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ABSTRACT The ability to adjust growth and development to the availability of mineral nutrients in the soil is an essential

life skill of plants but the underlying signaling pathways are poorly understood. In Arabidopsis thaliana, shortage of po-

tassium (K) induces a number of genes related to the phytohormone jasmonic acid (JA). Using comparative microarray

analysis of wild-type and coi1-16 mutant plants, we classified transcriptional responses to K with respect to their depen-

dence on COI1, a central component of oxylipin signaling. Expression profiles obtained in a short-term experiment clearly

distinguished between COI1-dependent and COI1-independent K-responsive genes, and identified both known and novel

targets of JA-COI1-signaling. During long-term K-deficiency, coi-16 mutants displayed de novo responses covering similar

functions as COI1-targets except for defense. A putative role of JA for enhancing the defense potential of K-deficient

plants was further supported by the observation that plants grown on low K were less damaged by thrips than plants

grown with sufficient K.

Key words: Hormonal regulation; nutrition; secondary metabolism/natural products; transcriptome analysis; plant–

insect interactions; Arabidopsis.

INTRODUCTION

Potassium (K) is an essential macronutrient for all living organ-

isms due to vital functions in enzyme activation, protein syn-

thesis, solute transport and osmoregulation (Marschner, 1995;

Oria-Hernandez et al., 2005). In the field, the demand for K of

young, fast-growing crops is high and therefore K supply can

become yield-limiting even when fertilizers are applied (Syers,

1998; Dobermann et al., 1999). K-deficiency impacts not only

on crop yield, but also on crop quality, taste, mechanical prop-

erties and stress resistance (Marschner, 1995; Laegreid et al.,

1999; Amtmann, 2009).

High and low-affinity K transport proteins facilitate uptake

of K from the soil and its reallocation between different tissues

(Epstein et al., 1963; Maathuis and Sanders, 1996; for review,

see Amtmann et al., 2004; Ashley et al., 2006). Regulation of

these transporters has been an area of intensive research

(reviewed in Véry and Sentenac, 2003; Amtmann and Blatt,

2009), and the recent discovery of the Ca/CBL/CIPK pathway

(Li et al., 2006; Xu et al., 2006) has further enhanced our un-

derstanding of how plants adjust K uptake to the external K

supply. Such control mechanisms endow plants with the capac-

ity for efficient cellular and whole-plant K homeostasis

(Walker et al., 1996), thereby allowing them to cope with tran-

sient fluctuations of external K.

If K-deficiency persists, plants have to initiate a much wider

adaptive response, which involves re-prioritization of growth,

development and metabolism to ensure maximal seed produc-

tion under nutrient-limited conditions. Field and glasshouse

trials have produced a vast amount of data on the physiolog-

ical consequences of K-deficiency (reviewed in Kafkafi et al.,

2001), but it is not known which of these reflect unavoidable
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damage and which have adaptive function. Even less is known

about the underlying regulatory mechanisms. A role of the

ethylene pathway in K-perception and signaling in the roots

is now emerging (Shin and Schachtman, 2004; Amtmann

et al., 2005; Shin et al., 2005; Schachtman and Shin, 2006;

Amtmann and Armengaud, 2007; Pandey et al., 2007; Jung

et al., 2009) but we still lack essential information about

the signaling pathways that integrate adaptive responses to

K-deficiency in the leaves.

Previous microarray analysis of Arabidopsis thaliana plants

subjected to changes in external K supply indicated that the

phytohormone jasmonic acid (JA) could also be involved in

plant responses to K-deficiency (Armengaud et al., 2004). K-

responsiveness at the transcript level was found for enzymes

involved in JA biosynthesis (e.g. lipoxygenase, LOX2) and

known targets of JA-signaling (e.g. vegetative storage protein,

VSP2; see Figure 3 in Armengaud et al., 2004). A search with

Genevestigator (Zimmermann et al., 2004) shows that most

of these genes respond also to treatments with methyl-

jasmonate (MeJA) or the JA precursor OPDA (see Supplemental

Figure A in SI4). The transcriptional profile suggested a revers-

ible increase in JA levels during K-deficiency (Amtmann et al.,

2004), and this was subsequently confirmed by others (Cao

et al., 2006). JA is known to integrate plant responses to de-

velopmental and environmental cues, such as senescence,

wounding, and defense (Creelman and Mullet, 1997), but

had not previously been linked to nutrient stress. From the

transcript profiles and the existing knowledge of JA-

dependent processes, we developed a model in which JA links

a K-deficiency signal to a number of physiological responses

(see Figure 5 in Armengaud et al., 2004), including growth in-

hibition (Staswick et al., 1992), nutrient recovery from senes-

cent tissues (He et al., 2002), production of organic cations

(Perez-Amador et al., 2002), as well as control of ion transport

and stomatal closure (Evans, 2003; Munemasa et al., 2007).

While this scheme provided a useful working model to test

possible roles of JA in plant adaptation, it lacked direct

evidence for JA-dependence of the underlying transcript

responses to K.

The JA-signaling pathway involved in responses to MeJA

treatment, wounding and biotic stress has been studied exten-

sively (Balbi and Devoto, 2008). A central role was assigned to

COI1, a F-box protein that determines the substrate specificity

of the E3 ubiquitin ligase SCFC�I1 complex (Xie et al., 1998;

Devoto et al., 2005; Devoto and Turner, 2005; Yan et al.,

2009). This complex targets proteins that act as repressors of

JA-induced transcriptional responses for degradation, and

thus constitutes a central component of JA-signaling

(Staswick, 2008). Recently, it was shown that COI1 itself is a re-

ceptor for Ile-JA (Yan et al., 2009).

