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ABSTRACT: Regional scale biotite and cordierite-bearing granites (s./.) in the Variscan of the
Central Iberian Zone (CIZ) are spatially closely associated with cordierite-rich nebulites and
cordierite-bearing two-mica granites, and with cordierite-rich high grade hornfelses and cordieritites
(>60% cordierite) that are relatively common in the aureoles of these granites. Building on published
field evidence, petrological data are presented which, combined with new chemical and isotopic
(Sr—Nd) modelling, indicate that the cordierite-bearing granites cannot be derived by simple anatexis
of regional sedimentary protoliths; but the data are consistent with a process of reactive assimilation
that involves the interaction of biotite granite magma with high-grade host rocks ranging from
cordierite nebulites to andalusite-bearing cordieritites. The contribution of the postulated cordierite-
rich contaminants to the diversity of cordierite granite compositions is modelled using the
compositions of regional Lower Cambrian—Upper Neoproterozoic metasedimentary rocks that are
generally chemically mature (CaO very rarely exceeds 1-4%). These rocks include specific horizons in
which extreme chemical alteration is attributable to sediment reworking during eustatic falls in sea
level. Such compositions may account for the presence of the high concentrations in Al that later
produced cordieritites. Fractional crystallisation is also important, particularly in generating the
more evolved cordierite granite and cordierite biotite muscovite granite compositions. Although
assimilation in situ is normally regarded as a minor contributor volumetrically to evolving plutons,
in this instance the emplacement of large volumes of granite magma into a high-T-low-P

environment significantly increased the potential for reactive assimilation.
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Assimilation is capable of modifying bulk magma composi-
tions in the very deep crust (Hildreth & Moorbath 1988),
especially during fractional crystallisation (Bowen 1928;
DePaolo 1981). There is more scepticism about the ability of
silicic magmas to assimilate country rocks at high levels in the
crust. The objections are two-fold. First it is argued that
thermal budgets are inadequate to bring about large-scale bulk
melting, especially when the assimilating magma is granitic
(Spera & Bohrson 2001). Secondly bulk assimilation is often
difficult to establish on the basis of field, petrographic and
geochemical evidence. However, the process of reactive bulk
assimilation significantly reduces the additional thermal energy
requirements (Beard ez al. 2005) and makes assimilation an
effective processes in the continental crust. New petrographic
and geochemical evidence such as the detection of inherited
minerals (notably zircons) and heterogeneous isotope systems
at the grain level are lending support to a greater role for open
system processes (Knesel et al. 1999). The aim of this study is
to compare the evidence for bulk assimilation with that for
anatexis in the petrogenesis of regional-scale cordierite granites
among the Variscan high-T-low-P metamorphic zones of
central Spain.

Cordierite granites have special significance in petrogenesis
(the term granite is used semsu lato throughout to include
granodiorites and monzonites), cordierite in a felsic matrix
being taken to indicate crystallisation from, or equilibration
with a strongly peraluminous magma derived typically from
melting a metasedimentary source. In the cordierite granites
and associated volcanics of the Lachlan fold belt of SE
Australia, it has been argued that diversity relates to differen-
tial segregation or separation of restite (Chappell & White
2001). However, fractional crystallisation, magma mixing and
wall-rock contamination are all capable of modifying more
metaluminous precursor magmas to generate peraluminous
mineral assemblages in large volumes (Patifio-Douce 1999).
The origin of cordierite in granites is also controversial, being
potentially magmatic, xenocrystic, restitic, or metasomatic
(Clarke 1995).

Understanding the origin of regional-scale cordierite gran-
ites is important particularly in collisional orogens (Pitcher
1997), where they may be associated with major mineral
deposits. Such granites are particularly common in the high-
T-low-P metamorphic belts of the Variscan of Europe. In
contrast to their metaluminous equivalents in cordilleran belts
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and post-collisional orogens, cordierite granite plutons have
received relatively little attention. This paper examines an
extensive region of cordierite granites in the Central Iberian
Zone (CIZ), where there is an intimate relationship between
migmatites, cordierite granites and metaluminous granites.

Peraluminous magmas may result from a relatively wide
range of processes that may or may not involve pure sedimen-
tary protoliths (Halliday er al. 1981; Miller 1985), although
those involving fluid-absent melting reactions are considered
to be the most common. Experimental studies addressing
pelites and greywackes as possible sources for primary melts
support the notion that fluid-absent melting reactions only
generate peraluminous leucogranites accompanied by residual
phases such as cordierite and garnet, and do not generate
Mg-Fe-rich granitoid melts (Patiio-Douce & Johnston 1991;
Montel & Vielzeuf 1997; Stevens et al. 1997). Moreover, at low
P (<S5kbar) the melt proportion increases sharply over a
limited range of temperature and decreases with increasing
pressure at a given temperature (Clemens & Vielzeuf 1987;
Montel & Vielzeuf 1997).

With regard to protoliths and major residual phases, it is
known that, amongst other factors such a volatile content, a
low bulk magnesium number [Mg#=molar 100 x MgO/
MgO+FeO] favours lower solidus temperatures. The abun-
dance of residual cordierite increases at low P and T, whereas
the presence of garnet is favoured by increasing pressure
and/or decreasing Mg# (Zen 1988). Where cordierite is a
major product, the melt fraction is markedly restricted because
this mineral is a sink for H,O (Stevens et al. 1997). When
biotite breakdown reactions involve sillimanite, the tempera-
ture of the pelite solidus is lowered and the production of more
cordierite instead of garnet is favoured (Montel & Vielzeuf
1997; Stevens et al. 1997).

Cordierite, among other Al-rich minerals, is common in
many monzogranite to granodiorite bodies, with Fe, Mg and
Ca abundances much higher than those of anatectic leucogran-
ites. Accounting for relatively mafic peraluminous granitoids
in the absence of experimental evidence for mafic peralumi-
nous melts may require the involvement of complex processes
involving interactions between magmas, assimilation, etc.
(Montel & Vielzeuf 1997; Saito et al. 2007), rather than from
pure melts of sedimentary protoliths. Application of experi-
mental petrology to the origin of Iberian granitoids (e.g.
Castro et al. 1999, 2000) includes specific investigation of the
role of assimilation in cordierite granites (Garcia Moreno et al.
2007). Two distinct models are commonly applicable to ac-
count for the presence of cordierite in non-anatectic granite
magmas (Clarke 1995): (i) those involving the magmatic pre-
cipitation of cordierite; and (ii) those favouring a restitic or
xenocrystic origin for cordierite and/or the assimilation of
cordierite-rich rocks. The former group requires Al enrichment
in the melt phase due to Al dissolution from host rocks and/or
Al enrichment during magma evolution, whereas the latter
group involves a melting process that generates residual
cordierite or a more-or-less homogeneous mix of granite
magma and cordierite-rich host rocks. These models are not
mutually incompatible and the same granite may entrain more
than one genetic type of cordierite crystal, although the
common presence of extensive pinitisation can make it difficult
to resolve the origin of the cordierite solely on the basis of
petrographic and chemical data.

An assimilation model consistent with most major oxide
and trace element variations (including the rare earth elements
(REE)) was proposed for the cordierite granites of the CIZ,
but the model did not successfully account for all geochemical
observations (Ugidos & Recio 1993). In particular, the rela-
tively high P,O5 content in these rocks remained unexplained.

The assimilation model is revised in the light of a large body of
recent experimental petrological studies on the anatexis of
metasedimentary materials. Recent studies of the regional
geology in Central Spain, both metasedimentary series and
granites, have also contributed large datasets of geochemical
analyses, including major and trace elements and Sr—Nd
isotopes that provide additional constraints for modelling the
origin of these granites in the context of the anatexis-
assimilation debate. Of particular value is the use of sequence
stratigraphy to constrain the characteristics of country rock
assimilants. Reactive assimilation is the preferred model for
the generation of regional-scale intrusive cordierite-bearing
granites at the particular metamorphic conditions of the study
region, and it is postulated that it may have wider applicabil-
ity, as used recently for example, to account for the cordierite
tonalites in the margins of the Tokuwa pluton in Japan (Saito
et al. 2007).

1. Geological setting

The cordierite granites of this study are located in the CIZ
(Fig. 1) where Upper Neoproterozoic and Lower Cambrian
sedimentary series consist mainly of shales and sandstones.
Intrusive granites are common, and the largest bodies (hun-
dreds to thousands km?, extending over about 10 000 km? in
Central Spain) are of late Variscan age and range from
amphibole-bearing biotite granites to two-mica cordierite-
bearing types. Early Variscan autochthonous to sub-
autochthonous leucogranites and two-mica granites outcrop in
smaller bodies (tens to hundreds km?) in the same region.

The compositions of the country rocks are central to the
petrological model developed in the present study, and the
application of sequence stratigraphy is useful in demonstrating
the regional persistence of unusual compositions that may be
responsible for generating enriched compositions in contami-
nated rocks. The sedimentary succession consists of twelve
lithostratigraphic units (Table 1). The detrital lower units I-1V
and VI-XII are of Upper Neoproterozoic and Lower Cam-
brian ages respectively, whereas unit V corresponds to carbon-
ate beds. The whole sequence ranges from 1800 metres to 3900
metres in thickness. The most conspicuous characteristics of
these siliciclastic rocks are their petrological and geochemical
homogeneity, together with their chemical maturity over an
extensive region of more than 30,000 km? in western Spain.
Furthermore, some chemical concentrations such as TiO, and
Zr, together with some elemental ratios (e.g., Rb/Zr<0-65,
Ti/Nb>400) and relatively high ey, values in the sequences
of the Upper Neoproterozoic (eny> — 4), are clearly distinct
from those of the Lower Cambrian (Rb/Zr>0-7, Ti/Nb<400,
eng< —4), reflecting different sources for the siliciclastic
materials of both sequences (Ugidos et al. 1997a, b, 2003;
Valladares et al. 1998, 2000).

Sequence stratigraphy indicates successions formed during
falling sea level events. The Upper Neoproterozoic—Lower
Cambrian boundary is an unconformity corresponding to a
eustatic fall in sea level (Valladares et al. 2000, 2006) that led to
the subaerial exposure of the uppermost Neoproterozoic. The
consequence was severe chemical alteration of the siliciclastic
material, resulting in intense leaching of Ca and Na as well as
the redistribution of some trace elements (principally Y and
the rare earth elements). These chemical effects are found in
detrital rocks underlying, and especially overlying, this
regional-scale unconformity, and sequence stratigraphy pre-
dicts the presence of other such unconformities, notably at the
lower boundary of the Upper Neoproterozoic sequence, with
similar extreme compositional characteristics (Ugidos et al.
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Figure 1 Geology of the cordierite granite-rich regions S and W of Salamanca. Maps simplified from Carnicero

(1983) and Ugidos et al. (1988, 1990).

