days
warmer than the base temperature for cooling, using:

E ¼ b0 þ b1T þ b2q þ
Xk
j¼1

b2þjDTj for T > Tb ð2Þ

where E is the daily electricity consumption, T (°C) is
the outdoor air temperature, DTj is the temperature
difference between two days as defined in equation (1),
q (g/kg) is the specific humidity, Tb (°C) is the outdoor
air temperature threshold beyond which building
electricity consumption varies with air temperature.
The daily electricity consumption includes two
portions. The first, which is dependent on the weather
conditions, is related to achieving indoor human
comfort and in some cases maintaining specific
materials at low temperatures. The other portion is
associated with powering office equipment and
lighting, and is not dependent on the weather
conditions. The weather-independent component will
be included in b0, while the weather-dependent
component will be reflected in the other terms in
the regression equation.

The base temperature is usually determined from
the scatter plot of electricity consumption vs mean
daily temperature. Stepwise regression is applied to
determine the number of residual temperature terms
to be included in equation (2). Conventionally, the
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Figure 1. Estimated coverage of the four electricity supply subzones in the Adelaide central business district (adapted from South
Australia Power Networks) and the building and land-use types (provided by Data SA).
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cooling degree days is calculated according to:

CDD ¼
Xn
i¼1

ðTi � TbÞ for T > Tb ð3Þ

where n is the number of days in the time interval of
interest. In this study, we propose to include the
residual temperature and specific humidity effects in
the cooling degree days calculation, referred to as the
extended cooling degree days (ECDD), which is
calculated as:

ECDD ¼
Xn
i¼1

ðTi � TbÞ þmax
b2

b1

ðq � qbÞ; 0
� ��

þ
Xk
j¼1

b2þj

b1

DTj

�
for T > Tb ð4Þ

where qb (g/kg) is the base specific humidity, above
which the specific humidity affects electricity con-
sumption. All other symbols are explained in
equation (2).

It has previously been found that weather
dependence is better reflected by the daytime (7:00–
18:00) temperature than by daily temperature for
5

office buildings (Guan et al 2014). Both daily average
and daytime average weather conditions (temperature
and specific humidity) are used in the analysis.
Residual temperature is calculated based on daily
temperatures for either case.
3. Results
3.1. Patterns of electricity consumption at the street-
block scale
The buildings in the Adelaide CBD are mixed for
office, commercial, public use and residential use. The
electricity consumption differs between working days
and non-working days. For example, at the street-
block scale, the daytime electricity consumption in
working days is about twice that of non-working days
(figure 2). A mix of electricity consumption of two
groups of days may weaken the weather dependence.
Thus, in the following data analysis, only electricity
consumption of working days is used.

The relationship between daily electricity con-
sumption data vs daily temperature is shown for the
four sub-zones in figure 3. All four subzones share a



18

16

WS-work
CP-work
ET-work
HS-work
WS-rest
CP-rest
ET-rest
HS-rest

14

12

10

8

6

4
0 5 10 15

Time (hour)

E
le

ct
ric

ity
 c

on
su

m
pt

io
n 

M
W

hr

20

Figure 2. Mean diurnal hourly electricity consumption of four
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common pattern that electricity consumption
increases with temperature for days with daily mean
temperatures above 15 °C. The responses to tempera-
ture slightly vary among the subzones for days of mean
temperature below 15 °C. The two subzones in the
northern CBD have no or very weak temperature
dependence for cold days, while the two subzones in
the southern CBD show clear temperature depen-
dence. This difference between northern and southern
CBD sections is likely to be related to different
building compositions. The northern section is
concentrated with office and public buildings, in
which winter heating is primarily powered by gas.
800

700

600

500

400

300
10 20 30

T (ºC)

E
le

ct
ric

ity
 c

on
su

m
pt

io
n 

(M
W

h)

40

800

ET

WS

700

600

500

400

300
10 20 30

T (ºC)

E
le

ct
ric

ity
 c

on
su

m
pt

io
n 

(M
W

h)

40

Figure 3. Daily electricity consumption of four subzones in the Ad
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window with the centre points propagating at a 0.1-degree step.
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While in the southern section, residential dwellings are
mixed with other types of buildings. This explains the
observed significant temperature dependence of the
electricity consumption for cold days. However, the
electricity consumption of warm days is the focus of
this study.