In this study, we have used microarrays to evaluate which

transcriptional responses ofA. thaliana plants to varying exter-

nal K supply require the presence of a functional COI1 gene by

comparing transcriptional responses in wild-type with those in

coi1-16 mutants. Clearly, microarray analysis can only be a first

step towards unraveling the role of COI1 in the complex reg-

ulatory network underlying plant responses to K. Neverthe-

less, the analysis clearly showed that the number of genes

responding to K-treatment was reduced in coi1-16 mutants.

Based on a quantitative comparison of transcript changes be-

tween wild-type and coi1-16 plants K-responsive genes were

assigned into four classes of transcript profiles with respect

to external K supply and COI1-dependence. While many genes

responded to K in a COI1-dependent manner, the function of

COI1 in plant adaptation to K-stress seems to be redundant be-

cause coi1-16 mutants are not affected in their growth under

long-term K-starvation. However, experiments with herbivo-

rous insects indicate that a necessary function of COI1 in low K

is apparent when K-deficiency is accompanied by biotic stress.

RESULTS

Physiological and Developmental Phenotype of coi1-16

Plants on Low K

To investigate the role of COI1 in plant responses to K-

deficiency, we analyzed the phenotype of coronatine-insensi-

tive (coi) 1–16 mutants (Ellis and Turner, 2002). There was no

indication that coi1-16 plants were more severely affected

by K-starvation than wild-type plants. The relative reduction

in fresh weight caused by low K was even slightly less in

coi1-16 mutants than in wild-type (Table 1). No significant dif-

ferences between K-deficient wild-type and coi1-16 mutant

plants were detected concerning water or K content (Table

1). However, coi1-16 mutants flowered earlier than the wild-

type in control medium, and this phenotype was enhanced

Table 1. Fresh Weight, Water Content, and Leaf K-Concentration
in Wild-Type and coi1-16 Mutants.

Fresh weight
(% control) wt coi1-16

K-deficiency3 45.3 6 5.2 55.1 6 0.8 [0.1]

K re-supply4 104.4 6 5.3 106.2 6 4.7 [0.4]

Water content (%) wt coi1-16

Control plants 92.7 6 0.4 92.4 6 0.2 [0.4]

K-deficient 90.8 6 0.6 90.5 6 0.3 [0.4]

K re-supplied 91.1 6 0.2 91.4 6 0.2 [0.1]

K-concentration (% DW) wt coi1-16

Control plants 5.9 6 0.5 5.3 6 0.1 [0.2]

K-deficient 1.1 6 0.1 1.0 6 0.1 [0.4]

K re-supplied 2.2 6 0.3 2.3 6 0.1 [0.4]

Averages1 6 standard errors and p-values2.
1 Averages of six individual plant shoots from three plant batches
(n = 18 6 SE).
2 Testing for a difference between mutant and wt.
3 Control plants were grown in K-sufficient medium.
4 Control plants were re-supplied with K-free medium.

Armengaud et al. d COI1-Dependent Responses to Potassium | 391

 at G
lasgow

 U
niversity Library on A

pril 6, 2010 
http://m

plant.oxfordjournals.org
D

ow
nloaded from

 

Supplemental Figure A
Supplemental Figure A
http://mplant.oxfordjournals.org


on low K (Figure 1). While wild-type plants flowered approx-

imately 10 d earlier in low K than in control medium, coi1-16

plants flowered more than 20 d earlier in low K than in control

medium.

Reduced Number of K-Responsive Transcripts in coi1-16

Plants

To investigate the requirement of a functional JA-COI1-

signaling pathway for transcriptional responses to K, we re-

peated microarray experiments previously carried out with

wild-type plants (Armengaud et al., 2004) with coi1-16 mutant

plants. As before, two treatments were applied (Armengaud

et al., 2004). In a long-term-starvation experiment, plants

were grown from germination for 2 weeks on a medium

that was not supplied with K (‘K-free’ medium; see Methods).

In short-term re-supply experiments, K-starved plants were

supplied with K (or K-free medium as control) for 6 h. Shoot

material was harvested from three separately grown

plant batches. RNA was isolated, labeled, and hybridized to

A. thaliana microarrays (University of Arizona) as before.

For each treatment, genes were ranked in two lists (one for

up and one for down-regulation) according to the strength

and significance of their response across the replicate experi-

ments using Rank Products (Breitling et al., 2004). Detailed in-

formation on all genes that showed K-dependent transcript

changes in coi1-16 is provided in the Supplementary Informa-

tion SI1. As expected, if JA plays an important role in K-signal-

ing, the total number of K-responsive genes was smaller in

coi1-16 than in wild-type plants (Table 2). The effect was par-

ticularly evident for genes up-regulated during K-starvation

and down-regulated upon K re-supply, which was indeed

the transcriptional profile most clearly related to JA in wild-

type plants (Armengaud et al., 2004).

‘Loss’ and ‘Gain’ of Transcriptional Regulation by K in coi1-

16 Mutants

For comparison of transcript changes in response to the K

treatments between wild-type and coi1-16 genotypes, we

employed an algorithm that was previously developed by

our group to provide a means for quantitative and statistically

testable two-factor comparison, in this case nutrient supply

(factor 1) and genotype (factor 2). Vector Analysis (Breitling

et al., 2005) has several advantages over other methods for

comparative microarray data analysis. In particular, it does

not require pre-assignment of transcripts into K-‘regulated’

and ‘non-regulated’ genes, thereby avoiding wrong interpre-

tation of transcript changes lying closely at either side of a cut-

off value (e.g. 1.9-fold and 2.1-fold) as being ‘different’, or of

those lying above the cut-off but displaying large differences

(e.g. two-fold and 20-fold) as being ‘the same’.