1997a, b, 2003a; Valladares et al. 1998, 2000). The important
implication for the purposes of this present study is that the
sedimentary succession that hosts the granites and was subject
to Variscan high T/low P regional metamorphism contains at
least one, and probably multiple, horizons that have suffered
extreme chemical alteration.

Tectonometamorphic events began with early Variscan
intermediate pressure (5-7 kbar) conditions related to the first
deformation phase (D1) that generated vertical folds with
associated foliation. These conditions evolved towards lower
pressure and increasing temperature during the second phase
(D2), which resulted from an extensional episode and pro-
duced sub-horizontal folds. A third folding phase (D3) resulted
in subvertical folds and weak crenulation cleavage (Diez Balda
et al. 1990; Loépez-Plaza & Martinez Catalan 1987; Valle

Aguado et al. 2005). Syn- to post-D3 metamorphic conditions
largely erased earlier parageneses and only relics of staurolite,
garnet and kyanite are preserved in some areas.
Biotite+fibrolite/sillimanite are characteristic minerals of
the medium- and high-grade early metamorphic rocks, the
folded (D3) migmatites, as well as the related leucogranites and
two-mica granites. Peak metamorphic thermal conditions in
different areas range from 800 &+ 50°C and 4-6 kbar (Barbero
et al. 1995) to 700-740°C and 2-5-3-5 kbar (Carnicero 1982;
Escuder Viruete ef al. 2000; Gil Ibarguchi & Martinez 1982;
Ugidos 1987). In the study region, low-P metamorphism
changed muscovite+biotite- and biotite+sillimanite-rich
mineral assemblages into cordierite-rich (% andalusite +
sillimanite) parageneses in the high-grade metamorphic and
anatectic rocks. Late in the deformation sequence, cordierite-
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Table 1 Granite emplacement levels in relation stratigraphic units derived from sequence stratigraphy analysis in the Central Iberian Zone W and
S of Salamanca (Valladares et a/. 2000). The stratigraphic levels of some specific sample locations are also indicated.

Unit Thickness (m) Dominant Sequence Granite Sample
min. max. lithology stratigraphy emplacement level location
XII 180 sh/snd ! !
XI 100 260 snd/sh/cong g : SSA-8
fan 1
= .
X 70 365 sh = ;
5 g .
}é IX 85 120 sh/snd/cong & :
s 3 :
O = , SSA-7 &
E VIII 120 240 sh § : SSA-13
S o 50 90 cong/snd/sh 3 : SIA-11
VI 90 240 sh ! ! SSA-2
\" 130 calcareous breccia : :
- SB ! ! PHA-1 &
. v 40 500 <h h.s.t. ! ! PHA-2
RS t.s.t 1 1
N 1 1
o @) ©) @)
3 I 550 sh/snd & @ > <
2 2 O a ;
7 - @)
& > @) >
o 1I 225 600 cong/sh A s R ~
<
S L
2 I 97 585 snd/sh <
5 3
- 3
? =

Inferred sequence boundary

sh=shale; snd=sandstone; cong=conglomerate.

S.B.=sequence boundary; h.s.t.=high systems tract; t.s.t. =transgressive systems tract.
AG=amphibole-bearing biotite granite; BG=biotite granite; CBG=cordierite-bearing biotite granite; BVG=Bafiobarez-Villavieja granite;

PayG=El Payo granite.

rich rocks such as nebulitic diatexites, and spatially related
high-grade hornfelses (pyroxene hornfels facies) and mig-
matitic hornfelses, were formed from two-mica schists and
biotite+sillimanite migmatites in the thermal aureoles of late
Variscan intrusive granites and related basic rocks (Franco &
Garcia de Figuerola 1986; Ugidos 1990). Granites are abun-
dant in the CIZ and include amphibole-bearing biotite gran-
ites, biotite granites, cordierite-bearing biotite granites and
cordierite-bearing two-mica granites. An ion microprobe age
of ca. 306 Ma has been recently reported for biotite and
cordierite-bearing biotite granodiorites and monzogranites in
the area of this work (Zeck et al. 2007).

2. Analytical techniques

Representative samples of country host rocks, Upper Neopro-
terozoic shales and sandstones (including the highly altered
reworked shales from the uppermost Neoproterozoic and
lowermost Cambrian beds described above), and Lower Cam-
brian shales and nebulites were selected from the region into
which the late Variscan granites were intruded. Additional
samples of cordierite-bearing two-mica granites were collected

to supplement existing datasets. Analyses were performed
using ICP-AES (major elements) and ICP-MS (all other
elements) techniques at the Service d’Analyses des Roches et
Minéraux of the CRPG (Nancy, France). Samples were fused
with LiBO, and dissolved in HNO;.

A subset of samples were spiked with 3’Rb, #Sr, '**Nd and
'49Sm and individual elements separated using methods similar
to those described in Barbero et al. (1995). Sr samples were
analysed on either a VG54E single collector thermal ionisation
mass spectrometer or a VG Sector 54-30 multiple collector
mass spectrometer operated in multi-dynamic mode. On both
instruments, the 37Sr/%°Sr ratio was corrected for mass frac-
tionation using *°Sr/*¥Sr=0-1194 and an exponential law. For
NIST SRM 987, the VG54E gave ®7Sr/%6Sr=0-710230+ 116
(2's, n=43) and the VG Sector 54-30 mass spectrometer gave
0-710246 £ 20 (2 s, n=14). Rb samples were analysed on either
a VG MM30 single collector mass spectrometer or the VG54E
instrument. Sm and Nd samples were analysed on the VG
Sector 54-30 instrument. '**Nd/**Nd ratios were measured
in multidynamic mode and corrected for mass fractionation
using an exponential law and '*°Nd/'**Nd=0-7219. Repeat
analyses of the internal laboratory standard (JM) gave '**Nd/
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Figure 2 Field images of low grade (a) and medium-grade (b) hornfelses with abundant cordierite. (c)
Fragments of hornfels in biotite granite. (d) Photomicrographs of the contact between zoned plagioclase and
hornfels, showing in (e) inclusions of cordierite crystals (arrows) in a plagioclase (same sample as (c)). (f)
Cordierite crystals in a high-grade hornfels. Scales in cm for (a), (b) and (c); scale bars=0-8 mm in (d), (e) and (f).

1%4Nd=0-511502+8 (25, n=9). Nd and Sm concentration
(ID) runs were analysed in static mode.

Electron microprobe analyses were performed using a JEOL
JCXA-733 instrument with a beam of 15 kV, 20 nA. Natural
mineral and pure metal standards were used for calibration
and apparent concentrations were corrected using the ZAF
method.

3. Petrography

3.1. High-grade hornfelses

These are characterised by phyllosilicate-consuming reactions
forming cordierite, sillimanite and K-feldspar in the aureoles
of some biotite granites, locally accompanied by the inversion
of fibrolite to andalusite. Cordierite crystals range from anhe-
dral to euhedral and usually contain inclusions of sillimanite or
andalusite prisms, although some lack inclusions. In other
examples, numerous inclusion-free cordierite prisms have re-
placed the foliation defined by phyllosilicates and the resulting

hornfelses show alternating felsic and cordierite-rich levels.
Migmatitic hornfelses with leucocratic veins have been de-
scribed (Garcia de Figuerola & Franco 1975; Franco & Garcia
de Figuerola 1986; Ugidos et al. 1990). Field and textural
aspects are illustrated in Figures 2, 3 and 4.

3.2. Nebulites

The anatectic country rocks, mainly diatexites, are character-
ised by their relatively high abundance of cordierite (in general
10-20% modal) forming embayed to euhedral crystals (Figs 3,
4) with or without biotite and/or fibrolite inclusions, and are
petrographically equivalent to cordierite-rich granodiorites.
However, the term nebulite is preferred for clarity to dis-
tinguish these autochthonous rocks from clearly intrusive
cordierite-bearing granites. In the field, nebulites have a
characteristic deep grey-blue colour, with variable amounts of
relict biotite+sillimanite and relatively abundant enclaves of
refractory material, such as disrupted beds of quartzite, marble
and calc-silicate rocks. Some microgranular rocks, gneisses,
relicts of deformed migmatites, and associated leucogranites
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Figure 3 Photomicrograph of a high grade hornfels showing (a) andalusite and biotite included in cordierite
(labelled c), with andalusite (labelled a) occurring as an independent crystal. (b) Cordierite crystals with and
without sillimanite inclusions in an enclave of migmatitic hornfels. (¢) and (d) Textures of cordierite in high-grade
hornfelses. (¢) and (f) Textures of cordierite in nebulites. Scale bars=0-8mm.

are also present. Undeformed leucogranites, representing less
than 5% of the exposed rocks, are also present in the nebulites
as dykes up to 20-30 cm thick and less than 10 m long, and as
isolated outcrops of less than 1 m? These consist of quartz,
oligoclase-albite, alkali feldspar and accessory minerals such as
cordierite, biotite, tourmaline and fibrolite. No clear cross-
cutting relationships have been observed for the nebulites and
boundaries with other (folded) biotite + sillimanite-rich migma-
tites are transitional. Rocks comparable to nebulites are the
nebulitic diatexites reported in the Bohemian Massif (Finger &
Clemens 1995), in the Central Damara Orogen (Jung et al.
2000), and the diatexites of the Cooma Suite (Healy et al.
2004).

3.3. Cordieritites

Cordieritites (with >60% cordierite) are uncommon rocks, and
are generally considered restites following the removal of
leucogranite melts (see below). In the present study area, a
cordieritite macro-enclave outcrops over several square metres
within the biotite granite and has been cored for up to 10 m in

depth without crossing the lower contact with the host granite.
The enclave is coarse-grained and mostly consists of whole
pinitised cordierite prisms (60-80%) up to 3-4 cm in diameter,
inclusion-free andalusite grains up to 5-6 mm in diameter
(Figs 4, 5), quartz, muscovite, chlorite, apatite and opaques.
The host granite outcrops over hundreds of km?, but only
contains cordierite prisms (Fig. 4) and muscovite when in close
proximity to the cordieritite (Ugidos 1988). Another enclave of
cordieritite, also several square metres in outcrop, has been
found in a cordierite-bearing (+ muscovite, =+ andalusite,
+ fibrolite) biotite granite. This is a medium-grained rock with
the same mineralogy and texture as the coarse-grained
cordieritite. Other enclaves at this locality are cordierite-rich
(>40 vol. %) hornfelses.

