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Abstract 

In an effort to reduce the risk of sensitive data exposure in 

untrusted networks such as the public cloud, increasing 

attention has recently been given to encryption schemes 

that allow specific computations to occur on encrypted 

data, without the need for decryption. This relies on the 

fact that some encryption algorithms display the property 

of homomorphism, which allows them to manipulate data 

in a meaningful way while still in encrypted form. Such a 

framework would find particular relevance in Clinical 

Decision Support (CDS) applications deployed in the 

public cloud. CDS applications have an important 

computational and analytical role over confidential 

healthcare information with the aim of supporting 

decision-making in clinical practice. This review paper 

examines the history and current status of homomoprhic 

encryption and its potential for preserving the privacy of 

patient data underpinning cloud-based CDS applications.  

Keywords: homomorphic encryption, clinical decision 

support, cloud computing. 

1 Introduction 

In Australia and worldwide, there is a growing impetus 

for adoption of electronic health records (EHRs) and 

personal health records (PHRs). The availability of this 

type of information in clinical care will act as a major 

driver for much needed IT reform in this sector, as well as 

opening up major opportunities for Clinical Decision 

Support (CDS) (AHIC Electronic Decision Support 

Systems Report  2009). The Personally Controlled 

Healthcare Record (PCEHR) is an example of a recent 

Australian initiative to promote patient information 

sharing across caregivers and healthcare provider 

institutions nationally (Pearce and Haikerwal 2010).  

Against the backdrop of these proposed large scale 

health IT infrastructure changes, there has been a rapid 

uptake of cloud computing services by organisations that 

want to flexibly outsource their computational 

requirements according to individual demand (Buyya, 

Yeo et al. 2009).  
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Privacy and security concerns however dominate 

public cloud use in healthcare and constructing a CDS 

system to operate within this environment has 

considerable challenges both technically and socio-

politically (Creating HIPAA-Compliant Medical Data 

Applications With AWS 2012, Schweitzer 2012, 

Demirkan and Delen 2013). As a result, attempts at 

outsourcing computing or analytical processing to third 

parties or using these services as repositories for data 

storage are significantly hindered. In fact, the 

recommendation is to either avoid the public cloud model 

altogether for this type of information or avoid exposing 

unencrypted data to cloud providers (Pearson and 

Benameur 2010, Puttaswamy, Kruegel et al. 2011). If 

public cloud resources are to be utilised under these 

circumstances, there is little choice other than to consider 

encrypting all sensitive data made available on the public 

cloud.  

Standard encryption techniques typically prevent 

further interpretation or manipulation of data, requiring 

the ciphertext to be first downloaded and decrypted 

before computational analysis could be performed on the 

plaintext. Researchers instead have been looking towards 

applying homomorphic encryption (HE) methods as a 

solution for overcoming some of the privacy and data 

control issues in the cloud. Since being first demonstrated 

in 2009 by Craig Gentry (Gentry 2009), fully HE schemes 

that support both addition and multiplication operations 

(allowing arbitrary operations on encrypted data), are just 

becoming efficient enough to be considered practically 

useful. They are still predominantly limited to certain 

specific computations, for instance, finding the statistical 

mean over sets of encrypted quantitative data, searchable 

encryption and private information retrieval (Chow, Golle 

et al. 2009). Although arbitrary computation over 

encrypted data is far from a reality, there may be some 

middle ground where HE schemes with reduced 

computational capacity can still be exploited to facilitate 

secure computation over untrusted IT networks.  

This paper introduces some background concepts 

surrounding CDS, cloud computing and information 

security. It then explores in greater detail the history and 

current literature on HE with a view to evaluating the 

practicality of enabling machine learning (ML) 

algorithms to operate over encrypted data in the cloud. 

Such a ML framework would satisfy the real requirement 

for performing complex and distributed CDS processing 

within the healthcare domain, while maintaining a high 

level of confidentiality. 
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2 Clinical Decision Support and the Cloud 

CDS systems refer to any application that supports 

clinical decision-making and “provides clinicians or 

patients with clinical knowledge and patient-related 

information, intelligently filtered or presented at 

appropriate times to enhance patient care” (Osheroff, 

Teich et al. 2007). ‘Support’ in this case suggests aiding 

rather than making decisions. The general aim of CDS is 

to make data easier to assess, to foster optimal problem-

solving by the clinician, or assist in the automation of 

manual processes (Greenes 2011). These aims have 

implications for improved patient safety and quality of 

care as well as improved efficiency and cost reductions 

for healthcare. ML techniques (such as Naïve Bayesian, 

Decision Tree and Neural Network Classifiers) are used 

in non-knowledge based CDS systems that make 

inferences from data patterns and do not rely on a human 

expert to input knowledge into the system directly 

(Berner 2007). 