For each gene, fold-changes of transcript levels measured in

coi1-16 were plotted against wild-type fold-changes (nine

pair-wise comparisons from three replicates). Based on the di-

rection of the resulting sum vector, the obtained transcrip-

tional responses were assigned into four main classes

(Figure 2A), namely ‘same regulation’ (up or down-regulated

in both genetic backgrounds), ‘loss of regulation’ (up or down-

regulated in wild-type but unchanged in coi1-16), ‘gain of reg-

ulation’ (unchanged in wild-type but up or down-regulated in

coi1-16), and ‘opposite regulation’ (up-regulated in wild-type

and down-regulated in coi1-16 or vice versa). Statistical eval-

uation of the transcript behavior was based on three param-

eters: the average length of the replicate vectors (l) as

a measure of overall strength of the response, the length of

the sum vector (p) as a measure of the consistency of the re-

sponse across replicates, and the angle between the sum-vec-

tor and the closest prototypic vector (a) as a measure of the

clarity of the response. Figure 2A shows the relative number

of genes identified for each class after applying a common

set of statistical constraints (see Methods). The analysis was car-

ried out separately for long-term K-starvation and short-term

K-re-supply.

Interestingly, the effect of COI1 disruption on K-

dependent transcriptional changes differed considerably be-

tween the two K treatments. In response to K re-supply, most

of the transcripts showed either the same regulation in the
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Figure 1. Onset of Flowering in a Population of Wild-Type and coi1-
16 A. thaliana Plants.

Plants were grown hydroponically in control or low-K medium. At
each time point, the number of plants that flowered was counted.
For each genotype and condition, the time point at which 50% of
the plants flowered is indicated with a dashed line.

Table 2. Numbers of K-Responsive Genes in Wild-Type (wt) and
coi1-16 Mutant Plants

K-deficiency (14 d) K re-supply (6 h)

Down Up Down Up

FDR1(%) wt coi1-16 wt coi1-16 wt coi1-16 wt coi1-16

,0.01 1 0 19 5 3 1 4 3

,0.1 8 2 45 19 12 2 13 17

,1 17 21 99 51 56 10 50 86

1 False discovery rate.
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two genotypes (56%) or a loss of K-dependence in coi1-16

mutants (36%). By contrast, after long-term starvation, only

15% of all K-regulated genes showed the same response in

coi1-16 and wild-type, while the majority of transcripts

(65%) displayed changes in coi1-16 but not in wild-type

plants (‘gain of regulation’). Figure 2B shows examples of

transcriptional profiles represented in the different regula-

tory classes. All genes assigned to a particular regulatory class

are listed in Tables 3 (K-starvation) and 4 (K re-supply), and

their transcriptional profiles are presented in the Supplemen-

tary File SI2.

Many genes were quickly down-regulated upon re-supply

of K in the wild-type (Armengaud et al., 2004). This response

was significantly attenuated in coi1-16 mutants in the case of

at least 45 genes (Table 4 and Supplementary File SI2), includ-

ing vegetative storage protein VSP2 (At5g24770), the cyto-

chrome P450 CYP79B3 (At2g22330, involved in glucosinolate

production (Hull et al., 2000), and a number of myrosinase-

associated and myrosinase-binding proteins (e.g. MBP1,

At1g52040), as well as several stress and defense-related tran-

scripts such as the dehydration-responsive NAC transcription

factor RD26 (At4g27410), an aspartyl protease (At1g79720),

Figure 2. Effect of COI1 on K-Dependent
Gene Expression.

(A) Comparison of transcriptional profiles
between wild-type and coi1-16 mutant
plants. The scheme on the left shows the as-
signment of sum vectors obtained by Vector
Analysis into regulatory classes. For each
gene, fold-changes of transcript levels mea-
sured in coi1-16 in response to K-starvation
or K re-supply are plotted against the re-
spective wild-type fold-changes resulting
in nine vectors (from three replicate experi-
ments). The direction of the sum vector
allows assignment of the obtained tran-
scriptional responses into four regulatory
groups, namely ‘same regulation’ (green),
‘loss of regulation’ (yellow), ‘gain of regu-
lation’ (red), and ‘opposite regulation’
(blue). Prototypic sum vectors ideally repre-
senting each regulatory class are drawn.
Genes with sum vectors in gray areas were
excluded from further analysis based on in-
consistency of the response or ambiguity of
the classification. The chart on the right
shows the relative number of genes identi-
fied for each class (same color-coding as on
the left) after applying a common set of sta-
tistical constraints (see Methods). Upper
bar: K-starvation (104 transcripts in total).
Lower bar: K re-supply (129 transcripts in
total). For individual genes, see Tables 3
and 4, and SI2.
(B) Examples of expression profiles within
the four regulatory classes. Transcripts were
identified as belonging to a particular reg-
ulatory class (same color coding as in (A))
for K-starvation, re-supply, or both treat-
ments. R1–R3 denote replicate experiments
of the same treatment, fold-changes are
given in boxes, up-regulation is shown in
pink, down-regulation in green.
(C) Functional categories of genes display-
ing loss or gain of regulation by K in
coi1-16 mutants. For individual genes, see
SI2. Note that defense-related genes were
not represented among genes that gained
responsiveness to K in coi1-16.
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Table 3. Transcriptional Response in coi1-16 Mutants Compared to wt1: K-Starvation