3.4. Granites s.l

Much has been written on the late Variscan granites (mostly
monzogranites and granodiorites) of the present study area
and only a summary of their characteristics is presented here.
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Figure 4 (a) and (b) photomicrographs illustrating the textures of cordierite in nebulites. (c) Drill cores of a
cordieritite enclave in a biotite granite taken from depths of 4 m, 9 m and 10-5 m (left to right respectively). (d)
Photomicrograph of cordierite (pinitised) and andalusite in a cordieritite enclave from a cordierite ( + andalusite
+ fibrolite)-bearing granite. (¢) Cordierite-bearing granite close to the cordieritite enclave of (c). Diameter of the
coin is 2-5 cm. (f) Cordierite prisms (arrows) replacing restitic (mostly biotite +sillimanite) minerals in a roof
pendant within cordierite-bearing granite. Scale bars=0-8mm; rulers marked in cm.

The quantitatively most abundant types include amphibole-
bearing biotite granites, biotite granites, cordierite-bearing
biotite granites and cordierite ( + andalusite)-bearing two-mica
granites. Each type intrudes both the Upper Neoproterozoic
and the Lower Cambrian sedimentary series, and all except the
amphibole-bearing biotite granites are in part hosted by high
grade metamorphic and anatectic rocks. The amphibole-
bearing granites have allanite and titanite as accessory phases
and show a gradual transition to the biotite granites. Rep-
resentative areas of these granites have been studied by various
authors (Fernandez ef al. 1982; Hernandez et al. 1982; Franco
& Sanchez 1987; Ugidos 1988; Ugidos et al. 1990; Moreno-
Ventas et al. 1995). The biotite granites have a gradual
transition into the cordierite-bearing biotite granites and the
abundance of cordierite (as pinitised prisms generally up to
1-1-5 cm, maximum 3 c¢cm in diameter; pinitisation is complete
in most crystals and only scarce partially-fresh cordierite
prisms have been found) ranges from >20 prisms/m? (maxi-
mum 74 prisms/m?) to <1 prism/m? in the marginal and inter-

nal facies, respectively (Ugidos & Recio 1993). The textural
features of cordierite are identical to those found in the
high-grade host rocks, nebulites, and cordieritites. Micro-
granular enclaves with cordierite prisms up to 1:5cm and,
more rarely, andalusite and fibrolite, are present in the mar-
ginal cordierite-bearing granites (Martin et al. 1990; Ugidos
1988, 1990).

Enclaves of basic to tonalitic rocks are frequent in the
amphibole-bearing, biotite and cordierite-bearing granites
(Ugidos et al. 1988; Martin et al. 1990; Moreno-Ventas et al.
1995). Enclaves of metamorphic rocks such as schists and
low-to-medium grade hornfelses are present in amphibole-
bearing and biotite granites near their contacts with the
country rocks. High-grade host rocks, such as hornfelses,
gneisses, folded migmatites and nebulites, are common en-
claves in some areas of the cordierite-bearing granites, but are
absent in amphibole-bearing and biotite granites. Rafts up to
6 km?, mainly consisting of these rocks and early Variscan
leucogranites and their associated restitic mesosomes (Fig. 4),
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Figure 5 Photomicrographs (a) and (b) of cordierite (pinitised) and andalusite in a cordieritite. (c), (d) and (e)
cordierite in a high-grade hornfels. (f) Andalusite (labelled a) in the cordieritite of Figure 4c. Scale bars in (a), (b)
and (f)=0-8mm.

are especially abundant E of Barco de Avila-Navalonguilla
(Fig. 1) in the Gredos Massif (Odriozola et al. 1981a, b).
Gradual transitions between the biotite granites and cordierite-
bearing granites and transitional contacts between these late
granites and the nebulites are regional features reported in
various areas (Carracedo et al. 1989; Ugidos et al. 1990;
Moreno-Ventas et al. 1995).

Representative cordierite-bearing two mica granites to the
W and SW of Salamanca (Fig. 1) include the Banobarez-
Villavieja granites (Carnicero et al. 1987; Lopez-Plaza &
Carnicero 1987). These and the El Payo granite intrude the
medium-grade metamorphosed Lower Cambrian series and
the (Garcia de Figuerola et al. 1988). Typically these granite
bodies have cordierite, fibrolite and andalusite. SE of Sala-
manca the small Bohoyo and Navalonguilla granite bodies
(Fig. 1) of cordierite-bearing two mica granite types have
minor cordierite and sillimanite (Odriozola et al. 1981a).

Plagioclase compositions (core and rim) in the host meta-
morphic rocks vary from Ans, to An,, (mean Ans,), whereas
associated nebulite plagioclase compositions are more sodic, in
the range Anys to Ang (mean An,,). There is near complete

overlap between these nebulite feldspars and those in the
cordierite granite (An;s to Ang, mean An,;) and a shift to
slightly more anorthitic compositions in the biotite granites
(range An,, to An;,, mean An,g). There is no significant
difference in the composition of cordierite in representative
samples of the cordierite granites and the nebulites for Mg#
(55-5 +2-8, seven samples, 38 point analyses and 559 + 5-0, six
samples, 56 point analyses respectively, all 2 s) whereas Mg# in
the metamorphic rocks is slightly higher but rather more
dispersed (58-8 £ 10-8, 14 samples, 104 points). Na is the only
element in cordierite that shows a significant difference, being
higher in the granites than the nebulites (0-104 & 0-084 per
formula unit and 0-064 + 0-048, respectively, r<0-01).

4. Whole rock geochemistry

4.1. Major and trace elements

4.1.1. Unmetamorphosed country rocks and nebulites. Rep-
resentative compositions of Upper Neoproterozoic shales and
sandstones and Lower Cambrian shales are presented in Table
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Table 2 Representative analyses of Upper Neoproterozoic and Lower Cambrian detrital country rocks S of Salamanca (Central Iberian Zone).

1 1 1 2 2 2 3 3 3 4 4 4
Sample SIA-25  SIA-24  SSA-12 SIA-9 SIA-23 SIA-32  SSA-16 SSA-17  GUA-31 SSA-2 SIA-11  SSA-13
SiO, 59-32 61-59 56:07 71-62 72:97 75-82 60-15 58:86 58:61 60-45 5873 55-86
TiO, 0-93 1-04 1-10 0-73 0-68 0-45 0-86 0-67 0-73 0-93 0-77 1-00
Al O, 20-0 18-90 20-86 13-13 12-33 8:89 20-34 19-30 19-92 19-88 19-92 21-46
Fe,O4 7-36 6-:03 8:36 5-33 5-:06 471 694 5-66 7-52 5-81 7-28 8-41
MnO 0-04 0-04 0-07 0-02 0-04 0-10 0-08 0-04 0-08 0-04 0-08 0-07
MgO 2:51 2-:06 2-85 1-76 1-62 2:30 2:28 2:85 3-:03 2-05 3-:09 2:86
CaO 0-20 0-37 0-26 0-17 0-76 1-36 0-15 0-36 0-58 0-37 0-07 0-49
Na,O 1-56 1-88 0-87 1-45 2:22 1-44 0-27 1-71 1-24 1-03 0-24 1-23
K,O 3-58 3:94 3-46 2:26 1-79 1-02 4-11 3-67 3-99 4-37 3-78 3:26
P,O5 0-14 0-18 0-31 0-15 0-11 0-08 0-17 0-09 0-11 0-21 0-19 0-17
LOI 4-08 3:67 5-47 3-16 2-19 378 4-35 667 411 472 5:60 5:01
total 99-72 99-70 99-68 99-78 99-77 99-95 99-70 99-88 99-92 99-86 99-75 99-82
Rb 135 114 123 86 68 36 171 160 170 183 149 133
Cs 86 3:6 9-0 40 5-0 1-5 87 87 7-6 89 84 10-4
Be 2:6 19 2-7 1-7 2:5 0-8 35 32 40 32 30 30
Sr 84 57 139 64 109 36 80 94 94 127 66 144
Ba 603 728 669 412 341 180 637 861 868 741 612 694
La 391 382 517 31-0 30-0 239 450 30-0 37-0 685 30-0 54-3
Ce 787 81-8 112 69-1 67-3 54-9 90-8 59-3 739 127 56-4 96-8
Pr 9-79 9-52 13-7 7-55 7-07 5-43 10-6 7-05 8-89 18-8 8:68 16:6
Nd 36-8 385 563 29-7 27-4 20-4 40-5 279 319 78-6 40-8 783
Sm 7-96 8:32 120 5-81 5-88 4-29 7-60 5-49 6-39 164 878 18-1
Eu 1-63 1-62 2-48 1-39 1-23 0-94 1-54 1-32 1-23 395 2:10 426
Gd 6-19 6-90 10-2 5:06 4-53 3:50 676 4-68 4:56 18-7 10-5 20-5
Tb 1-02 1-12 1-51 0-80 0-72 0-52 1-05 0-79 0-72 3:51 1-81 2:98
Dy 5-83 6-51 8-62 445 4-09 3-:02 5-98 478 4-12 22:0 11-8 18-7
Ho 1-21 1-41 1-84 0-96 0-84 0-67 1-33 0-91 0-88 5-40 3-15 4-42
Er 328 370 4-55 2:40 2:31 1-75 3-:60 2-70 2:36 13-1 8:10 11-62
Tm 0-49 0-58 0-72 0-34 0-34 0-26 0-53 0-46 0-39 1-97 1-18 1-80
Yb 3-28 3-99 4-54 2:59 2-29 1-78 3:53 3-16 2-42 12-1 8-:03 11-0
Lu 0-51 0-58 0-63 0-33 0-37 0-27 0-54 0-49 0-42 1-59 1-16 1-54
(La/Yb)n 81 65 77 81 89 9-1 8:6 64 10 3-8 2:5 33
Euw/Eu* 0-71 0-65 0-68 0-78 0-73 0-74 0-66 0-80 0-70 0-69 0-67 0-68
Y 34 38 46 25 24 18 37 27 25 173 105 138
Zr 209 260 245 216 253 200 168 152 137 230 165 237
Th 11-2 12-7 13-3 85 82 67 14-1 10-7 14-8 12-6 11-0 14-0
U 3:6 32 4-1 2:4 2:5 1-6 37 37 35 3-8 3:0 40
v 128 130 146 82 77 45 121 137 126 135 113 148
Nb 13 14 15 11 9 7 15 11 12 15 12 15
Cr 105 113 133 78 75 47 103 105 97 115 102 135
Co 19 18 14 25 31 37 10 24 28 9 11 10
Ni 48 35 22 33 30 22 39 73 53 20 47 25
Mg# 40 40 40 40 39 49 39 50 44 41 46 40
Ti/Nb 422 457 500 405 445 409 350 370 356 382 382 396
Rb/Sr 1-61 2-00 0-88 1-34 0-62 1-00 2-14 1-70 1-80 1-46 2:26 0-92
Sr/Ba 0-14 0-08 0-21 0-16 0-32 0-20 0-13 0-11 0-11 0-17 0-11 0-21
Rb/Zr 0-65 0-44 0-50 0-40 0-27 0-18 1-02 1-05 1-24 0-80 0-90 0-56
Ce/Ce* 0-94 1-01 0-99 1-06 1-08 1-13 0-98 0-96 0-96 0-83 0-82 0-76
Sm/Nd 0-217 0-216 0-213 0-195 0-215 0-211 0-188 0-197 0-201 0-209 0-215 0-231