Since the introduction of CDS systems in hospital care 

in the early 1970s (Teije, Miksch et al. 2008), there has 

been slow progress to date towards adopting CDS 

systems into mainstream clinical care beyond simple 

reference information display and basic alerting systems 

(Beilby, Duszynski et al. 2005). This is generally 

indicative of the slow growth of IT in the healthcare 

sector, which remains dominated by paper-based 

information systems, where CDS systems have limited 

impact (AHIC Electronic Decision Support Systems 

Report  2009). With the emergence of national EHR and 

PHR systems, there will be a growing requirement for 

applying increasingly sophisticated analytical and health 

information management tools to support clinical 

decision-making and process improvement in healthcare 

practice (AHIC Electronic Decision Support Systems 

Report  2009). This trend is being actively enforced in the 

US through the American Recovery and Reinvestment 

Act’s ‘meaningful use’ criteria. As part of criteria, CDS 

rule-based interventions operating on EHRs are 

systematically being mandated (Centers for Medicare & 

Medicaid Services  2014). Furthermore, the Department 

of Veterans Affairs in US has called on the industry to 

develop standardised interface specifications for CDS 

“functionality as a service” to be accessed by its 

integrated EHR (Service Interface Specifications for EHR 

Services: Federal Business Opportunities  2012). 

Adoption of cloud computing in healthcare would 

allow relevant applications, such as the aforementioned 

proposed CDS functionality as a service, to have a much 

needed broadening of their processing and analytical 

capabilities applied across a wider range of shareable 

healthcare resources (Armbrust, Fox et al. 2010). Cloud 

computing is viewed as a “style of computing in which 

dynamically scalable and often virtualised resources are 

provided as a service over the Internet” (Dhar 2012). 

Cloud services are designed to flexibly respond to 

changing business requirements and represent a 

fundamental change in the way consumers and 

organisations utilise computing resources. The transition 

is away from owning the system to one where IT systems 

are accessed as a service when required (Soman 2011). 

Cloud computing is increasingly attractive to business 

entities that wish to take advantage of cost sharing, pay-

per-use and on demand provisioning of large scale 

computing resources. Additionally, the ease of use, 

platform-independence and decentralised nature of cloud 

computing allows services to be more sharable across 

entities and are more suitable for group collaboration 

(Soman 2011). 

There are several examples of data-intensive analytics 

and processed-based applications running on cloud-based 

frameworks that are available for research and for general 

industry (Sun and Aida 2010, Fehling, Leymann et al. 

2011, Liu, Charif et al. 2012, Demirkan and Delen 2013). 

Few vendors however are piloting CDS cloud computing 

solutions for use in mainstream clinical care. Notable 

examples include cloud-based real-time monitoring and 

support for rural and remote critical care units (McGregor 

2011), and a shared CDS knowledge repository for 

managing cardiovascular diseases and diabetes in a 

community cloud (Dixon, Simonaitis et al. 2013). In the 

US, the iDASH platform attempts to “level the playing 

field” by providing tools for sharing clinical and 

biological data in a privacy-preserving manner amongst 

the research community. Funded by the National 

Institutes of Health, the platform includes a high-

performance computing environment enabled through a 

private Health Insurance Portability and Accountability 

Act (HIPAA)-certified cloud (Ohno-Machado, Bafna et 

al. 2012). Security appears to be achieved through 

anonymisation techniques, enterprise-grade application 

management, and project segregation leveraging 

virtualisation. Access to the platform is limited to iDASH 

centres or exported to other centres.  

3 Cloud Security 

As with any services containing sensitive health-related 

information, cloud-based systems are required to follow 

legislated provisions enforcing security protections 

surrounding access to patient and healthcare provider 

data. There are severe penalties in cost, patient safety, and 

provider reputation should any malicious or unintended 

security breaches occur.  

A private cloud is able to securely isolate computer 

systems to within a single organisation’s private network 

and away from unsolicited public access, while still 

retaining the benefits of an abstracted IT infrastructure 

offered by a cloud-based architecture (Zissis and Lekkas 

2012). The private cloud however may not satisfy the 

processing power and economies of scale afforded to 

consumers using public cloud services due to the 

relatively lower numbers of computing and database 

resources that are typically available within a private 

network. Confining computing resources within a private 

cloud environment may also limit information sharing 

across a variety of healthcare institutions.  

Even within private IT networks, attacks can occur as 

a result of ‘insider threats’, which are an often-

underestimated risk to an organisation’s information 

security. These threats include accidental disclosures, 

insider curiosity and data breach by insider (Rindfleisch 

1997, Theoharidou, Kokolakis et al. 2005, Appari and 

Johnson 2010). The proportion of insider attacks 

compared to all healthcare provider privacy breaches 

recorded between 2005 to 2013 in the US was 
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approximately 17% (n= 165) (Privacy Rights 

Clearinghouse; Chronology of Data Breaches  2013). 