AGI Name Description
Statistics2 Average fold change3

a l p wt coi

LOSS OF REGULATION

At1g26420 BBE FAD-linked oxidoreductase family 2.1 0.6 0.0 1.8 1.0

At4g15100 SCPL30 Serine carboxypeptidase S10 family 5.0 0.5 0.1 1.9 1.1

At5g24420 6PGL 6-phosphogluconolactonase-like 8.1 1.7 0.0 5.2 1.3

At1g76790 O-methyltransferase, family 2 9.2 0.5 0.3 1.7 0.9

At4g08870 ARGAH2 Putative arginase 9.2 1.2 0.0 3.6 1.2

At1g04710 Putative acetyl-CoA acyltransferase 9.4 0.7 0.4 2.0 1.1

At5g05210 Putative protein 12.3 0.8 0.2 2.3 1.2

At1g26400 FAD-linked oxidoreductase family 12.5 1.1 0.5 2.7 1.2

At2g39030 Expressed protein 12.7 0.9 0.4 2.7 1.2

At4g24350 Putative protein 12.9 0.6 0.6 1.6 0.9

At2g39330 Putative myrosinase-binding protein 1.2 1.2 0.0 3.1 1.0

At5g24770 VSP2 Vegetative storage protein 2 1.6 1.7 0.0 6.1 0.9

At5g44420 PDF1.2 Plant defensin protein 2.7 1.1 0.4 5.9 1.1

At1g79720 Putative aspartyl protease 4.1 0.8 0.2 2.1 1.1

At2g26010 PDF1.3 Plant defensin protein, putative 4.8 1.5 0.0 5.6 1.2

At5g24780 VSP1 Vegetative storage protein 1 6.8 2.3 0.0 10.2 1.3

At2g43530 Putative trypsin inhibitor 8.7 0.6 0.0 1.8 1.1

At5g28510 Glycosyl hydrolase family 1 4.5 2.1 0.0 7.6 1.2*

At1g52400 BG1 Glycosyl hydrolase family 1 10.3 2.1 0.3 8.7 1.5

At4g30620 Putative protein 4.5 0.7 0.4 2.3 1.0

At2g23440 Unknown protein 5.2 1.1 0.2 3.2 1.1

At5g52110 Putative protein 10.8 0.7 0.6 2.0 1.2

GAIN OF REGULATION

At5g61590 ERF/AP2/B3 Ethylene responsive element binding 1.6 0.5 0.2 1.0 0.6

At3g52270 Transcription initiation factor IIF 3.9 0.7 0.1 1.0 0.6

At5g26930 GAtA zinc finger protein 10.9 0.6 0.2 0.9 0.6

At3g61830 ARF18 Auxin response factor-like protein 14.3 0.7 0.4 0.8 0.4

At3g45390 LRK1 Receptor-like protein kinase 0.6 0.5 0.5 1.0 0.6

At1g10660 Unknown protein 0.6 0.5 0.2 1.0 0.6

At1g25390 Wall-associated kinase, putative 2.2 0.8 0.8 1.0 0.5

At3g08510 PCL2 Phospholipase C 2.3 0.5 0.1 1.0 0.7

At4g39890 RABH1C GTP-binding protein, putative 2.5 0.8 0.2 1.0 0.5

At1g11350 Serine/threonine kinase, putative 2.5 0.5 0.4 1.0 0.7

At4g19110 Kinase-like protein 3.6 0.6 0.5 1.0 0.5

At2g29800 Hypothetical protein 5.5 0.6 0.0 1.1 0.6

At4g23190 CRK11 Serine/threonine kinase-like protein 6.8 0.7 0.2 1.1 0.6

At4g13490 Putative protein 13.4 0.6 1.0 0.9 0.6

At3g61260 Putative DNA-binding protein 2.6 0.6 0.6 1.0 0.6

At4g00850 GIF3 A. thaliana cDNA T45454 2.7 0.6 0.1 1.0 0.6

At5g24490 30S Putative protein 5.3 1 0.4 1.1 0.5

At1g13270 MAP1C Methionine aminopeptidase I 1.2 0.6 0.9 1.0 0.6

At5g54190 PORA Protochlorophyllide oxidoreductase 2.8 1 0.3 1.1 0.4

At3g29320 Glucan phosphorylase, putative 3.7 0.5 0.2 1.0 0.6

At5g28840 GME Epimerase/dehydratase-like protein 3.8 0.6 0.6 1.0 0.6

At1g21100 O-methyltransferase 1, putative 4.9 1 0.6 0.9 0.4

At4g27440 PORB Protochlorophyllide reductase 5.4 0.9 0.1 1.1 0.4
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Table 3. Continued