1 and 2, Upper Neoproterozoic shales and sandstones, respectively; 3, Lower Cambrian shales; 4, altered Lower Cambrian shales.
Major elements in weight %; trace elements in ppm; n: chondrite (Taylor & McLennan 1985) normalised.
EwEu*: Eun/(Smn x Gdn)"?; Mg#: [MgO/(MgO+FeO)] x 100; Ce/Ce*: Cen/(Lan x Prn)"2.

2. Also included are three representative analyses of shales
from above the Upper Neoproterozoic—-Lower Cambrian un-
conformity that show evidence of REE redistribution. Com-
plete analytical data for 65 shale and 15 sandstone samples
have been published (Ugidos et al. 1997a, 2003a, b). These
country rocks are characterised by a) relatively low CaO and
Na,O contents and the shales and sandstones have essentially

the same Mg#; and b) significant chemical differences between
the Upper Neoproterozoic and Lower Cambrian shales,
including TiO, and Zr abundances and Rb/Zr, Ti/Nb ratios
and gy values (Ugidos et al. 1997b, 2003a; Valladares et al.
2002b). The reworked shales have the highest HREE (heavy
rare earth elements; LREE, light rare earth elements) and Y
contents, the lowest (La/Yb), ratios and negative cerium



234 J. M. UGIDOS ET AL.

A Nebulites (a)
4 F O L Cambrian shales o
O U Neoproterozoic shales
X U Neoproterozoic sandstones O
< Toledo pelites o o
3 } ¥ Layos granodiorite DE
c’h, o
3 Fo0
o 2f Qo ,©
X A &
V%0 og @
x X A
x5 XX %!'80 %
X <Y Q><( v
xX¢o O
A
0 1 1 1 1 1 1 1
8 10 12 14 16 18 20 22
ALO,
1.0
A (c)
0.8 |
© 0-6 - X
2
D o4t
0.2 |
o
0.0 :
0 1 2 3 4

Rb/Sr

400 N 5)

300 | X

Zr

X
g’;ﬁ‘x
gx %
i
o8

X&AA’?Q‘” ?
v &
200} x Y
00 4 8V A4 ?ﬂ
A O%o o
Oc‘,“’é)‘b@oo
v S
100 [l [l 1 ol [l [l [l
0.4 05 0.6 0.7 0.8 09 1.0 11 1.2
TiO,
ar °
[o]
a (o]
3t o,
[o]
1
@ 8o o &
So}t oo o o
oc % o ©
X [m]
S PN 3
A
A
X wWo
X>S< 3<<>Ao
0 1 1 1
0.0 0.5 1.0 1.5

Rb/Zr

Figure 6 Variation diagrams comparing country sedimentary rocks, nebulites and the Layos granodiorite. Data
for Layos granodiorite and Toledo pelites from Barbero & Villaseca (1992) and Barbero et al. (1995).

anomalies. Analyses of nebulites are shown in Table 3, and
also included is the average Layos granodiorite from the
Toledo area, an anatectic residuum-rich rock ‘characterised by
a high modal proportion of cordierite (up to 30%)’. Cordierite
in this granite ‘usually occurs as euhedral or subhedral grains
with frequent inclusions of acicular sillimanite, biotite and
quartz’. Enclaves of metamorphic country rocks (orthog-
neisses, amphibolites, quartzitic conglomerates, calcsilicate
rocks and marbles) are the most abundant, followed by
cordierite-rich and sillimanite-rich enclaves and mafic igneous
enclaves (amphibole-biotite-bearing quartz diorites and gab-
bros) (Barbero & Villaseca 1992; Barbero et al. 1995). Nebu-
lites have higher CaO contents (>0-5%) than shales and
sandstones and Eu/Eu* ranges from 0-52 to 0-96. The range of
whole rock Mg# (37-44) in nebulites and Layos granodiorite
(31-43) are comparable with those of the shales and sand-
stones. CaO contents and Eu/Eu* in the Layos granodiorite
(Barbero & Villaseca 1992; Barbero ef al. 1995) are in the same
range as the nebulites.

The nebulites generally have compositions intermediate
between the Upper Neoproterozoic shales and sandstones and
overlap the Lower Cambrian shales, as shown by Al,O;—Rb/
Sr, TiO,~Zr, Rb/Sr-Sr/Ba, and Rb/Zr-Rb/Sr variation dia-
grams (Fig. 6a—d, note that samples showing evidence of REE
redistribution are not included in these plots). Moreover, the
shales, sandstones, nebulites and the Layos granodiorite all

follow the same trend in the Rb/Sr—Sr/Ba diagram and all have
similar ranges of Rb/Sr, Rb/Zr and Sr/Ba (Fig. 6a, c, d). Thus,
the chemical data indicate that the nebulites and the Layos
granodiorite have strong major and trace element affinities
with the Upper Neoproterozoic and Lower Cambrian meta-
sedimentary rocks, and the simplest explanation is that the
nebulites and the Layos granodiorite are anatectic residuum-
rich rocks equivalents of unfractionated metasedimentary
material. This general conclusion does not exclude possible
chemical variations on a local scale as a consequence of an
accumulation of small volumes of leucocratic melts. Table 3
contains three analyses of a leucogranite in the nebulites. This
granite type is characterised by high K/Rb (326-357) and
Eu/Eu* (3-2-16-3), with low (La/Yb),, (2:6-4-2). These features
preclude an origin through magmatic fractionation, rather
they suggest local fluid-present melting of the quartz, plagio-
clase and alkali feldspar components of nebulites, without the
contribution of other minerals. Similar Rb/Sr and Sr/Ba ratios
in the nebulites and leucogranites support this interpretation.

4.1.2. Cordieritites and related rocks. Analytical data for
the cordieritites, two chemically anomalous sedimentary rocks,
and two phosphate-rich rocks are presented in Table 4. The
cordieritites show relatively high P,O5, MnO, Cs and Be and
low TiO,, but they share, together with samples SSA-7 (sand-
stone) and SSA-8 (shale), some important chemical features,
such as low contents of V, Cr, Ni, Cu, and low Eu/Eu* ratios.
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The other two samples in Table 4 have relatively high abun-
dances of HREE, Y, V, Cr, Ni, Cu and negative Ce anomalies.
Samples SSA-7 and SSA-8 have major element compositions
comparable to those of the common sedimentary rocks in
Table 2, but lower concentrations of Sr, Cs, V, Cr, Ni, Co, Cu,
low Eu/Eu* and high Ce/Ce* ratios. However, samples SSA-7
and SSA-8 are not homogeneous and show varying abun-
dances of Be, Sr, REE, Y and Nb apparently unrelated to the
effects of major element dilution and varying ratios of Eu/Eu*,
Sm/Nd and (La/Yb),. Except for the cordieritites, all rocks in
Table 4 are samples from sedimentary units close to or above
the Upper Neoproterozoic/Lower Cambrian unconformity.
The low concentrations of the transition metals V, Cr, Ni, Cu
(and to a lesser extent Co) in detrital rocks are consistent with
significant changes in the geochemical environment of sedi-
mentation.

The relatively high P,Os of the cordieritites (1-1-3-8%) is
reflected in abundant equant and euhedral crystals of apatite
included in quartz, plagioclase, biotite and cordierite. Apatite
thus appears to predate all major metamorphic phases suggest-
ing the possibility of relatively high concentrations of primary
phosphates in some sedimentary rocks (or possibly their
precipitation during diagenesis).

4.1.3. Granites. Analytical data for the amphible-bearing,
biotite and cordierite-bearing biotite granites are given in
Table 5 along with analyses for the two mica granite types in
Table 6. Ugidos & Recio (1993) published mean analyses for
the main rock types and concluded that the amphibole-bearing
and biotite granites probably derived from the same or similar
protoliths of hybrid composition, as is suggested by their
geochemical affinities (major oxides, trace elements, REE) and
fractionation trends in binary variation diagrams. Despite
significant mineralogical differences, probably related to differ-
ences in residual mineralogy entrained in these two granites,
the geochemical data indicate tight evolutionary trends in
several variation diagrams involving the amphibole-bearing,
biotite, and the cordierite-bearing biotite granites (both inter-
nal and marginal). The REE contents and patterns of the
biotite granites, internal and marginal cordierite-bearing gran-
ites, nebulites and shales show no major differences, and the
degree of REE fractionation is moderate for all these rocks.
The present study makes use of more comprehensive chemical
data, including a suite of new whole rock Sr—Nd isotopic data
to evaluate this model.

CaO and Eu/Eu* ratios are important to the petrogenetic
discussions. The amphibole-bearing and biotite granites have
overlapping CaO contents (2:6-3-8% and 1-9-3-2%, respect-
ively) and Eu/Eu* ratios (0-55-0-83 and 0-38-0-76), whereas
internal and marginal cordierite-bearing granites have rather
lower CaO contents (1:7-2:9% and 1:3-2:3%) and Eu/Eu*
ratios (0-34-0-65; 0-41-0-64) that partially overlap those of
amphibole-bearing and biotite granites. The Bafiobarez-
Villavieja granites have CaO contents (0-44—1-5%) and Eu/Eu*
ratios (0-24-0-44) that partially overlap those of marginal
cordierite-bearing granites. All these granites have higher CaO
contents and/or lower Eu/Eu* ratios than the shales, sand-
stones and nebulites. Bohoyo and Navalonguilla granites have
similar CaO contents to some shales and sandstones but lower
Eu/Eu* ratios (0-26-0-46), and El Payo granite samples over-
lap the CaO contents of nebulites with lower Eu/Eu* ratios
(0-32-0-47). Only the biotite granites and internal cordierite-
bearing biotite granites show any significant CaO-Eu/Eu*
correlation (r=0-77 and 0-91, respectively; both >99% confi-
dence level).