Insider threats could be envisioned for third-party cloud 

vendors entrusted with outsourced provider data. 

In the public cloud however, the security concerns are 

considerable and rely on the fact that computing 

resources are exposed within a dynamic, distributed and 

shared environment, with consumers having little control 

in how data is accessed, proliferated or destroyed. Often 

there is a lack of transparency and accountability when 

cases of privacy breaches occur (Pearson and Benameur 

2010). These properties of the public cloud paradigm 

complicate regulatory, governance and jurisdictional 

directives, which are very prominent in healthcare. 

Additionally, there are a large variety of opportunities 

available for accidental or intentional leakage of personal 

information from vulnerable IT systems accessed from 

publically sharable computing infrastructures. As 

virtualisation enables hardware resources to be shared 

across different users, this introduces new system 

vulnerabilities such as cross-virtual machine (VM) side-

channel attacks that can result in extraction of secret keys 

and other confidential information from cloud instances 

by adversaries (Ristenpart, Tromer et al. 2009). 

Protections should be in place for these types of cloud-

specific attacks. 

 

Figure 1: Scenario for Machine Learning Analysis 

over Encrypted Patient Data in the Cloud 

 

HE is seen as an important technology for overcoming 

some of the privacy and data control issues when 

outsourcing computing and analytical processing to the 

public cloud. If ML analysis could be performed entirely 

on encrypted data, a cloud-based CDS application could 

potentially ensure the privacy of healthcare data that is 

used in both training and classification phases of the ML 

algorithm. Patient medical profiles from a hospital can be 

encrypted using the hospital’s public key and sent to a 

third-party cloud vendor for ML analysis within a high-

performance computing environment. The analysed result 

would be returned while still in its encrypted form and 

could only be revealed using the hospital’s private key. 

The scenario is depicted in Figure 1. Such an approach 

may give both the healthcare institution as well as the 

public cloud vendor the confidence required for 

permitting processing of sensitive information outside of 

the hospital environment. Such an approach could also be 

used to strengthen HIPAA compliance or accreditation in 

a private cloud. In another scenario, a statistical model 

generated from current patient medical profiles from one 

hospital can be used to predict patient outcomes from 

another hospital based on their medical profiles. Ideally 

this outcome would be achieved using a protocol where 

neither party leaks any confidential patient details to the 

other party (Bost, Popa et al. 2014).  

4 Homomorphic Encryption 

4.1 Background 

4.1.1 Definitions 

HE schemes allow meaningful manipulations on 

encrypted data without knowing the secret key (Gentry 

2010). HE schemes that allow simple operations on 

encrypted data have been known for some time. One of 

the first algorithms proposed by Rivest, Adleman et al. 

(1978) as having multiplicative homomorphic properties 

was the well-known Rivest, Shamir and Adleman (RSA) 

public-key encryption algorithm. The mathematical 

properties of the algorithm are such that the public-key 

encrypted form of two integers 𝑚1and 𝑚2, denoted as 

𝐸𝑝𝑘(𝑚1) and 𝐸𝑝𝑘(𝑚2), when multiplied together would 

result in the encrypted form of the product of the two 

integers, namely 𝐸𝑝𝑘(𝑚1. 𝑚2). Decrypting this product 

can reveal the correct solution to the actual (plaintext) 

product of two integers. The same public key is used in 

encryption of the two integers while the corresponding 

private key is used in decryption of the ciphertext 

product. 

The ideal requirement is that a HE scheme is 

semantically secure. The notion of semantic security was 

introduced by Goldwasser and Micali (1982), which in 

general terms relates to the fact that an adversary should 

not be able to discover any partial information from a 

ciphertext. Semantic security is equivalent to the concept 

of computational indistinguishability, which is simpler to 

work with in formal proofs (Katz and Lindell 2007). 

Informally it represents a hypothetical situation where an 

adversary supplies two plaintexts, one of which is then 

randomly chosen, encrypted, and then handed back to the 

adversary to determine which of the two plaintexts was 

chosen. With the adversary’s computational powers 

limited to running in polynomial time, the probability of 

choosing the correct plaintext should not be better than ½ 

(plus a negligible factor) (Fontaine and Galand 2009). 

Since RSA is deterministic in its original form, it is 

not semantically secure. Any attempt to make it 

probabilistic breaks its homomorphic properties (Fontaine 

and Galand 2009). Additionally, it leaks some 

information including the fact that integers 0 and 1 have 

the same value in both plaintext and ciphertext form.  