AGI Name Description
Statistics2 Average fold change3

a l p wt coi

At1g61520 LHCA3 Light-harvesting chlorophyll a/b 6.2 0.5 0.3 0.9 0.6

At1g09350 Putative galactinol synthase 6.6 0.7 0.2 1.0 0.6

At3g19820 DWF1 Cell elongation protein, Dwarf1 9.8 0.7 0.3 0.9 0.6

At5g65780 Branched-chain aa aminotransferase 12.2 0.5 0.5 1.1 0.7

At4g08670 Putative lipid transfer protein 14.9 0.5 0.9 0.9 0.6

At3g23175 Expressed protein 0.1 0.6 0.7 1.0 0.6

At1g06460 ADC31.2 Heat shock protein, putative 9.2 0.7 0.7 1.1 0.5

At4g21580 NADPH quinone oxidoreductase 11.8 0.5 0.6 1.1 0.7

At4g35770 Senescence-associated protein 1 13.2 0.7 0.7 1.2 0.5

At3g23920 BMY7 Glycosyl hydrolase family 14 0.3 0.5 0.2 1.0 0.6

At1g47705 F16N3.33, putative peroxidase 5.2 0.6 0.3 1.0 0.6

At2g16890 Putative glucosyltransferase 9 0.8 0.3 1.1 0.5

At3g08670 Hypothetical protein 12.3 0.7 0.1 1.2 0.5

At5g55230 MAP65-1 Putative protein 9.4 0.6 0.4 0.9 0.6

At2g24710 GLR2.3 Putative ligand-gated ion channel 4.7 0.6 0.8 1.0 0.6

At3g46560 TIM9 Small zinc finger-like protein TIM9 6.4 0.6 0.4 1.1 0.6

At2g28180 AtCHX8 Hypothetical protein 8.8 0.6 0.9 0.9 0.6

At4g18200 Putative protein 10.7 0.9 0.4 0.9 0.5

At2g41560 Potential Ca2+-ATPase, isoform 4 13.1 0.5 0.8 0.9 0.6

At2g29680 CDC6 Putative CDC6 protein 2.9 0.8 0.0 1.0 0.5

At3g57785 Expressed protein 0.4 0.8 0.2 1.0 0.5

At1g17690 Expressed protein 1 1 0.2 1.0 0.4

At1g24060 Hypothetical protein 2.2 0.5 0.8 1.0 0.6

At3g42190 Putative protein 2.9 0.6 0.0 1.0 0.6

At1g53870 Expressed protein 4 0.9 0.0 1.1 0.4

At3g24250 Hypothetical protein 5.1 0.7 0.1 1.1 0.5

At1g73140 Hypothetical protein 6 0.5 0.6 1.1 0.6

At2g15890 Expressed protein 6.5 1.3 0.6 1.1 0.4

At1g78460 Hypothetical protein 9.6 0.5 0.9 1.1 0.6

At1g80720 Expressed protein 10.4 0.7 0.3 1.1 0.5

At3g19460 Expressed protein 11.2 0.8 0.2 0.8 0.5

At2g31110 Hypothetical protein 14.8 0.6 0.2 1.2 0.6

At4g00150 SCL6 Scarecrow-like 6 (SCL6) 10.7 0.5 1.0 0.9 1.7

At5g10380 Putative protein 10.8 1 0.6 1.3 2.9

At3g42270 Putative protein 14 0.5 0.2 1.1 1.6

At5g44390 BBE FAD-linked oxidoreductase family 11 0.6 0.0 1.1 1.7

At2g17480 AtMLO8 Similar to Mlo proteins H. vulgare 10.8 0.5 0.6 1.1 1.7

At2g43570 Glycosyl hydrolase family 19 5.6 0.6 0.8 1.1 1.7

At4g08410 Extensin-like protein 14 0.6 0.1 1.1 1.6

At1g76930 AtEXT4 Expressed protein 14.7 0.7 0.5 1.2 1.8

At5g17760 BCS1-like protein 0.9 0.7 0.8 1.0 2.0

At3g26470 Expressed protein 2.1 0.6 0.9 1.0 1.8

OPPOSITE REGULATION

At3g47340 ASN1 Asparagine synthetase 1 1.2 0.6 2.3 0.4

SAME REGULATION

At3g60390 HAT3-TF Homeobox-leucine zipper protein 7.5 0.6 0.5 0.7 0.7

At1g26680 B3-TF Hypothetical protein 7.8 1.7 0.3 0.4 0.3

Armengaud et al. d COI1-Dependent Responses to Potassium | 395

 at G
lasgow

 U
niversity Library on A

pril 6, 2010 
http://m

plant.oxfordjournals.org
D

ow
nloaded from

 

http://mplant.oxfordjournals.org


and a disease resistance protein (At3g25020, Yamaguchi-

Shinozaki et al., 1992). COI1-dependence was also found for

down-regulation of genes encoding the cation co-transporter

CAX7 (At5g17860), several metabolic enzymes (ARGAH2,

At4g08870; MGD3, At2g11810; PEPCK, At4g37870; GSTU4,

At2g29460), as well as regulatory proteins (putative caltracin

At2g46600, serine threonine protein kinase At5g15080, pro-

tein phosphatase 2C At5g59220, growth regulating factor

AtGRF2, At4g37740; Kim et al., 2003). Up-regulation of

AGP17 (At2g23130) encoding an arabinogalactan protein

(Sun et al., 2005) and an acyl-CoA synthetase-like protein

(At2g17650) by K re-supply was also lost in the coi1-16 mutant.

By contrast, the response to K of ADC2 (At4g34710, SPE2),

encoding arginine decarboxylase required for polyamine bio-

synthesis, was unchanged in coi1-16, despite the fact that

ADC2 expression has been reported to be JA-dependent

(Perez-Amador et al., 2002). This confirms the notion that

JA also employs COI1-independent-signaling pathways

(Devoto et al., 2005).

During long-term starvation (Table 3 and Supplementary File

SI2), ‘loss of regulation’ in coi1-16 plants was again apparent for

well known downstream targets of JA that were up-regulated

in wild-type plants, namely VSP1 (At5g24780), PDF1.2a

(At5g44420), and PDF1.3 (At2g26010 (Staswick, 1984; Penninckx

et al., 1998). However, in this experiment, the majority of genes

‘gained’ K responsiveness in coi1-16 (unchanged in wt but up or

down-regulated in coi1-16; Figure 2A). ‘Gain of regulation’ was

displayed by genes encoding transcription factors (e.g. ethyl-

ene-responsive ERF, At5g61590; Nakano et al., 2006), and

auxin-responsive ARF18, At3g61830 (Okushima et al., 2005),

and regulatory proteins (e.g. RABH1C, At4g39890, and PLC2,

At3g08510; Otterhag et al., 2001; Vernoud et al., 2003), as well

as metabolic enzymes (e.g. BMY7, At3g23920, and MAP1C,

At1g13270; Ross et al., 2005; Sparla et al., 2006) and transporters

(e.g. GLR2.3, At2g24710, and ACA4, At2g41560; Geisler et al.,

2000).