Calculations of zircon saturation temperatures from whole
rock Zr and major oxide compositions (Watson & Harrison
1983) indicate temperatures of 794°C + 18 for amphibole-

Table 4 Analyses of cordieritites and heterogeneous Lower Cam-
brian rocks S of Salamanca (Central Iberian Zone).

Sample = CORD-1 CORD-2 SSA-7 SSA-8 PHA-1 PHA-2
SiO, 47-17 51-03 73:33 61-75 6774  40-44
TiO, b.d. 0-32 0-60 0-88 0-27 0-33
Al,O4 2620 19-95 12-47 18-10 5-10 11-25
Fe,04 9-21 650 4-31 6-47 5-65 3-96
MnO 0-32 0-44 0-05 0-08 0-11 b.d.
MgO 417 2:36 1-59 290 0-16 1-28
CaO 1-94 6-80 1-12 0-60 9-54 19-23
Na,O 0-40 1-14 271 1-68 0-72 0-50
K,O 3-81 3-66 1-74 3:48 0-83 2-15
P,Os5 1-14 3-84 0-10 0-22 6-83 13-93
LOI 5:36 371 1-78 3:56 2:58 665
total 99-74 99-74 99-80 99-72 99-53 99-72
Rb 241 346 221 132 33 75
Cs 16 53 1-1 17 2:3 41
Be 750 815 92 1-5 1-8 2:1
Sr 11 33 8 53 322 349
Ba 80 117 89 465 176 394
La 160 85:6 21-0 717 41-6 134
Ce 44-2 224-6 69-4 159-7 91-7 253
Pr 655 30-8 7-02 16-1 12-8 31-8
Nd 28-4 127 26-8 582 585 133
Sm 9-61 335 9-29 10-3 20-4 361
Eu 0-30 2:17 0-06 0-95 6-46 9:35
Gd 10-5 30-9 8:68 7-32 230 54-5
Tb 1-94 5-47 1-98 1-10 311 10-8
Dy 12-8 313 13-1 5-81 16:3 733
Ho 2:36 5-70 2-85 1-21 3-:09 16-4
Er 6-17 14-8 7-54 315 7-01 382
Tm 0-99 2-26 1-27 0-49 1-04 5-26
Yb 591 1422 75 295 617 29-1
Lu 0-75 2-16 1-14 0-45 0-92 3-66
Eu/Eu* 0-09 0-21 0-02 0-33 0-91 0-64
(La/Yb)n 1-8 41 19 17-8 46 31
Y 73 174 72 30 101 447
Zr 87 324 302 364 31 9
Th 2-8 14 28 14 26 11

U 4-5 22 65 2:6 15 52
\ 3 19 b.d. 12 36 75
Nb 2 17 31 13 6 10
Cr b.d. 23 5 4 169 134
Co 18 22 b.d. 2 15 6
Ni b.d. 10 5 2 26 18
Mg# 47 42 42 47 5 39
Ce/Ce* 1-01 1-02 1-34 1-06 093 0-91
Sm/Nd 0-338 0-263 0-347 0-177 0-349 0-271

CORD: Cordieritites; SSA: Altered rocks; PHA: Phosphorous-rich
rocks.
Data as in Table 1; b.d.: below detection limit.

bearing biotite granites, 807°C =+ 36 for biotite granites, and
796°C £22 and 792°C=+34 for internal and marginal
cordierite-bearing biotite granites, respectively (all 2s). Back-
scattered electron imaging studies indicate considerable zircon
inheritance in the cordierite granites and the substantial over-
lap in the results is probably due to all facies being oversatu-
rated in zircon, rather than reflecting magmatic equilibrium
temperatures. Apatite-saturation temperatures calculated
using a method appropriate for metaluminous to slightly pera-
luminous systems (Harrison & Watson 1984) indicate tempera-
tures of 952°C £ 30 for amphibole-bearing, 976°C + 28 for
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Table 6 Analyses of cordierite-bearing two mica granites W and S of Salamanca (Central Iberian Zone).

BVG BVG BVG BVG BVG BVG BVG BVG BVG BVG BohG BohG NavG NavG PayG PayG PayG
Sample VVA-2 VVA-7 VVA-11 VVA-27 CBH-5 CBH-10 CBH-15 CBH-38 CBH-46 CBH-54 1I-11 I-15 BOA-1 BOA-2 FG-10 FG-11 GAT-4
SiO, 73:68 7306 7371 7212 7294 72:59 7512 7079 69:39 7165 7441 7585 7276 72:87 7T1-4 7355 7247
TiO, 011 017 020 025 014 017 0-16 0-39 0-48 034 026 023 013 010 031 016 027
Al,O4 1408 1425 1386 1428 1423 1460 1292 1428 1471 1403 1261 1238 1407 14-00 1542 1402 14-18
Fe,O, 1-36  1-62  1-87 2:08 138 161 1-67 3-16 3-40 2:66 202 186 153 155 237 155 222
MnO 003 002 003 0-03 002 002 0-03 0-04 0-04 005 047 034 018 026 003 bd bd
MgO 022 032 039 044 029 030 0-26 0-64 0-72 0-54 003 003 004 005 068 036 050
CaO 0-60 069 0-44 0-81 0-60 0-60 0-80 1-20 1-50 1-13 038 044 042 045 095 071 087
Na,O 354 352 2:97 327 3-40 3-59 329 325 3-40 3-33 305 316 339 343 307 327 268
K,O 498 508 494 523 558 525 475 5-08 5-33 512 435 375 509 478 504 467 549
P,04 029 03 0-25 025 034 030 0-10 0-22 0-24 022 025 031 025 027 030 030 021
LOI 071 070 110 068 071 075 0-69 0-70 0-52 0-57 107 072 08 076 08 118 089
total 99:6  99:73 9976 9944 99-63 99-78 9979 9975 9973  99-64 989  99-07 98-68 98-52 100-38 99-77 99-78
Rb 368 352 335 299 352 359 282 277 268 288 269 280 338 307 291 358 263
Cs 39 29 27 29 24 31 16 18 17 22 n.a. na. na n.a 21 19 13
Be 52 42 53 85 52 87 68 64 16 87 mna. na na n.a 39 42 51
Sr 40 45 39 61 40 42 51 351 86 66 37 28 37 39 75 42 76
Ba 153 208 215 289 201 214 186 403 405 298 145 84 153 147 292 102 202
ASI 121 120 1-33 120 1-19 122 110 1-14 1-09 1-12 128 133 125 127 134 127 124
La 11-1 185 19-0 25-3 13-6 15-4 14-8 276 279 259 223 187 22:0 215 220 11-0 205
Ce 23-8 417 422 55-0 30-1 322 32:6 58-8 60-0 56-6 510 434 414 444 480 245 465
Pr 279 471 501 6-55 353 4-07 396 7-11 6-94 6:64 n.a. n.a. n.a. n.a 590 303 573
Nd 10-8 188 189 25-1 136 159 15-3 281 282 270 217 188 151 166 226 1144 215
Sm 271 419 447 570 323 388 363 6-24 6-16 579 550 482 375 440 489 273 512
Eu 030 036 030 049 030 033 0-50 0-75 0-81 063 041 047 05 0-38 066 027 049
Gd 2:23 347 3-46 4-52 2:47 2:92 3-36 5-08 5-30 4-93 430 367 291 349 380 244 418
Tb 039 052 052 0-68 037 048 0-62 0-88 0-89 0-83 n.a. na. na  na. 0-57 041 068
Dy 224 2:66 266 342 179 219 3:66 493 4-69 453 304 268 273 318 285 222 347
Ho 045 048 049 068 035 046 0-88 1-08 1-01 099 na. na  na  na. 0-46 034 051
Er 0-91 1-08 1-14 1-53 0-81 0-99 2-24 2:62 2-40 2-38 124 114 121 1-51 113 079 1-13
Tm 0-14  0-17 0-18 0-22 0-12 0-17 0-39 0-41 0-41 0-38 n.a. n.a n.a. n.a. 0-15 011 014
Yb 1-00 106 1:16 1-62 080 108 2-83 294 2-81 2:55 120 1-10 128 158 099 069 0-82
Lu 012 015 016 022 011 014 0-43 0-41 0-38 038 015 015 017 026 014 009 011
Euw/Eu* 038 029 024 030 032 030 0-44 0-41 0-43 036 026 034 046 030 047 032 032
(La/Yb)n  7'5 12 11 11 11 97 36 63 67 69 13 12 12 92 15 11 17
Y 13 13 14 19 9 13 24 29 27 27 19 17 19 22 14 11 16
Zr 56 90 90 112 69 75 75 156 171 134 123 104 76 76 132 70 129
Hf 2:4 37 39 4-4 29 3-0 31 5-8 6-1 52 n.a. n.a. n.a. n.a. 3-8 2-3 3-8
Th 7-8 12 13 19 84 10 12 16 15 16 n.a. n.a. n.a. n.a. 12 80 16
v 5 8 9 13 5 6 9 22 30 20 29 31 bd. 16 23 8 12
Nb 12 15 16 13 12 14 9 13 13 14 17 20 15 16 11 14 11
Ni 22 16 9 10 9 9 12 14 14 9 36 26 b.d. b.d. 7 b.d. b.d.
Co 1-7 1-8 2:0 2-3 1-3 1-4 2:0 39 4-5 34 54 26 b.d. 10 79 91 85

BVG: Banobarez-Villavieja granites; Boh: Bohoyo granite; NavG: Navalonguilla granite.

PayG: El Payo granite; n.a.: not analysed; b.d.: below detection limit.

biotite, 991°C =+ 28 for internal cordierite-bearing, 1020°C +
42 for marginal cordierite-bearing and 1033°C + 66 for two-
mica cordierite-bearing granites. This progressive increase in
apparent apatite saturation temperature indicates that the
most evolved compositions (marginal cordierite-bearing and
two-mica cordierite-bearing granites) are furthest from apatite
saturation, suggesting a progressively greater role for cumu-
late, xenocrystic or residual apatite phases during magmatic
evolution.