4.1.2 Partial Homomorphism 

The first semantically secure HE scheme was described 

by Goldwasser and Micali (1984) and since then a 

number of additively and multiplicatively HE schemes 

have been described (Fontaine and Galand 2009, 

Vaikuntanathan 2011). Of particular note are the efficient 

and semantically secure HE schemes by Paillier (1999) 

and ElGamal (1985) (including their variants) which are 

additive and multiplicative respectively. These schemes 

display partial homomorphism because they do not 
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support both operations at the same time. A list of the 

most common schemes is presented in Table 1 from 

(Bailey, Bush et al. 2012). 

 
Cryptosystem Homomorphic Operation 

RSA Multiplication mod n 

ElGamal Multiplication, Exponentiation (by 
constant only) 

Paillier Addition, Subtraction, 
Multiplication (by constant only) 

Glowasser-Micali XOR 

Benaloh Addition, Subtraction 

Naccache-Stern Addition, Subtraction, 
Multiplication (by constant only) 

Boneh-Goh-Nissim Unlimited additions, one 
Multiplication 

Table 1: List of Common Partial HE Schemes 

4.1.3 Full Homomorphism 

It was only until 2009 that a fully homomorphic 

encryption (FHE) scheme, which enables arbitrary 

computation over encrypted data, was demonstrated by 

Craig Gentry using ideal lattices in his PhD thesis 

(Gentry 2009). In general, these schemes are based on the 

intractable mathematical problems associated with 

lattices. The lattice points outline ‘tilings’ of the space of 

real numbers in n dimensions (ℝ𝑛). A lattice is 

constructed by combining n linearly independent vectors 

which forms the basis of the lattice, denoted by 𝑉 =
 〈𝑣1 ,∙∙∙   𝑣𝑛 〉. Integral coefficients associated with the 

basis are used to span the entire lattice L (Goldreich, 

Goldwasser et al. 1996). That is: 

 
Two of the most common (conjectured) computational 

problems in lattices include the Closest Vector Problem 

(CVP) and Shortest Vector Problem (SVP). In CVP, the 

problem relates to finding the lattice vector closest to a 

given target vector not on the lattice, while SVP is 

concerned with finding the shortest (non-zero) vector in 

the lattice (Goldreich, Micciancio et al. 1999). Both 

problems are known to be NP-hard to solve and grow 

proportionally (at least) to the exponent of the dimension 

of the lattice (Becker, Gama et al. 2013). In forming a 

public encryption scheme, a one-way computation 

function is required to be constructed, which for the CVP 

could mean adding a small error vector to a point in the 

lattice (the lattice point would have been initially mapped 

to a message). The advantage of lattices over the RSA 

and ElGamal encryption schemes are their reduced 

computation time for encryption and decryption, which 

are of the order of O(k
2
) for some security parameter k, 

since they are based only on simple polynomial 

multiplication. In comparison, the time complexity of 

RSA and ElGamal systems are of the order of O(k
3
). The 

disadvantage of lattice-based encryption schemes is in 

their public key size, which is O(k
2
) compared to O(k) 

(Goldreich, Goldwasser et al. 1997).  

Ideal lattices of the type employed by Craig Gentry in 

the development of FHEs are lattices with some 

additional algebraic structure, such as cyclic rotation of 

the vector set within the lattice basis. This allows for a 

more succinct representation of the n-dimensional lattice 

(using 1 vector) and can be processed more efficiently 

(Lyubashevsky 2008). Homomorphic operations are 

performed by the addition or multiplication of lattice 

points. As there is noise associated with generation of the 

ciphertext, the noise is roughly doubled and squared with 

the addition and multiplication operations respectively. 

This limits the amount of operations that can occur before 

successful decryption is no longer possible, resulting in a 

Somewhat Homomorphic Encryption (SWHE) Scheme 

(Kocabaş and Soyata).  

The truly revolutionary idea of Gentry was to convert 

the SWHE scheme into a FHE Scheme using a 

bootstrapping method that repeatedly decrypts the 

ciphertext in a self-referential way (ie. recrypt) as a 

means of resetting the ciphertext noise. Each recryption 

operation step also allows only one arithmetic operation 

to be performed before the noise becomes too large and a 

recryption step is required before the next operation. A 

squashing process is necessary to transform the 

decryption scheme to one that is homomorphically 

equivalent but is simplified to allow bootstrapping. The 

repeated cycle of bootstrapping with an additional single 

arithmetic operation allows for the computation of 

arbitrary functions indefinitely (Gentry 2010). By 

handling all possible arithmetic functions, this scheme 

satisfies the criteria of homomorphism, although there is 

an additional requirement of compactness for it to be 

considered FHE. This means that the size of the 

cyphertext (and the time needed to decrypt it) does not 

grow with the complexity of the function being evaluated, 

but rather is dependent (polynomial) on the security 

parameter (Gentry 2010). 