3.2. Regression of weather dependence at the block
and building scales
Regression analysis is performed to examine the
weather dependence of daily electricity consumption
at both the street-block and building scales, using
daytime (office hours) and daily average weather
conditions (temperature and specific humidity). It is
found that at the street-block scale, there is not much
difference when using either daytime average or daily
average weather conditions (figure 4). However, at the
building scale, using daytime weather conditions
significantly improves the regression performance in
explaining the temporal variability of daily electricity
consumption for Building A, but not for Buildings B
and C. Building A is a recently constructed office
building, with high energy-use efficiency, while
Buildings B and C are around 50 years old. This
difference in building age (thus different designs and
materials) may explain the differences shown in
figure 4. In this study, daily average weather condition
is used for analysing street-block daily electricity
consumption, to be consistent with most published
studies, particularly those involving the CDD concept.
While at the building scale, daytime average weather
condition is applied, given the significant differences
shown in figure 4 for Building A.
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Figure 4. Regression performance using daytime average temperature and specific humidity vs daily average temperature and specific
humidity for the four subzones and three office buildings.

Table 2. Linear regression results for daily electricity consumption (MWh) vs three predictor variables (daily temperature, specific
humidity and residual temperature) for the electricity supply subzones in the Adelaide CBD (2010/11–2014/15)

Variables Statistics
b(q)/b(T)

Subzones T (°C) q (g/kg) dT (°C) R2 Standard errora b(dT)/b(T) (°C)/(g/kg)

Whitmore Square b 12.09 5.28 2.31

p value 8.0E–184 4.0E–13 1.1E–08 0.74 0.075 0.19 0.44

Coromandel Place b 12.90 5.82 3.11

p value 3.5E–188 2.3E–14 2.7E–13 0.75 0.060 0.24 0.45

East Terrace b 13.01 6.65 1.69

p value 5.6E–132 6.3E–11 2.6E–03 0.63 0.090 0.13 0.51

Hindley Street b 10.85 4.73 2.23

p value 1.2E–192 3.2E–14 1.1E–10 0.76 0.055 0.21 0.44

a The standard error is normalized by mean daily electricity consumption.

Table 3. Linear regression results for daily electricity consumption (KWh) with daytime average temperature, daytime average specific
humidity and daily residual temperature for three office buildings

Variables Statistics
b(q)/b(T)

Building floor area (m2) T (°C) q (g/kg) dT (°C) R2 Standard errora b(dT)/b(T) (°C)/(g/kg)

A b 159.27 121.35 41.96

20000 p value 8.0E–33 4.8E–11 2.5E–03 0.79 0.100 0.26 0.76

B b 78.51 73.45 54.50

8460 p value 2.2E–23 4.0E–06 1.0E–06 0.74 0.068 0.69 0.94

C b 439.62 198.08 131.36

20600 p value 7.4E–89 2.7E–12 3.1E–09 0.89 0.056 0.30 0.45

a The standard error is normalized by the average daily electricity consumption.

Environ. Res. Lett. 12 (2017) 024021
The initial stepwise regression analysis with
residual temperatures from multiple preceding days
suggests that the significant influence on daily
electricity consumption mainly comes from one
preceding day (not shown). The regression results
for the four subzones are included in table 2. The three
predictor variables (daily temperature, specific hu-
midity and one-day residual temperature) explain
about 75% of the subzone electricity consumption for
WS, CP, and HS, and 63% for ET. The residual
temperature dependence is about 20% of the
temperature dependence (column 8 in table 2). The
dependence on specific humidity appears to be related
to the temperature dependence, being fairly uniform
across subzones (column 9 in table 2).