4.2. Sr—Nd isotopes

Sr—Nd isotope data for the granites and nebulites are presented
in Table 7. The isotope ratios were calculated at 306 Ma, the
age of emplacement. Published representative Sr—Nd isotopic

data of shales (Ugidos et al. 2003b) are also included in Table
7 for comparison.

The (¥7St/%°Sr),o¢ ratios for amphibole-bearing (0-7067—
0-7070) and biotite granites (0-7062-0-7064) are comparable.
Those of cordierite-bearing granites are variable and higher
(0-7077-0-7089 and 0-7073-0-7094 for internal and marginal
cordierite-bearing granites, respectively), except for one sample
of the marginal cordierite-bearing biotite granite, which has a
lower value (MC-10: 0-7066). The Banobarez-Villavieja gran-
ites have a wide range (0-7049-0-7171). The eNd,,, values of
amphibole-bearing (—44 to —3-6) and biotite granites
(—4-2) are also comparable. There is more variation in the
ratios of the cordierite-bearing granites that have higher values
for the internal (—5-2 to —4-8) than for marginal (— 6-3 to
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—59), except for one sample of this group (MC-10: —4-0)
that has a value within the range of the amphibole-bearing
granites. The ('**Nd/'**Nd),,s ratios for the Bafobarez-
Villavieja granites (— 3-8 to —2-2) are similar to or higher
than those of the amphibole-bearing and biotite granites. Most
nebulite ratios (—5:0 to —3-8) are similar to those of the
Upper Neoproterozoic shales (— 55 to —4-4) while some
(—10:0 to — 6-5) are similar to those of the Lower Cambrian
shales (— 94 to —6-3).

The (¥7St/%Sr);06-eNd;0 plot efficiently separates the
Upper Neoproterozoic from the Lower Cambrian shales,
nebulites, the Toledo pelites and the Layos granodiorite (Fig.
7). This again strongly suggests that the nebulites and the
Layos granodiorite are compositionally equivalent to sedimen-
tary rocks. The internal and marginal cordierite-bearing biotite
granite plots deviate towards shales and the nebulites, whereas
samples MC-10 (marginal cordierite-bearing granite) and
VVA-11 (Bafobarez-Villavieja granites) plot close to the
amphibole-bearing and biotite granites (Fig. 7). Relatively
high €Nd,,e values such as shown by sample MC-10 and the
Banobarez granites (Table 7) are not uncommon for other late
Variscan peraluminous granites in the CIZ (Beetsma 1995;
Donaire et al. 1999). However, other cordierite-bearing gran-
ites in the region show lower €Nd,,, values (Beetsma 1995;
Moreno-Ventas et al. 1995), as do the internal and marginal
cordierite-bearing granites of this present work.

5. Discussion: the origin of cordierite-bearing
granites in the CIZ

The convergence of isotopic and other compositional indica-
tors in the cordierite granites towards those of the host
metasedimentary rocks strongly suggests that the metasedi-
mentary rocks are integrally involved in the petrogenesis of the
cordierite granites, even if not at the present levels of exposure.
In discussing the petrogenesis of the cordierite granites, it is
convenient to address two end-member models, namely: (a)
simple anatexis of country rocks; and (b) reactive assimilation
of country rocks by another magma. Compositional variation
attributable to fractional crystallisation is also considered.

5.1. Anatexis

The strongly peraluminous character of cordierite-bearing
granites is frequently used to attribute such rocks to the
melting of metasedimentary protoliths (Miller 1985). Field,
mineralogical and geochemical evidence support the con-
clusion that the nubulites were derived from local metasedi-
mentary rocks, but there are difficulties in reconciling the
intrusive cordierite-bearing granites of this present study with
simple anatexis of this source. Principal among these problems
are stable isotope constraints on protoliths, major and trace
element differences, and concerns over the source of heat
required to melt metasedimentary protoliths of high chemical
maturity.

Whole-rock §'®0 data for the principal rock types have
previously been reported and the ranges are as follows:
amphibole-bearing granites: +8-0 to +9:8%o; biotite granites:
+7-7 to +9-5%0; internal cordierite-bearing biotite granites:
+8:6 to +10-3%0; marginal cordierite-bearing biotite granites:
+9:0 to +10-5%0; nebulites: +10-5 to +12-1%0; Upper Neopro-
terozoic shales: +11:6 to +13-8%0; Lower Cambrian shales:
+9-3 to +12:4%0; and Lower Cambrian altered shales +10-0 to
+14-3%.. These data indicate that very different protoliths are
required to generate the cordierite-bearing granites compared
with the nebulites (Recio ef al. 1992). CaO is low and the
Eu/Eu* ratio is high in the country rocks (shales, sandstones,

nebulites), compared with cordierite-bearing granites, and
these features would require selective enrichment of melts in
CaO whilst retaining Eu in the residuum, a non-equilibrium
process not known to occur on a regional scale. Upper
Neoproterozoic and Lower Cambrian sedimentary rocks
throughout Iberia are chemically highly mature (Valladares
et al. 1993, 2002a, b; Beetsma 1995; Ugidos et al. 1997a, b;
Bauluz ez al. 2000) making them implausible protoliths for
granites, with the possible exception of the leucogranites.
Large-scale anatexis of such protoliths at shallow depths and
subsequent mobilisation of magma requires considerable heat
input and, in the absence of any evidence for significant
volumes of contemporaneous basic rocks and seismic data,
precludes the presence of significant quantities of mafic com-
positions in the crust of the CIZ (Banda er al. 1981, 1983).
These objections make it difficult to reconcile the anatectic
model with the available evidence.

Notwithstanding these problems with simple anatexis, if
metasedimentary country rocks are the protoliths for these
granites, an unusually large-scale homogeneous melting pro-
cess must have selectively enriched the melt in Ca whilst
retaining Eu in the restite. Furthermore, these cordierite-
bearing granites have high FeO-MgO abundances and are
much more mafic than minimum melts derived from upper
crust metasedimentary protoliths through dehydration-melting
reactions. If cordierite in the cordierite-bearing biotite granites
is (at least in part) residual, then low P conditions (3-3-5 kbar)
must be also accepted, given the absence of garnet in the
granites and metasedimentary rocks as well as the relatively
low Mg# of the country sedimentary rocks. The lack of
significant volumes of contemporaneous basic magmas over
the whole region makes it difficult to account for the necessary
heat input at relatively shallow crustal levels by advection. If,
on the other hand, garnet was left in the restite, there is a
problem in explaining the absence of HREE fractionation in
the cordierite-bearing biotite granites. Either way, cordierite-
bearing biotite granites and biotite granites are chemically
similar, for example the Zr contents and (La/Yb),, ratios in the
biotite granites (cordierite absent) and the cordierite-bearing
biotite granites largely overlap for most chemical parameters,
and both are very different from their host rocks.

5.2. Assimilation

Field and petrographic similarities between cordierite in the
nebulites and the cordierite granites (Fig. 4a, b), as well as field
evidence for bulk assimilation (including gradual transitions
between the biotite granites and cordierite-bearing biotite
granites, transitional contacts between these late granites and
nebulites, roof pendants of cordierite-rich migmatites in the
cordierite-bearing biotite granites and the petrographic fea-
tures of a cordieritite enclave isolated within an extensive
biotite granite outcrop) all favour an origin of the cordierite
granites by contamination of biotite granite magmas with
cordierite-bearing country rocks, in particular the nebulites. It
is proposed that the nebulites were melt-rich diatexites at the
time of intrusion, facilitating the process of bulk assimilation
of both melt and restitic component. Modelling the bulk
compositions of all possible combinations of end members for
a given fraction of contaminant using mass balance calcula-
tions allows the possibility of such extensive assimilation to be
tested by comparing model compositions with the observed
compositions of the cordierite granites.

The Sr-Nd isotope results are uniform for amphibole-
bearing and biotite granites, but variable for cordierite-bearing
granites that deviate towards sedimentary and nebulite the
biotite granite compositions (Fig. 7), suggesting incorporation
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of these materials into the biotite granite. The isotopic hetero-
geneity of the resulting granites following assimilation is
attributable to the wide compositional variation shown by the
likely contaminants of the granites (Upper Precambrian and/or
Lower Cambrian shales, reworked phosphate-rich rocks, al-
tered shales). These end-members are sufficient to explain the
observed compositional variation in the unevolved internal
cordierite-bearing granites. Application of mixing models to
eNd,os and #7Sr/*°Srs, indicate that the bulk assimilation of
10-25% nebulite can account for the compositions of the
internal cordierite-bearing granites (Fig. 7). However, such
assimilation modelling using the range of biotite granites and
nebulite compositions does not account for all the marginal
cordierite-bearing granite samples; some of these differences
are discussed below in terms of unusual contaminant compo-
sitions. All available isotopic data, including stable isotopes
(see Recio et al. 1992), are consistent with the cordierite-
bearing granites, being mixtures of biotite granites and host
rocks.

The assimilation model is further tested using the available
major and trace elements, a selection of which (including trace
element ratios) is presented in Figures 8§ and 9. The shaded
areas encompass compositions generated by the assimilation of
10% nebulite into the range of biotite granites. These diagrams
show that almost all the internal cordierite-bearing granite
samples are adequately modelled and most samples that do not
fall within this model field lie very close, although there are a
few outliers, as might be expected in such a heterogeneous
system. As with the isotopic modelling, no combination of
nebulite assimilant and biotite granite host magma is capable
of replicating the major and trace element compositions of all
the marginal cordierite-bearing granites.

In several variation diagrams the biotite granites suggest a
fractionation trend, and all granite types and the nebulites
overlap this same trend. Examples are the SiO,-TiO,, SiO,—Zr
and Zr-LREE diagrams (Fig. 8a, ¢, b). However, in other
diagrams, such as SiO,-Y, Zr-HREE and Zr-Sm/Nd (Fig. 8e,
d, ), while the data mostly overlap the biotite granites and
internal cordierite-bearing granites, plots are rather scattered
and describe only broad general trends. SiO,-Y and Zr—
HREE plots indicate two groups of samples, each including
marginal cordierite-bearing and Bafiobabarez and Villavieja
granites, that are characterised by relatively high and low Y
and HREE contents. These results are difficult to reconcile
with a simple fractionation model since, in principle, Zr—
HREE rather than Zr-LREE correlation is expected for zircon
fraction, for example. Thus, it is suggested that the abundances
of zircon and LREE-carriers are both dependent on the
contents of inherited accessories (probably as inclusions) en-
trained in the rising magma, and also on the closure effect,
rather than on magmatic precipitation. The tight trend defined
in Figure 8b suggests a close relationship between all granites.
It is important to highlight that samples rich in Y and HREE
correspond to the marginal cordierite-bearing and the two-
mica cordierite-bearing bodies that intrude Lower Cambrian
units that are chemically anomalous, in particular in their
relatively high abundances of Y and HREE (see section 1).