Even though Gentry’s scheme demonstrated that FHE 

was possible, it was too inefficient to be considered 

practical both in terms of computation and storage. 

Estimates showed an 800,000 times storage expansion 

ratio was required for encrypting just one bit, and 99.9% 

of the total execution time was spent on the recryption 

operation (Kocabas, Soyata et al. 2013). 

4.1.4 New generation HE schemes 

There have since been a number of recent improvements 

to the original Gentry scheme making it more efficient 

and practical to use. In 2011, Gentry and Halevi removed 

the requirement for the squashing process but FHE was 

still based on ideal lattices. Concurrently Brakerski and 

Vaikuntanathan also removed squashing by exploiting 

Gentry’s scheme but based it on the much more simple 

and efficient learning with error (LWE) problem. This 

was shown to be equivalent to the hardness of solving the 

SVP problem on any lattices (Brakerski and 

Vaikuntanathan 2014). 

The LWE problem introduced by Regev (2009) states 

that a polynomial number of ‘noisy’ random linear 

combinations of coefficients of a secret vector s of n 

dimensions (modulo q) is hard to solve for s. A shortened 

example directly from Regev (2010) illustrating this 

problem shows that the inputs could be: 

14s1 +15s2 + 5s3 + 2s4 » 8(mod17)

13s1 +14s2 +14s3 + 6s4 »16(mod17)...
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… and so on where each equation has a small additive 

error of say ±1. The answer for s is purported to be hard 

to recover due to the presence of the errors (the answer 

s=[0,13,9,11]). A slight variation of this scheme, the ring-

LWE problem imposes some structure to the linear 

equations making them more compactly represented 

(using smaller keys), more efficient to compute, and can 

still be shown to be hard to solve on ideal lattices in the 

worst case (Regev 2010). 

The new generation schemes developed using (± ring) 

LWE by Brakerski and Vaikuntanathan (2014) with later 

refinements from Brakerski, Gentry et al. (2012) removed 

the requirement for squashing and bootstrapping. While 

the scheme could perform additions homomorphically 

within the bounds of noise, a re-linearisation technique 

was used that required a different secret key to perform 

each level of multiplication under a new encryption. In 

this way up to L levels of multiplications could be 

performed using a pre-determined chain of L different 

keys as additional input. This new scheme became known 

as levelled FHE (Togan M 2014). Brakerski, Gentry et al. 

(2012) also introduced a noise management technique 

called modulus switching that relied on switching a 

ciphertext to one with a smaller modulus. This resulted in 

a concomitant decrease in the magnitude of the noise 

without involving a secret key and allowed an 

exponential increase in the number of multiplications that 

could occur (n levels instead of log n) before 

bootstrapping would be required (Vaikuntanathan 2011). 

This particular scheme became known as the BGV 

implementation of levelled FHE after its authors. 

A number of key optimisations and batch techniques 

have reduced overall computation complexity and 

increased efficiency of these FHE schemes. This included 

ciphertext packing techniques for combining multiple 

ciphertexts into a single ciphertext. Packing techniques 

were developed for ideal lattices, binary vectors and (± 

ring) LWE problems (Zhou and Wornell 2014). Single 

Instruction Multiple Operations (SIMD) proposed by 

Smart and Vercauteren (Smart and Vercauteren 2010) 

applied a variation of the ciphertext packing technique 

and were adopted by some of the newer schemes to 

achieve parallelisation of repeated operations by packing 

these bits into the same cyphertext . Various additional 

algorithm and permutation optimisations appear in 

specialised schemes to improve performance (Halevi and 

Shoup 2014). 

Overall there is a complexity associated with lattice-

based cryptography schemes and those based on the LWE 

problem. Setting up the correct secure encryption 

environment involves consideration of a number of inter-

related parameters (Naehrig, Lauter et al. 2011). In 

addition, the schemes break down computational tasks 

into multiple binary operations making it difficult to 

practically accommodate computation and 

communication requirements (Zhou and Wornell 2014). 

Van Dijk, Gentry et al. (2010) introduced the DGHV 

scheme which is a conceptually simpler as it relies only 

on simple integer operations rather than depending on 

single bit manipulations over plaintext. In this way, a 

number of standard computations could be supported. 

The scheme was based on the hardness of solving the 

approximate Greatest Common Divisor (GCD) problem. 

The assumption here is that it is normally simple to solve 

for the GCD of two integers using Euclid’s theorem, but 

this is not the case when small errors are associated with 

each integer (Gentry 2010). 

The initial DGHV scheme was still impractical as it 

involved the use of very large public keys. There have 

since been a number of improvements to the scheme 

including reduction of the public key size (Coron, Mandal 

et al. 2011) and batch processing of a vector of plaintext 

bits as a single ciphertext (Cheon, Coron et al. 2013). 

