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Abstract. We address the question of whether there might exist a resonance in the nnΛ
system, using a rank one separable potential formulation of the Hamiltonian. We explore

the eigenvalues of the kernel of the Faddeev equation in the complex energy plane using

contour rotation to allow us to analytically continue the kernel onto the second energy

sheet. We follow the largest eigenvalue as the nΛ potentials are scaled and the nnΛ
continuum is turned into a resonance and then into a bound state of the system.

1 Introduction

Recent experiments have suggested that a bound state of the nnΛ system exists. [1] Several theoretical

analyses demonstrate that such a bound state can not exist. [2–4] The question we wish to address

is: Could we have a three-body resonance in the nnΛ system even though all the interactions are

predominantly s-waves? We consider the nnΛ system with the pairwise interactions being rank one

separable potentials that fit effective range parameters of the nn system, and those predicted by the

Nijmegen model D [5] one-boson exchange potential for the nΛ system. The use of rank one separable

potentials allows us to easily analytically continue the Faddeev equations into the second complex

energy plane in search of resonance poles by examining the eigenvalue spectrum of the kernel of the

Faddeev equations as we did previously for Λ-d scattering [6].

2 Background

We have only limited data regarding pΛ scattering, but we have no data regarding nΛ scattering, be-

cause there are no free neutron targets. Λ hypernuclei provide only weak constraints. The hypertriton
3
Λ

H is barely bound, being one of the largest halo nuclei known. [BΛ(3
Λ

H) = 0.13 ± 0.05 MeV]. The

A=4 isodoublet 4
Λ

H-4
Λ

He exhibits significant Charge Symmetry Breaking, some 2-3 times that seen

in the 3H-3He isodoublet. The uncertainty in the extracted parameters from the sparse pΛ scattering

data imply a wide range of variation is possible in the nΛ interaction.

The HypHI collaboration reported evidence for a bound nnΛ system 3
Λ

n [1]. They observed both

2-body and 3-body decay modes. Such a bound state would provide a strong constraint on the nΛ
interaction, because the nn interaction is well known. Such a bound state could be observed directly
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in a 3H(e,e′K+)3
Λ

n experiment at JLab, although a weakly bound system would imply a rather small

cross section.

However, the existence of a 3
Λ

n bound state has been strongly questioned. [2–4] Moreover, simple

physics suggests that one would not expect a bound state. The hypertriton is barely bound and has

as its core a deuteron. A 3
Λ

n bound state would have as its core an unbound di-neutron pair. Could

there instead exist a nnΛ three-body resonance? If so, then one might still be able to utilize the

electro-production reaction (or the HypHI heavy-ion collision) to constrain the nΛ interaction.

3 Our Three-Body Model for nnΛ

For simplicity we utilize pairwise s-wave interactions of rank one separable form

V(k, k′) = g(k)Cg(k′) g(k) = 1/(k2 + β2) ,

where the nn potential strength C and range β are fitted to the effective range parameters: [7]

ann = -18.9 ± 0.4 fm and rnn = 2.75 ± 0.11 fm

and the nΛ strength and range are fitted to the Nijmegen model D nΛ scattering lengths and effective

ranges: [5]

as = -2.03 ± 0.32 fm and rs = 3.66 ± 0.32 fm ,

at = -1.84 ± 0.10 fm and rt = 3.32 ± 0.11 fm .

The use of rank one separable potentials allows us to simply analytically continue onto the second

sheet of the energy plane in exploring for three-body resonances. We search for the resonance poles

by examining the eigenvalue spectrum of the kernel of the Faddeev equations for the nnΛ system. We

used a similar technique to explore Λ-d scattering 20 years ago. [6].

As stated above, we analytically continue the Faddeev equations onto the second energy sheet.

For a three-body system containing two identical Fermions interacting via Yamaguchi pairwise

potentials, the homogeneous integral equation is of the form

λn(E) φn,kα (q, E) =
∑

kβ

∞∫

0

dq′ KJT
kα,kβ (q, q

′; E) φn;kβ (q
′, E) , (1)

where the kernel of the integral equation is given by

KJT
kα,kβ (q, q

′; E) = ZJT
kα,kβ (q, q

′; E) τkβ [E − εβ(q′)] q′2 . (2)

We analytically continue onto the second Riemann energy sheet by utilizing the transformation

q → q e−iθ q′ → q′ e−iθ with θ > 0 . (3)

One limitation on the rotation angle θ is imposed by singularities of the kernel; the Born amplitude

ZJT
kα,kβ

requires that θ < π
2
, which gives us the region �(E) < 0 on the second Riemann sheet. The

other source of singularity is the quasi-particle propagator τkβ [E − εβ(q′)], but because there are no

two-body bound states, this does not limit the rotation.

4 Results of the Eigenvalue Search

Let us consider the specific example in which we utilize the (1S0) nn and the 1S0 and 3S1 nΛ potentials

defined in the previous section. We searched in the complex energy plane for the largest eigenvalue
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of the kernel λ(E) = 1. We found a pole at:

E = −0.154 − 0.753 i MeV with eigenvalue λ(E) = 1.0000 + 0.0001 i .

Because �(E) < 0, this pole does not correspond to a resonance.

This pole actually lies below the breakup threshold. Because the pole lies just below the threshold,

we may ask how easy it might be to convert the pole into a resonance or even a bound state. We scale

the strength of the 1S0 and 3S1 nΛ potentials by the same factor s. We follow the path of the pole as

it turns into a "resonance" and then into a bound state. See Figure 1. We observe that a change in

strength of the order of 15% produces a resonance above the three-body breakup threshold. A change

of about 40% produces a nnΛ bound state.
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Figure 1. Trajectory of the pole as a function of s for the potentials defined in Section 3.

In other words we follow the trajectory of the "resonance" pole as a function of the strength s
of the nΛ interactions as s is increased from a value of 1.0 in increments (Δs) of 0.025. We find a

sub-threshold resonance at values of s = 1.000 up to s = 1.050. For s = 1.075 up to s = 1.350 we

obtain a resonance; in particular we obtain a resonance with E = 0.1295− 0.2915 i MeV at s = 1.175.

As s is further increased, we obtain a bound state with energy E = −0.069 MeV at s = 1.375 and

E = −0.158 MeV for s = 1.400. Thus, one can see for this particular model that an nΛ potential

whose parameters lie within the uncertainty of the observed low energy pΛ scattering parameters

could easily produce a resonance in the nnΛ system. Therefore, a 3H(e,e′K+)3
Λ

n experiment at JLab

could possibly provide a significant constraint upon the nΛ low energy scattering parameters.
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