In diagrams where the nebulites and biotite granites trends
diverge (Fig. 9), the marginal cordierite-bearing granites tend
to plot with intermediate values (e.g., CaO-SiO,, CaO-Fe,0;,
CaO-Zr, CaO-Rb/Sr, CaO-Eu/Eu*, CaO-Sm/Nd). Most dia-
grams indicate that magmatic fractionation links the internal,
marginal, and two-mica cordierite-bearing granites, and in-
tense fractionation is suggested for the most evolved rocks by
the CaO-RDb/Sr diagram (Fig. 9d). Variation diagrams, includ-
ing P,Og, suggest more complex relationships. SiO,—P,05 and
CaO-P,0O; exhibit negative correlations for biotite granites,
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Figure 7 Sr—Nd isotope ratios for the granites and host rocks
including Upper Neoproterozoic shales, Lower Cambrian shales,
Toledo pelites and nebulites. Granites include amphibole-bearing
biotite granite (Amph granite), biotite granite (Bt granite), internal
cordierite-bearing biotite granite (Intern crd gr), marginal cordierite-
bearing biotite granite (Marg crd gr), cordierite-bearing two-mica
granites (Cord 2 mica gr) and the Layos granodiorite. Isotopic data for
the Layos granodiorite and the Toledo pelites taken from Barbero
et al. (1995) and Villaseca et al. (1998). Rb-Sr data for the Upper
Neoproterozoic and Lower Cambrian shales taken from Ugidos et al.
(2003b). The shaded fields encompass all compositions generated by
mixing Bt granite samples with 10%, 25% and 50% nebulites respect-
ively for all combinations of Bt granite and nebulite samples.

while marginal and cordierite-bearing two-mica granites have
higher P,O5 concentrations than biotite granites for the same
SiO, or CaO (Fig. 10). The Al,O;—P,O5 diagram (Fig. 10b)
shows negative covariation for the biotite granite, but Al,O4
remains essentially constant in the marginal and two-mica
cordierite-bearing granites with varying P,Os. None of the
trace elements show significant covariation with P,Os in these
granites. The REE patterns (Fig. 11) in the nebulites, biotie
granites and most internal cordierite-bearing granites are
broadly similar, whereas some of the marginal and the
cordierite-bearing two-mica granites have more complex
HREE patterns consistent with results above.

In any assimilation model, a major constraint is the volume
of contaminant required to explain the petrological and geo-
chemical features of the product. Large degrees of contamina-
tion are not required to account for the field observations on
the spatial density of cordierite that ranges from 20 to
74 prisms/m? in the marginal cordierite-bearing granites.
Given that the average size of cordierite prism in these granites
is about 1-5 cm?, the cordierite content of this granite is about
1-1 vol. % on a regional scale, requiring 11 vol. % assimilation
of a contaminant with 10% modal cordierite; the range of
cordierite abundance in nebulites is 10-20%. If cordieritites
(60-80% modal cordierite) were the only contaminant, assimi-
lation of less than 1-8 vol. % of these rocks would be sufficient
to introduce up to 1-1 vol. % of cordierite. The effects on trace
element contents would be undetectable, especially in those
examples where data on granite and contaminant overlap.
The data indicate strong controls exerted by contaminant
composition and the inheritance of accessory minerals, but the
most evolved facies may also require a stage of crystal-liquid
fractionation.
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Figure 8 Variation diagrams for granites and nebulites. Bt gran: Biotite granites; Internal CG: Internal
cordierite-bearing biotite granites; Marginal CG: Marginal cordierite-bearing biotite granites; Cord 2 mica gr:
small cordierite-bearing two-mica granites, including the Bafiobarez-Villavieja, Bohoyo, Navalonguilla and El
Payo granites. The shaded field encompasses all compositions generated by mixing Bt granite samples with 10%
nebulites for all combinations of Bt granite and nebulite samples.

5.3. Fractional crystallisation

The assimilation model for the cordierite granites does not
fully account for the marginal cordierite granites, or the
two-mica cordierite-bearing granites. The marginal cordierite-
bearing granites evolve to higher silica and lower TiO,, Zr, Y,
LREE and HREE than the nebulite and biotite granite end-
members, whereas the two mica cordierite-bearing granites are
generally significantly more evolved than the marginal cordier-
ite granites and very depleted in Zr and the rare earths (Figs 8,
9). Such evolved compositions cannot be achieved solely by
assimilation and it is necessary to invoke an igneous differen-
tiation process, although there is convincing field and geo-
chemical evidence for the late involvement of assimilation in
the marginal cordierite-bearing granites. Zr, Hf, Th, LREE
and HREE depletion with increasing SiO, implicates zircon
and monazite removal; whereas the exponential increase in
Rb/Sr, as well as rapid declines in TiO,, Fe,0,, and CaO (Figs

8, 9), attests to mafic mineral and feldspar removal. Severe
depletion in the HREE may also indicate the removal of
garnet. The removal of these minerals differentially to create
the observed trends in the biotite granites may have occurred
for residual phases at or close to the source, or by crystal
fractionation at a higher level. Residual mineral control is
favoured if HREE depletion was due to the retention of garnet
in the source. Alternatively, linear trends in Y and HREE
within the marginal cordierite-bearing granites could be ex-
plained by variable assimilation of local metasedimentary
rocks that range from Y- and HREE-depleted to horizons that
are anomalously enriched in these elements. Quantitative
models of combined assimilation and fractional crystallisation
(DePaolo 1981) was not attempted because the heterogeneity
of both assimilant and host rock mean that individual samples
cannot represent the range of compositions involved. Further-
more, such models depend on accurate knowledge of crystal-
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Figure 9 Comparison of variation trends in granites with those in nebulites. Symbols and shading as for

Figure 8.

liquid partitioning and this is not available for several import-
ant trace elements. A significant fraction of zircon, the main
repository of Zr, is inherited, and the rare earths and Th are
major components of monazite and do not conform to Henry’s
Law. Trace element abundances and radiogenic isotope trends
are however qualitatively consistent with a model in which the
marginal cordierite-bearing granites are derived from these
differentiated biotite granites through the assimilation of the
nebulites and other metasedimentary rocks in broadly similar
quantities as required to generate the internal cordierite-
bearing granites (up to 20%).

5.4. Influence of host rock compositions

Phosphate deposition is recorded on nearly all continents dur-
ing the Late Proterozoic and Lower Cambrian, frequently as-
sociated with changes in sea level (Cook & Shergold 1986; Cook
1992). High phosphate concentrations (13 to 24% P,O,) are also
found in western Spain (Perconig et al. 1986; Gabaldon et al.
1989) as well as in the present study area (Oczlon & Diez Balda
1992; Rodriguez Alonso et al. 2004). Primary phosphorites have

low REE abundances, whereas post-depositional weathering,
reworking, interaction with ground waters, and diagenesis can
lead to significant REE (including Y) removal and redistribu-
tion (McArthur 1980; Ilyin 1998; Rasmussen ez al. 1998) with
consequent modification of trace element ratios, including
Sm-Nd fractionation and neodymium isotope resetting on a
regional scale (Bouch et al. 1995; Bock et al. 1998; Lev et al.
1999). Table 3 includes samples with variable trace element
abundances, especially the REE (and their ratios), comparable
to the altered detrital samples in Table 2. It is suggested that
REE redistribution during diagenesis is the likely cause of this
variability. Possible examples of neodymium isotope resetting
in host rocks are the samples SSA-2 and SSA-13 that have
anomalous REE (including Y) abundances (Table 2) and the
highest (***Nd/"**Nd),,, ratios (Table 7) among the Lower
Cambrian shales. The influence of rare earth composition is
illustrated by samples MC-10 and CBH-38 (marginal and two-
mica cordierite-bearing granites, respectively) that have the
highest ("*Nd/"**Nd),, ratios of their respective granite groups
(Table 7) as well as the highest Y contents (Tables 5 and 6).



ASSIMILATION MODEL FOR CORDIERITE-BEARING GRANITES 245

@
A a
04F A ap e ® (a)
S IO
03 Teg e, +4p *
AREs
o’ {.l|.+‘. 4‘%
n-N 02} A [} = <4
A
A é aA®
01} +
0.0 : : :
60 65 70 75
Sio,
A3
0.4 B "uA A (b)
+ < ’“ )
0.3 | *'.:r!AzA
ol.D + C ® N
Ll M e
o A A A
by A
01| 4
0.0 s . : : . :
12 13 14 15 16 17 18 19
ALO,
A ’ (c)
c
0.4 B A .. . é o
** “A. L 2 e o
| ttAA ) A
) t 4+ b " e
o to ® "}
o 02} + o u"
s A
M @
01} +
0.0 : : :
0 1 3

2
Ca0

Figure 10 Variation of P,O5 with some other major oxides. Symbols
as for Figure 8.

The relatively high P,Os content of the cordieritites is
consistent with an origin by contamination involving P-rich
sedimentary layers. The relatively high REE contents (Table 4)
and the lack of negative cerium anomalies in the cordieritites
contrast with the chemical features of primary marine phos-
phates, but are also features of the phosphate-rich rocks in
Table 4. Thus the geochemical features shared by the altered
detrital and phosphate-rich rocks and cordieritites suggest that
protoliths of the latter mainly consisted of reworked and
altered sediments, and the data are consistent with an origin of
the cordieritites in low-P-high-T metamorphism of specific,
chemically mature sedimentary beds.