Cryptosystems that rely on the approximate GCD 

problem however appear to be less efficient compared to 

equivalent (security-wise) lattice-based schemes (Gentry 

2010). 

4.2 Towards Practical HE 

4.2.1 Somewhat HE Schemes 

The performance of FHE operations, have improved 

significantly from a few hours in 2010 to a few 

milliseconds by 2012 (Fau, Sirdey et al. 2013) which has 

given much hope to the ultimate practically of these 

schemes. A current area of intense research is the 

application of SWHE encryption schemes, which are 

more efficient and optimised compared to FHE schemes, 

at the expense of reduced (but sufficient) functionality 

(Naehrig, Lauter et al. 2011, Sen 2013). Even before the 

discovery of FHE, partial HE schemes have been 

exploited for their limited computational capabilities. 

Most HE schemes however (partial HE, SWHE and 

FHE), so far have been predominantly focused on 

specialised functions applied to well-known application 

areas. A list of only some of these areas, include: 

electronic voting/auctions/lotteries (Fouque, Poupard et 

al. 2001, Abe and Suzuki 2002), private set intersection 

(Kerschbaum 2012), private information retrieval (Sion 

and Carbunar 2007), data aggregation in wireless 

networks (Acharya, Girao et al. 2005, Westhoff, Girao et 

al. 2006), watermark and fingerprint schemes 

(Kuribayashi and Tanaka 2005). 

4.2.2 Healthcare Applications  

The healthcare setting is commonly considered a strong 

candidate for HE although many of the suggested 

schemes remain tightly coupled to a particular healthcare 

use case. In healthcare sector, typically the data rather 

than the computations are considered sensitive or private, 

compared to other industries such as the financial and 

advertising sectors (Naehrig, Lauter et al. 2011). 

Currently the implementation status of most health-based 

HE schemes has been at a conceptual level only or there 

may be existing prototypes for performance 

demonstration purposes. Many earlier systems are 

predominantly based on the additively homomorphic and 

semantically secure Pallier cryptosystem. Katzenbeisser 

and Petkovic (2008) for example, describe using the 

scheme to securely calculate an inner product between an 

encrypted and plaintext vector to determine the degree of 

correlation between them. This function could be used to 

privately match a particular patient disease profile 

(mapped into some binary form) against either a reference 

knowledge set of diseases, or specialist disease expertise 

or other patients with similar disease profiles for a 

Proceedings of the 8th Australasian Workshop on Health Informatics and Knowledge Management
(HIKM 2015), Sydney, Australia, 27 - 30 January 2015

7



community (P2P) networking application. Pallier-based 

HE schemes have also been described in the context of 

privacy preserving statistical analysis of ubiquitous 

(wearable sensor) health data (Drosatos and Efraimidis 

2011); ECG signal classification using private linear 

branching programs (as a generalisation of decision trees) 

(Barni, Failla et al. 2009) and neural network techniques 

(Lagendijk, Erkin et al. 2013); as well as private genomic 

data mining for use in personalised medicine 

(Kantarcioglu, Jiang et al. 2008). 

More recently, the application of levelled FHE 

schemes have been examined in the context of healthcare 

such as in the real-time privacy-preserving analysis of 

medical data acquisition devices over the cloud (Kocabaş 

and Soyata , Kocabas, Soyata et al. 2013). It has also 

been applied to privacy-preserving predictive analysis of 

medical data based on logistic regression and the Cox 

proportional hazard model running in the (Microsoft’s 

Windows Azure) cloud (Bos, Lauter et al. 2014).  Finally, 

FHE schemes have also been explored at a conceptual 

level only (and in a very unclear way) in relation to 

integration with EHRs (Soubhagya, Mini et al. 2013, 

Ikuomola and Arowolo 2014) including the PCEHR 

(Begum, Mamun et al. 2013). 

4.2.3 Generalising HE Algorithms 

A key factor providing FHE protocols with the capability 

to solve real work problems depends on the extent to 

which they can support general computing functions of 

practical interest over encrypted data through sufficiently 

expressive composable primitives. When combined in 

various ways and without loss of generality, these 

primitives would allow for a much wider and more 

practical implementation scope. A number of areas have 

been examined in this space including secret program 

execution, database queries and ML algorithms. 

In secret program execution, at the processor level, 

primitives have been contemplated that would allow 

arbitrary and dynamic program executions through the 

combination of memory access logic, arithmetic and 

encrypted branching operations (Brenner, Wiebelitz et al. 

2011, Brenner, Perl et al. 2012). At an application level, 

primitives such as runtime data-dependent program 

control (if-then-else expressions) and integer 

manipulations provide for a more natural expression of 

high-level algorithms such as array summation, bubble-

sort and Fast Fourier Transform calculations (Fau, Sirdey 

et al. 2013). 