A similar analysis is performed for the three
buildings (table 3). Again, the residual temperature
7

appears to be a significant influence on warm-day
daily electricity consumption. The three variables
(daytime temperature, specific humidity and one-day
residual temperature) explain 74%–89% of the
variability of daily electricity consumption in warm
days. This is on average higher than that at the street-
block scale, which indicates that office buildings
(perhaps other buildings as well) are more weather-
dependent than other electricity-users in the Adelaide
CBD. The residual-temperature sensitivity is larger at
the building level than at the street-block scale,
particularly for Building B, which represents 69% of
the temperature dependence of this building. The
dependence of electricity consumption on specific
humidity is also larger at the building scale,
particularly for Buildings A and B (column 9 in
table 3).
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temperature and temperature coefficients from the regression
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the four subzones) stability of specific humidity effects.
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3.3. Extended cooling degree days
To incorporate residual temperature and specific
humidity effects in the extended CDD (equation 3),
the coefficient ratios need to be relatively stable
temporally and spatially (over the area in which the
electricity consumption is estimated or simulated).
Based on the results shown in section 3.2, the
coefficient ratios vary over a relatively large range
(0.26–0.69 for residual temperature and 0.45 – 0.94 for
specific humidity) between the three office buildings
(table 3). This variation may be related to the
differences in building ages, energy performance
and occupant density. It is therefore difficult to
transfer the ratios from one building to another.

Nevertheless, at the street-block scale, the coeffi-
cient ratios show more stability across subzones
(table 2). For each subzone, the stability of the
coefficient ratios is examined for both residual tempera-
ture (figure 5) and specific humidity (figure 6). The
interannual variability is relatively large; but the standard
deviation is still either about 50% or smaller than the
mean for most cases shown in figures 5 and 6.

To make the extended CDD concept easily
applicable, it is desirable to use uniform (across
space) and constant (over time) coefficient ratios to
relate the residual temperature and specific humidity
effects on electricity consumption to the temperature
dependence. For this study, fixed values of the
coefficient ratios (0.2 for the residual temperature
from figure 5, and 0.45 for the specific humidity from
figure 6) are used in calculating the extended CDD.

To calculate the extended CDD, the base specific
humidity is required. A plot of daily electricity
consumption vs specific humidity does not show as a
clear relationship for a base specific humidity value (not
shown), as that for temperature (figure 3). This is because
the dominant temperature effect overshadows the effect
of specific humidity. After the temperature and residual
temperature effects are removed, the specific humidity
effect becomes clearer (figure 7). Abase specific humidity
of 7.5 g/kg is estimated for the Adelaide CBD.

Now we are ready to calculate the extended CDD
for each warm working day. The correlation between
the daily electricity consumption and the conventional
CDD and the extended CDD is shown in figure 8. The
extended CDD sharpens the correlation between the
electricity consumption and weather condition. This
result indicates that the extended CDD, based on fixed
values of relative residual temperature dependence and
specific humidity dependence, can improve simula-
tion of daily electricity consumption.
–5
4 5 6 7

E
-q

8 9 10
4. Discussion

Daily q (g/kg)

Figure 7. Response of daily electricity consumption for four
subzones in the Adelaide CBD to daily specific humidity, using a
step of 0.1 g/kg and a window ofþ/� 1.5 g/kg. In this analysis the
T and dT effects have been removed.
4.1. Residual temperature effect
Although it would seem obvious that residual heat
would affect indoor temperatures, this effect has not
been previously included in estimating/predicting the
8
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electricity consumption of buildings. Based on
meteorological data for Adelaide, which has a
Mediterranean climate, it is found that the residual
heat effect is statistically significant in influencing daily
electricity consumption at both the building and block
scales. At the block scale, the residual temperature
effect is about 20% of the temperature dependence,
while at the building scale, the effect appears to be
larger. Whether or not similar relationships occur in
other climate zones is yet to be determined.

Of the four subzones, the residual temperature
effect is strongest in the Coromandel Place subzone,
and is weakest in the East Terrace subzone. This may
be associated with the different building compositions.
In Coromandel Place, the primary type of buildings is
commercial, public institution, and non-private
9

residential (figure 1). They are large in size, and
generally hold more residual heat. In East Terrace,
particularly in the southeast corner, private residential
buildings are dominant (figure 1). The ventilation level
is likely to be high in such buildings, leading to relative
weak but still significant residual heat effects, in
comparison to the other three subzones. The humidity
effect is largest in the East Terrace subzone, which can
be relevant to the fact that the building composition of
this subzone is different from the other three subzones.