‘Gain of Regulation’ in coi1-16 Mutants under Long-Term

K-Stress Excludes Defense-Related Genes

The large number of ‘gain-of-regulation’ transcripts in long-

term-starved coi1-16plants suggests that if given enough time,

the mutants initiate new responses to K-stress. Since some of

these might compensate for the lack of JA-related responses,

their functional spectrum could provide a clue to the physio-

logical role of JA in plant adaptation to low K. We therefore

compared predicted functions of genes ‘gaining’ responsive-

ness during long-term starvation with those of genes display-

ing ‘loss of regulation’ upon short-term K re-supply (likely to

be direct targets of JA-signaling). Although there was no ev-

idence for gene-by-gene replacement (e.g. replacement of one

family member by another), similar functional categories were

represented by ‘loss’ and ‘gain-of-regulation’ genes, suggest-

ing that the latter may serve a compensatory role in coi1-16

mutants (Figure 2C and Supplementary File SI2). The only func-

tional category represented among ‘loss-of-regulation’ but

not among ‘gain-of-regulation’ genes was ‘defense’. The fact

that COI1-dependent induction of defense-related genes

could be lost without causing a physiological phenotype indi-

cates that it is not required for plant adaptation to K-

deficiency under sterile laboratory conditions.

Table 3. Continued

AGI Name Description
Statistics2 Average fold change3

a l p wt coi

At2g42600 PPC2 Phosphoenolpyruvate carboxylase 0.6 0.6 0.0 0.7 0.7

At4g04955 ALN Expressed protein 9.7 0.6 0.2 0.6 0.7

At5g40780 LHT1 Amino acid permease 12.4 0.8 0.3 0.7 0.5

At3g04070 NAM-TF NAM-like protein 6.7 0.5 0.8 1.5 1.4

At3g15950 TSA1-Like Unknown protein 13.4 0.6 0.3 1.8 1.4

At3g55190 Lipase-like protein 12.1 0.5 0.5 1.3 1.6

At4g37990 ELI3-2 Cinnamyl-alcohol dehydrogenase 0.7 0.6 0.5 1.5 1.5

At2g37770 Aldo/keto reductase family 1.5 0.7 0.8 1.8 1.6

At1g61800 GPT2 Gluc-6-P/P-translocator precursor 4.3 1.3 0.1 2.8 2.4

At5g06320 NHL3 Harpin-induced protein-like 1.3 0.9 0.7 1.8 1.9

At2g43510 TI1 Putative trypsin inhibitor 5.6 1.1 0.3 2.2 1.9

At3g51860 CAX3 Ca2+/H+-exchanging protein-like 6.6 1.3 1.0 2.5 2.8

At1g54570 Expressed protein 8.1 0.8 0.9 1.6 1.9

At1g19180 JAZ1 Expressed protein 14.1 1.0 0.7 2.3 1.7

1 Regulatory classes determined with vector analysis (Breitling et al., 2005).
2 Statistical parameters: angle (a), average vector length (l), consistency p-value in % (p).
3 From three replicate experiments.
* Note that this gene is down-regulated by low K in pen2 (see SI5).
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Table 4. Transcriptional Response in coi-16 Mutants Compared to wt1: K Re-Supply.