Supporting private database queries over encrypted 

data has received the most attention in this space due to 

the very large potential for the secure storage and access 

of encrypted data in the cloud without the requirement for 

decryption. The general types of operations that are 

required to be supported include complex selection, 

range, join, and aggregation operations, and FHE 

primitives have been shown to support these general 

database queries (Wang, Agrawal et al. 2012, Boneh, 

Gentry et al. 2013). 

5 Privacy-Preserving ML Algorithms 

In generalising machine learning and statistical 

algorithms, when using a SWHE or levelled HE scheme, 

one is limited to functions that can be expressed as a low 

degree polynomial (where there are many additions and a 

small number of multiplications). This includes simple 

statistical functions such as mean and standard deviation 

(Naehrig, Lauter et al. 2011) as well as non-trivial 

machine learning algorithms. This includes binary 

classifiers such as logistical regression, Linear Means 

(LM) classifier and Fisher’s Linear Discriminant 

Classifier (Graepel, Lauter et al. 2013). Note that there is 

no efficient way to do divisions or square roots, which 

would otherwise require more expensive interactive 

protocols between the data owner and the cloud service 

provider of the outsourced algorithm. This would appear 

to preclude algorithms for which there are no division-

free integer derivations. Suggestions for extending these 

methods to other machine learning algorithms were made 

using approximation or decomposition methods, but were 

not demonstrated (Graepel, Lauter et al. 2013). The 

performance of the LM classifier on 30 features from a 

public breast cancer dataset using 100 training and test 

vectors was achieved in approximately 6 seconds. 

Bost, Popa et al. (2014) took quite a different approach 

to generating building blocks that would construct 

classifiers securely. Focusing on the classification rather 

than training phases, what made the authors’ approach so 

unique is that they combine two partially homomorphic 

cryptosystems and a levelled FHE and make frequent use 

of interactive protocols in an effort to make the 

underlying primitives more efficient and flexible, thereby 

supporting a wider scope of secure machine learning 

algorithms. The authors also ensure that these protocols 

are provably semantically secure and in such a way that 

maintains the privacy of both the client’s private input 

and the server’s classifier model (privacy-preserving 

classification). The three encryption schemes used in this 

approach are the Paillier, BGV and the Goldwasser-

Micali cryptosystems. While the first two are examples of 

partial (additive) and levelled fully homomorphic 

cryptosystems respectively, the homomorphic property of 

the Goldwasser-Micali cryptosystem is exclusive-or 

(XOR) addition modulo 2 (of an encryption of a bit), 

based on the Quadratic Residuosity problem (Goldwasser 

and Micali 1982). The machine-learning primitives that 

are supported using this approach include a comparison 

protocol to find the larger value of two encrypted inputs, 

and argmax protocol to find the index of the largest value 

from a list of encrypted integers, with the latter relying on 

the former protocol. Both protocols require back and 

forth interactions between a client and server. Two other 

supported primitives are a trivial computation of a private 

dot product, as well as a protocol for switching between 

encryption schemes. The latter protocol is also 

interactive, allowing primitives to be securely combined 

in a variety of ways to achieve the broad complement of 

machine learning algorithms.  

The authors illustrate the primitives being used to 

build hyperplane decision classifiers (which covers 

perceptrons, least squares, Fisher linear discriminant and 

support vector machines), Naïve Bayes and Decision 

Trees. They also demonstrate using AdaBoost as a 

technique for combining the classifiers. Despite the use of 

interactive protocols in constructing the three 

classification groups, the use of relatively more efficient 
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partial HE schemes appears to make these algorithms 

more efficient overall. The use of levelled FHE is limited 

to enabling decision tree analysis. A number of medical 

datasets have been used to demonstrate system 

performance, achieving classification times of 

milliseconds to seconds, with a predominant amount of 

time being dedicated to communication during 

interactions.  

6 Discussion 

In review of the research, a number of techniques have 

been uncovered for potentially enabling the practical use 

of homomorphic cryptosystems in ML analysis that could 

be optimised for use in the public cloud environment. The 

field is rapidly evolving and there are many opportunities 

for combining primitives to enable different possible 

secure operations. An example here is the approach from 

(Zhou and Wornell 2014) who demonstrated how to 

process integers more efficiently for certain application 

areas such as feature extraction, recognition, 

classification and data aggregation. An interesting 

question posed by the authors also applies here: 

determining how to best divide machine learning 

computational tasks into “fundamental operations that 

minimize the overall communication and computation 

cost”. 

 
Technique  References 

Automatic parameter selection in FHE 
for correctness and security against 
known lattice attacks. 