The residual temperature effect varies over a fairly
large range among the three examined buildings. This
variation may reflect the effect of building design,
structure, and construction materials. Building B, with
the strongest residual heat effect, happens to be a
building with fewer windows. The design was to
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reduce solar radiation input to the building. To reduce
the residual temperature effect in summer, night-time
ventilation using natural winds may be a potential
solution. Thus, the concept of residual temperature
effect on electricity consumption can be used as a
quantitative indicator for some aspects of building
energy performance, and may provide useful infor-
mation to guide building design and operation
management.

4.2. Specific humidity effect
It is well known that specific humidity can increase
cooling energy consumption. At the block scale, the
effect is relatively stable (table 2), while at the building
scale, the specific humidity effect varies over a large
range (table 3). It is worth noting that the sensitivity of
electricity consumption to specific humidity does not
seem to be correlated to building age. Building A has
the highest energy performance ranking, while its
specific humidity dependency is about 50% larger
than that at the block scale (comparing the numbers in
Column 9 of tables 2 and 3). Building C is an old
building, but has a specific humidity dependency
similar to that at the block scale.

From an energy balance point of view, the amount
of heat released from vapour condensation in the
cooling system roughly equates to that absorbed when
the condensation evaporates in the environment.
Thus, it is likely that the specific humidity effect on
electricity consumption becomes weaker when mov-
ing from the building to block scales. This hypothesis
is supported by the results of this study (tables 2
and 3).

Environmental cooling often comes with an
increase in specific humidity. One typical example is
sea breezes, which while decreasing temperature by a
few degrees depending on the distance to the coast,
also increase specific humidity (Gharib and Guan
2015). Therefore, from a cooling energy consumption
point of view, sea breezes may not produce much
benefit. Nevertheless, their value on outdoor comfort
is significant, but this is beyond the scope of this study.
Another example is large-scale parkland irrigation.
Irrigation may reduce temperatures in summer, but at
the same time it can increase specific humidity in the
surrounding area. To evaluate the benefit of irrigation
cooling on energy consumption, it is therefore
important to include the specific humidity effect.

4.3. Extended cooling degree days
The ECDD concept proposed in this study considers
the effects of air temperature, specific humidity, and
residual temperature on electricity consumption in
warm seasons. It has a form similar to CDD, and only
requires readily available meteorological data (tem-
perature and humidity). As demonstrated in this
study, ECDD better reflects than CDD the temporal
variability of electricity consumption in warmworking
days.
10
It is worth noting that the electricity consumption
of office buildings in warm working days seems to be
better associated with daytime weather conditions,
while at the block scale (with mixed electricity users),
the association with daytime and daily weather
condition is similar. Thus, for the office building
sector, it might be a good option to use daytime
weather data, instead of daily data, to calculate the
ECDDs. This may be particularly useful for high-
energy performance office buildings in which the
night-time electricity consumption is reduced to a very
low level (Guan et al 2014).
5. Conclusions

In this study, we examined the association between
warm-day electricity consumption and weather
condition for four electricity-supply subzones and
three office buildings in the Adelaide CBD. In
addition to temperature and specific humidity, it
was found that the residual temperature, which is a
new concept proposed in this study to reflect the
building thermal inertia effect on electricity con-
sumption, is statistically significant in explaining
temporal variation of daily electricity consumption of
warm working days in the study area. The residual
temperature effect is about 20% of the current-day
temperature effect at the block scale, and increases
with a large variation at the building scale. Investiga-
tion of this residual temperature effect provides some
insight into the influence of building design and
structure on electricity consumption.

The specific humidity effect appears to be
important at both the block and building scales.
The base specific humidity is estimated to be 7.5 g/kg
in the study area. This effect, when normalized by the
temperature effect, is quite stable across the subzones
(blocks), but varies over a large range among the three
examined office buildings. A building with high energy
performance does not necessarily have low specific
humidity dependence.

The new ECDD concept better reflects the
weather dependence of electricity consumption than
the conventional CDD method. Given its simple
form, it is suggested that ECDD be used to predict
electricity demand in response to climate variability
and change.
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