AGI Name Description
Statistics2 Average fold change3

a l p wt coi

LOSS OF REGULATION

At4g27410 RD26 Putative protein 1.8 0.6 0.0 0.6 1.0

At3g28650 CHP-rich zinc finger protein 2.4 0.7 0.3 0.6 1.0

At4g37740 GRF2 Putative protein 4.8 0.7 0.3 0.5 1.0

At2g04840 Hypothetical protein 0.1 0.8 0.4 0.5 1.0

At4g22250 Hypothetical protein 8.8 0.5 0.7 0.6 1.1

At5g15080 Serine/threonine protein kinase 12.0 0.8 0.7 0.5 0.9

At5g59220 PP2C Protein phosphatase 2C 13.1 0.7 0.0 0.5 0.9

At2g46600 Putative caltractin 14.2 0.9 0.2 0.4 0.8

At4g03920 Putative protein 2.8 0.6 0.6 0.6 1.0

At3g44860 Methyltransferase-related 2.3 1.0 0.3 0.3 1.1

At4g08870 ARGAH2 Putative arginase 7.2 0.9 0.2 0.4 0.9

At4g37870 PEPCK Phosphoenolpyruvate carboxykinase 8.0 0.7 0.9 0.5 0.9

At1g26570 UGD1 UDP-glucose dehydrogenase 8.7 0.7 0.4 0.5 0.9

At2g11810 MGD3 Monogalactosyldiacylglycerol synth 8.9 0.9 0.0 0.4 0.9

At3g44870 Methyltransferase-related 13.5 0.8 0.1 0.4 1.2

At2g22330 CYP79B3 Putative cytochrome P450 14.2 0.6 0.0 0.5 0.9

At1g54020 Myrosinase-associated protein 1.9 1.1 0.0 0.3 1.0

At1g52040 MBP1 Myrosinase-binding protein 5.4 0.9 0.1 0.5 1.1

At5g38540 Myrosinase binding protein-like 9.8 0.8 0.2 0.5 0.9

At3g21380 Unknown protein 11.9 0.5 0.3 0.6 0.9

At5g61820 Putative protein 12.5 0.5 0.6 0.6 0.9

At5g24770 VSP2 Vegetative storage protein 2 3.2 0.9 0.2 0.4 1.0

At1g64160 Disease resistance response protein 5.8 0.6 0.3 0.6 1.0

At1g72260 Thi2.1 Thionin 6.0 0.7 0.2 0.5 0.9

At2g43530 Putative trypsin inhibitor 9.6 0.5 0.3 0.6 0.9

At1g20440 Hypothetical protein 14.0 0.9 0.6 0.4 0.8

At3g25020 Disease resistance protein family 14.5 0.7 0.2 0.5 0.9

At5g57625 Putative pathogenesis-related protein 1.2 0.6 0.7 0.6 1.0

At2g29460 GSTU4 Glutathione transferase, putative 2.9 0.6 0.0 0.5 1.0

At1g79720 Putative aspartyl protease 6.8 0.6 0.3 0.6 1.1

At2g33380 RD20 RD20 protein 8.7 0.6 0.0 0.5 0.9

At1g11580 PME Pectin methylesterase, putative 1.2 0.8 0.0 0.5 1.0

At1g24070 CSLA10 Glucosyltransferase, putative 11.5 0.8 0.0 0.5 0.9

At2g43570 Glycosyl hydrolase family 19 12.1 0.5 0.9 0.6 0.9

At2g17500 Expressed protein 3.1 0.6 0.0 0.6 1.0

At5g17860 CAX7 Putative sodium–calcium exchanger 14.3 0.5 0.4 0.6 0.9

At1g70350 Hypothetical protein 1.1 0.5 0.7 0.6 1.0

At1g17620 Expressed protein 1.4 0.5 0.4 0.6 1.0

At5g66650 Putative protein 1.7 0.5 0.9 0.6 1.0

At1g74800 Hypothetical protein 2.6 0.7 0.2 0.5 1.0

At3g53630 Putative protein 2.8 0.5 0.3 0.6 1.0

At4g18610 Putative protein 8.4 1.0 0.3 0.3 0.9

At1g17380 Expressed protein 8.7 0.9 0.4 0.4 0.9

At1g70700 Hypothetical protein 12.7 0.7 0.3 0.6 1.2

At1g06140 Hypothetical protein 14.4 0.5 0.6 0.6 1.1

At2g17650 Acyl-CoA synthetase like protein 3.1 0.8 0.2 2.2 1.0
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Table 4. Continued

AGI Name Description
Statistics2 Average fold change3

a l p wt coi

At2g23130 AGP17 Arabinogalactan-protein (AgP17) 11.0 0.6 0.1 1.8 1.1

At4g23820 Polygalacturonase, putative 11.3 0.5 0.7 1.6 1.1

At2g26520 Expressed protein 14.7 1.0 0.1 2.7 1.3

GAIN OF REGULATION

At1g26680 B3-TF Hypothetical protein 2.4 1.1 0.3 1.1 0.3

At4g09760 Choline kinase gmCK2p-like protein 6.9 0.5 0.3 0.9 0.6

At3g61830 ARF18 Auxin response factor-like protein 12.1 0.6 0.1 0.9 0.5

At1g49500 Expressed protein 9.5 0.6 0.8 1.1 1.8

SAME REGULATION

At1g63840 Putative RINg zinc finger protein 1.2 0.5 0.2 0.7 0.7

At1g67970 HSFA8 Heat shock transcription factor 6.1 0.5 0.2 0.7 0.7

At2g17040 NAM-TF NAM (no apical meristem)-like 8.6 0.5 0.6 0.6 0.7

At5g58350 WNK4 MAP kinase 0.2 0.5 0.9 0.7 0.7

At2g41100 TCH3 Calmodulin-like protein 1.0 0.8 0.9 0.6 0.6

At1g08450 CRT3 Calreticulin, putative 4.6 0.6 0.8 0.7 0.7

At1g65800 ARK2 Receptor kinase, putative 7.2 0.6 0.3 0.7 0.7

At2g31880 Leucine-rich repeat protein kinase 12.4 0.7 0.4 0.6 0.7

At1g09070 SRC2 Expressed protein 14.7 1.0 0.8 0.4 0.6

At5g48660 Putative protein 9.6 0.5 0.6 0.7 0.8

At5g37600 GSR1 Glutamine synthetase 0.5 0.6 0.7 0.7 0.7

At4g34230 CAD5 Cinnamyl alcohol dehydrogenase 0.9 0.5 0.9 0.7 0.7

At3g14990 4-methyl-5(b-hydroxyethyl)-thiazole 3.4 0.6 0.1 0.7 0.7

At3g22890 APS1 ATP sulfurylase, putative 3.7 0.6 1.0 0.7 0.7

At5g64000 SAL2 3(2),5-bisphosphate nucleotidase 4.7 0.7 0.7 0.6 0.6

At4g05020 NDB2 A. thaliana cDNA W43435 6.4 0.8 0.6 0.6 0.6

At2g29370 Putative tropinone reductase 11.8 0.5 0.1 0.7 0.6

At5g19550 ASP2 Aspartate aminotransferase 2 12.6 0.5 0.8 0.8 0.7

At4g34710 ADC2 Arginine decarboxylase SPE2 9.9 1.7 0.2 0.3 0.4

At1g69930 GSTU11 Glutathione transferase, putative 4.3 0.5 0.9 0.7 0.7

At5g06320 NHL3 Harpin-induced protein-like 5.0 0.9 0.9 0.5 0.6

At1g11910 Putative aspartic proteinase 9.0 0.7 0.2 0.6 0.7

At1g01470 LEA14 Hypothetical protein 9.2 1.1 0.4 0.4 0.5

At3g25010 Disease resistance protein family 12.2 0.8 0.1 0.5 0.6

At3g10980 SAG20 Unknown protein 14.0 0.6 0.7 0.6 0.7

At3g52400 SYP122 Syntaxin SYP122 5.3 0.8 0.3 0.6 0.6

At1g19370 Expressed protein 7.1 0.6 0.4 0.6 0.7

At2g22500 Mitochondrial carrier protein family 8.5 0.6 0.4 0.6 0.7

At5g52760 Expressed protein; protein 9.9 0.5 0.6 0.7 0.6

At1g61800 GPT2 Gluc-6-P/P-translocator precursor 10.8 0.9 0.8 0.5 0.6

At5g39520 Expressed protein 10.9 0.6 0.6 0.7 0.7

At1g48610 Regulatory protein HAL3B 2.9 0.7 0.9 1.5 1.6

At3g60320 bZIP protein 11.1 0.6 0.5 1.4 1.7

At4g17980 NAM-TF NAM (no apical meristem)-like 11.5 0.5 0.7 1.3 1.6

At5g14260 Putative protein 2.1 0.5 0.8 1.4 1.5

At2g31680 RABA5D GTP-binding protein, putative 2.2 0.8 0.6 1.8 1.8

At4g03110 RNA-binding CELF protein, putative 5.3 0.6 0.1 1.4 1.6

At2g31010 Putative protein kinase 5.5 0.7 0.4 1.5 1.6
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Plants in Low-K Conditions Are Less Prone to Thrips Attack