The trends defined by the internal and marginal cordierite-
bearing, and the Bafnobarez-Villavieja granites in the SiO,—
P,Os, P,Os-AlL,O; and CaO-P,05 plots (Fig. 10) are not
consistent with simple magmatic fractionation trends, whereas
such trends are apparent in the biotite granites. The relatively
high P,O5 contents in many samples of the cordierite-bearing
and cordierite-bearing two-mica granites probably resulted
from a combination of processes, including assimilation of the
P-rich country rocks and the behaviour of P in the new melt
after Al dissolution. The assimilation of aluminophosphates
reported in Central Portugal (Gama Pereira 1984) and the
presence of P-rich rocks as enclaves in the biotite granites,
also supports such a process. The range of P concentrations in
the host material may be wide, as may be the ranges of many
other elements (REE, Y, Th, U, etc), depending on whether
phosphate minerals are primary or secondary and on the
redistribution of trace elements in the assimilated rocks. The Y
contents in altered Lower Cambrian shales are three- to
six-fold higher than those of unaltered shales. Thus, the two
trends are apparent in the SiO,—Y diagram (Fig. 8e) but the
marginal cordierite-bearing and two-mica cordierite-bearing
granites may relate to contaminants with different Y abun-
dances and subsequent fractionation. An important aspect is
that the incorporation of small quantities of cordierite-bearing
rocks would dramatically modify the range of P,O5 abundance
in granites, and would introduce new minerals such as cordier-
ite and andalusite.

The question of the extent of highly reworked and altered
sediments in the host sequence is relevant to the probability of
assimilating unusual compositions. Those corresponding to the
Neoproterozoic-Cambrian transition are well characterised,
but the results of sequence stratigraphy studies (see section 1)
suggest that the lower sequence boundary of the Neoprotero-
zoic sequence would also be an unconformity related to a fall
in sea level, and the sediments may have similarly acquired
extreme compositional characteristics. The relationships be-
tween stratigraphic units and the stratigraphic levels into
which the granites of the Central Iberian Zone in the region
W and S of Salamanca were emplaced are summarised in Table
1. This stratigraphic framework could explain the presence
elsewhere of some cordierite-bearing granites within Precam-
brian series rocks that have clearly not traversed the extreme
compositions observed at the Neoproterozoic—-Cambrian
boundary. Given that the peak of metamorphism postdates
the folding phases, then P-T conditions at both sequence
boundaries may have been similar. Thus, granite magmas
emplaced in both lower and upper sequence boundaries
may have experienced similar compositional and thermal
environments.

5.5. Origin of the cordierite-rich rocks

Many examples of cordierite-rich host rocks have been re-
ported in the literature. Examples include: partially melted
cordierite-rich pelitic hornfelses and restites having up to 40%
(euhedral) and 60-90% cordierite, respectively (Riesco et al.
2004); cordierite crystals and partially melted xenoliths with
12-34% cordierite (Gribble 1968); gneisses with up to 32%
cordierite (Fediuk 1971; Bliimel & Schreyer 1977); leucosomes
in thermal aureoles with abundant euhedral cordierite porphy-
roblasts up to 1 cm long (Evans & Speer 1984); basic granulites
with 20-28% cordierite (Davidson & Mathison 1974); migma-
tites with up to 41% cordierite (Jamieson 1984); and cordieri-
tites with 60-90% cordierite (Gordillo 1979; Schreyer et al.
1979; Ugidos 1988; Rapela er al. 2002; Droop et al. 2003).
Rocks of extreme composition, such as emery-like rocks with
Al O5 32-53%, Fe,0, (total) 15-27%, MgO 2-4-8-5% (Smith
1965) and high-grade average metamorphic rocks with Al,O4



246

J. M. UGIDOS ET AL.

1,000 E E |
EF (@) Amphibole granites (b) Biotite granites ]
o [ i
5100 E ;
c C 3
[<] - 3
£ - -4
2 L -
o - 4

[-3
E ol ]
* E E
1,000l 3 — ]
F (c) Internal cordierite granites (d) Marginal cordierite granites 3
. L i
'.5100 E E
c - 3
5 F E
= B -
o - ]
3 L i

Qo
R
%] F ]
11000 gt —_—
F (e) Bafobarez-Villavieja ]
[ Granites ]

[
100 E E
c = =
[<] = 3
< B ]
o - ]
o - 4

[~
5 10
n F E
arg e
E - : Enclaves and anomalous E
: (9) Cordierite-bearing metasediments (h) ]
i two-mica granites i

[
g0 + BohG
s E ¢ NavG 3
o [ e PayG E
K - 4

[-3
E 10 3
@ E © Cordieritite 3
- ¥ O P-rich rocks E
B O Altered metasediments

LaCePrNd SmEuGdTbDyHoErTmYbLu

LaCe PrNd SmEuGdTbDyHoErTmYb Lu

Figure 11 Chondrite-normalised REE patterns for the major rock types: (a) amphibole granites; (b) biotite
granites; (¢) internal cordierite-bearing granites; (d) marginal cordierite-bearing granites; (e) Bafiobarez-Villavieja
two-mica cordierite-bearing granites; (f) nebulites, (g) El Payo granite (PayG), Navalonguilla granite (NavG) and
Bohoyo granite (BohG); (h) cordieritite enclaves and some anomalous Lower Cambrian rocks. Normalisation

values for chondrite from Taylor & McLennan (1985).

44%, FeO* 11-0%, MgO 5-8% have been reported (Nell 1985).
In most of these examples, the origin of the extreme bulk
composition has been attributed to the loss of a leucogranitic
melt fraction, and cordierite is considered to be a solid product
of incongruent biotite-consuming reactions. However, this
interpretation is based mainly on major element data, and
there are few studies indicating a restitic origin on the basis of
element ratios in low-grade (or unmetamorphosed) and
equivalent high-grade (or inferred restitic) rocks.

The melt loss model is testable in that restites would be
expected to become relatively enriched in refractory elements,
as compared with their protoliths, following the generation
and migration of a leucogranitic melt. In fact, the cordieritites
of this study have similar Mg#, lower TiO,, V, Cr, Ni and Cu
abundances and lower Eu/Eu* ratios than the shales and
nebulites. Thus the cordieritites cannot be restitic rocks result-

ing from melt extraction after melting of the shales, sandstones
and nebulites. A model more consistent with the data is that
these cordieritites are original reworked and altered detrital
rocks, as are SSA-7 and SSA-8 above. It is suggested here that
intense alteration of sediments with subsequent accumulation
of clay-rich horizons would result in bulk compositions similar
to those interpreted above as ‘melt depleted’ restites, and such
protolith compositions may actually account for many
cordierite-rich occurrences. Other cordieritite types may de-
velop from biotite+sillimanite-rich restitic rocks; indeed,
cordierite-rich rocks are common and are not necessarily
restitic, but may be high-grade hornfelses or migmatites from
undepleted country rocks. Contaminants in the formation of
cordierite granites in this present study include high-grade
hornfelses, nebulites, cordieritites from altered sedimentary
beds, as well as restitic cordieritites.
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5.6. Thermal considerations

Large-scale assimilation of host rocks by intruding granites
magmas is usually considered implausible, given the relatively
low temperatures of granite magmas and the high melting
temperatures of siliceous country rocks. More widely accepted
is the assimilation of host rocks by basic magmas through the
partial melting of xenoliths. Thermal contrasts between
country rocks and magma cause stresses which assist the
fracturing of the country rocks (Furlong & Myers 1985),
and dehydration melting reactions in xenoliths facilitate their
assimilation through the disintegration of xenoliths and the
dispersion of the melt and xenocrysts in the host magma
(Green 1994). Extensive reaction of xenocrysts with the host
melt phase generates a new mineral assemblage that will be
difficult to detect as initially derived from the contaminant.
This reactive bulk assimilation model (Beard et al. 2005) has a
much smaller thermal requirement than conventional assimi-
lation models (Grove et al. 1988), but may be very difficult to
detect because extensive re-equilibration of the solid phases
with the host melt tends to obliterate original features that may
be linked to the contaminant. The features most likely to
persist are the radiogenic isotope ratios and some trace ele-
ments, although significant increase in modal cordierite to-
wards the outer contacts with pelitic host rocks, as described in
section 3.4, strongly supports the assimilation model.

A recent analysis of the thermal limitations on wall rock
assimilation by basaltic magma (Glazner 2007) found that the
process would most likely be limited by the effect of crystal
content on viscosity, and thus restricted to a few tens of percent
incorporation of xenoliths. It is quite common, as in the region
studied, for peak metamorphic conditions to postdate the
compressive phases of orogenies, and for the maximum volume
of granite magma to be emplaced contemporaneously with the
extensional stages. This implies that the pressure decrease
coincided with the ascent of late orogenic voluminous granite
magmas from deep crustal sources that were probably em-
placed at similar depths in the middle/upper crust. Thus, the
evolution of regional metamorphism from intermediate to low
P is coincident with thermal advection by granite magmas. As a
consequence, relatively high regional isotherms/isograds may
have been telescoped, while the decrease in pressure would
have facilitated biotite-muscovite- and biotite-sillimanite-
consuming reactions, resulting in high-T-low-P cordierite-rich
(£ andalusite) rocks such as high-grade hornfelses, cordieri-
tites, migmatitic hornfelses and, for the nebulites, fluid-absent
melting reactions (positive slopes). The same reactions affect-
ing the sillimanite+biotite restitic associations from earlier
leucogranites may have generated restitic cordieritites.

Phyllosilicate-consuming reactions under subsolidus con-
ditions produce alkali feldspar and H,O that in turn may lower
solidus temperatures and facilitate the generation of some
inter-crystalline melt in the host rocks and within xenoliths
(Buick et al. 2004). Enclaves of host rocks up to 10 m long are
present in the cordierite granites of the study area, and these
were subject to Variscan metamorphism prior to incorporation
as stoped blocks in the granite magma. This situation is
optimal for achieving extensive reactive assimilation. Less than
optimal would be the generation of largely structureless high-
grade rocks in thermal aureoles without an interstitial melt
phase. Under these circumstances, the stresses caused by
thermal and dilation anisotropy of minerals on magma em-
placement (Ugidos 1988; Clarke et al. 1998), together with the
mechanical effects of shear stress and thermo-chemical abra-
sion during the sinking of host rock blocks in the magma, will
facilitate the disaggregation of cordierite-rich rocks into dis-
persed xenocrysts.

6. Concluding remarks

In conclusion, the occurrence of regional-scale cordierite gran-
ites is explained with a model involving extensive reactive
assimilation of nebulites by biotite granite magma. The process
of reactive assimilation reduces the thermal requirements as
compared with bulk assimilation, and may be applicable to
granites when the thermal requirements are lowered still fur-
ther for magmas that are emplaced into high temperature
rocks close to solidus conditions. A consequence of the re-
active assimilation process is that much of the evidence is
destroyed, however isotopic contrasts and other chemical
features are preserved in the cordierite granites of the Central
Iberian Zone that are wholly consistent with this process.
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