(Naehrig, Lauter 
et al. 2011, 
Lepoint and 

Naehrig 2014) 

Dealing with real numbers in arithmetic 
operations. 

(Bost, Popa et al. 
2014) 

Use of Fast Fourier Transforms to 
speed up addition calculations. 

(Bos, Lauter et 
al. 2014) 

Message encoding techniques for ease 
of performing HE operations. 

(Naehrig, Lauter 
et al. 2011) 

Message encoding techniques for 
dealing with large integers. 

(Wu and Haven 
2012) 

Batch techniques to improve 
computation performance. 

(Wu and Haven 
2012) 

Table 2: Practical Optimisations Techniques for HE 

A variety of practical considerations and optimisation 

techniques would be required of any ML system to be 

successfully applied in any real sense. Table 2 lists some 

of the techniques encountered including the references 

that mention using the technique. 

Consideration should also be given to cloud 

optimisation factors, including high bandwidth 

requirements when uploading encrypted data over the 

Internet. The ciphertext size of an FHE scheme like BGV 

can be very large due to the large ciphertext expansion 

(thousands to millions), making transport over the 

network impractical. It has been suggested (Kocabaş and 

Soyata , Naehrig, Lauter et al. 2011, Kocabas, Soyata et 

al. 2013, Lepoint and Naehrig 2014) using a block cipher 

like the Advanced Encryption Standard (AES) to upload 

data to the cloud (with a minimal expansion ratio) and 

then evaluating the AES homomorphically to perform the 

decryption to FHE which has been achieved by Gentry, 

Halevi et al. (2012). This is a computationally intensive 

step taking around 36 hours (in one implementation) in 

total but could be reduced to 40 minutes per AES block 

using batching techniques. This step however is a one-off 

calculation and could be processed offline using less 

expensive cloud resources. It has been suggested by 

Kocabas, Soyata et al. (2013) that this method could also 

be used to balance storage vs computation requirements 

on the cloud by converting any portion of data 

dynamically from the permanently stored AES encrypted 

form to the (memory intensive) FHE form to perform the 

computation. When sending the computed result back to 

the client in encrypted form, a dimension reduction 

technique can be used convert the message into a shorter 

ciphertext that can no longer support any further 

homomorphisms. In this way the bandwidth issues 

encountered during upload and download of the data to 

the cloud can be avoided. Lepoint and Naehrig (2014) 

suggested the use of a more lightweight family of block 

ciphers, called SIMON (AlKhzaimi and Lauridsen 2013) 

that were more suitable to homomorphic evaluation and 

demonstrated significant improvement in transformation 

rates to a FHE scheme. 

In HE, considerations of a more fundamental nature 

need to be factored into a scheme’s practical 

implementation. In developing any cryptography 

protocol, formal proofs are absolutely essential for 

achieving claims about a particular level of security. 

Formal proofs are strongly recommended over using a 

hit-and-miss strategy, which all too often reveals later 

down the track vulnerabilities from subtle flaws in the 

encryption scheme. Typically, the consequent loss of 

confidentiality cannot be taken back (Lindell and Pinkas 

2009).  

When evaluating the security strength of cryptography 

systems, it is important to take into consideration the 

power of the adversary and the context of allowable 

behaviour. The highest level of security that can be 

attained in the setting of HE is one where the corrupt 

behaviour of the adversary does not deviate away from 

the encryption protocols and only has access to the 

information of all corrupt parties (Fontaine and Galand 

2009). This behaviour model is known as semi-honest 

(honest-but-curious or passive). Furthermore, a HE 

scheme could not offer protection against an adversary 

who has the ability to generate decryptions from 

ciphertexts of their choosing (as often as they wish) under 

the same scheme and given encryption key (Fontaine and 

Galand 2009). Overall, HE can only imply a security 

guarantee equivalent to the basic notion of semantic 

security for public key encryption.  

Finally, HE schemes alone cannot enforce all the 

privacy requirements of a common cloud. An important 

limitation is that all arbitrary encrypted operations are 

restricted to within the domain of a single public key, 

thereby making it difficult to support different levels of 

data access control. In this setting alternative schemes 

would require consideration (Van Dijk and Juels 2010, 

Wang, Agrawal et al. 2012). 

7 Conclusion 

A privacy-preserving machine-learning framework based 

on HE is particularly relevant to the healthcare context. It 

would allay some of the security concerns that are a 

significant impediment to outsourcing of computing or 
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analytical processing of highly confidential patient 

information, to the public cloud. HE appears to be very a 

viable and rapidly evolving technology that has 

significant potential to enable the broadening of CDS 

processing and analytical capabilities across a wider 

spectrum of shareable healthcare resources over the 

cloud. Such CDS services would be more adaptable and 

responsive to changing business requirements as well as 

become more accessible to the general user while still 

preserving confidentiality. 
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