The large number of defense-related genes induced by K-

starved A. thaliana plants raises the question whether in-

creased JA-production protects K-deficient plants against

additional biotic stress. Thrips (Frankliniella sp.) are among

the most vicious insect pests affecting cultivated plants. In a re-

cent study, it was shown that numbers and feeding of Frank-

liniella occidentalis on A. thaliana and Brassica rapa were

reduced by pre-treating plants with JA, whereas coi1-1 plants

were hypersensitive to thrips (Abe et al., 2009). We therefore

investigated whether K nutrition had an effect on thrips attack

of hydroponically grown A. thaliana plants and whether this

Table 4. Continued

AGI Name Description
Statistics2 Average fold change3

a l p wt coi

At5g24240 Ubiquitin 8.3 1.1 0.3 2.4 1.9

At4g00060 Hypothetical protein 10.9 0.6 0.8 1.4 1.6

At1g64940 CYP89A6 Cytochrome p450, putative 11.6 0.7 0.6 1.9 1.5

At5g23970 Acyltransferase family 12.8 0.7 0.8 1.8 1.5

At1g63290 D-ribulose-5-phosphate-3-epimerase 0.3 0.8 0.3 1.7 1.7

At4g25050 ACP4 Acyl carrier-like protein 6.2 0.8 0.9 1.6 1.8

At1g72610 GLP1 Germin-like protein 8.5 0.8 0.5 1.6 1.9

At5g65730 Xyloglucan endo-transglycosylase 13.3 0.6 0.8 1.6 1.4

At4g33970 Extensin-like protein; protein 13.9 0.7 0.4 1.7 1.4

At1g73840 Hydroxyproline-rich glycoprot 14.8 0.6 0.8 1.3 1.6

At3g26520 TIP1.2 Gamma tonoplast intrinsic prot 0.6 0.6 0.4 1.6 1.6

At3g16240 TIP2.1 Delta tonoplast integral protein 3.3 0.9 0.6 1.9 1.8

At1g49510 Unknown protein 0.0 0.5 0.1 1.4 1.4

At3g13720 PRA1 Expressed protein 0.5 0.5 0.5 1.4 1.5

At4g20260 Endomembrane-associated protein 1.1 0.6 0.4 1.6 1.6

At3g28460 Unknown protein 1.1 0.7 0.4 1.6 1.7

At3g07470 Expressed protein 1.3 0.7 0.1 1.7 1.7

At5g57320 Villin 4.0 0.7 0.4 1.7 1.5

At1g61740 Unknown protein 4.4 0.7 0.9 1.6 1.7

At5g18050 Auxin-induced protein-like 5.2 0.7 0.2 1.6 1.7

At3g52130 5B protein like protein 5.6 0.6 0.7 1.6 1.5

At5g14920 Putative protein 5.8 0.5 0.4 1.4 1.5

At3g13500 Hypothetical protein 5.8 0.6 0.3 1.4 1.6

At1g69040 ACR4 ACT Domain Repeat Protein 5.9 0.7 0.3 1.5 1.6

At2g46740 Hypothetical protein 6.8 0.9 0.8 1.8 2.1

At3g25930 Expressed protein 7.2 0.6 0.4 1.4 1.6

At4g24170 Putative protein 8.4 0.6 0.2 1.6 1.4

At3g63390 Putative protein 9.0 0.7 0.8 1.9 1.5

At5g64160 Expressed protein 10.5 0.5 0.3 1.4 1.5

At4g16830 Nuclear antigen homolog 11.0 0.7 0.4 1.5 1.8

At1g35617 Hypothetical protein 11.3 0.7 0.3 1.5 1.8

At1g68960 Hypothetical protein 11.7 0.6 0.3 1.4 1.8

At1g62510 Similar to 14Kd proline-rich 11.9 0.5 0.4 1.6 1.4

At1g75750 GASA1 Expressed protein 12.6 2.1 0.7 5.2 2.5

At5g52570 Putative beta-carotene hydroxylase 13.0 0.5 0.6 1.3 1.5

At5g13470 Putative protein 13.2 0.6 0.5 1.8 1.4

At2g45180 Expressed protein 13.6 1.1 0.8 2.7 1.8

At3g49900 Putative protein 14.9 0.6 0.4 1.4 1.6

1 Regulatory classes determined with vector analysis (Breitling et al., 2005).
2 Statistical parameters: angle (a), average vector length (l), consistency p-value in % (p).
3 From three replicate experiments.

Armengaud et al. d COI1-Dependent Responses to Potassium | 399

 at G
lasgow

 U
niversity Library on A

pril 6, 2010 
http://m

plant.oxfordjournals.org
D

ow
nloaded from

 

http://mplant.oxfordjournals.org


effect was dependent on COI1. Plants were initially grown in

K-sufficient control medium to eliminate any effects related to

plant size and leaf surface, subsequently exposed to a medium

lacking K to induce a JA response, and finally transferred to

a growth chamber infested with thrips (Frankliniella sp.;

Figure 3A). To quantify thrips attack, we counted insect bites,

visible as chlorotic spots on the leaves (Figure 3A). Numbers of

bites were assessed separately for leaves within three size clas-

ses. Wild-type and coi1-16 mutant plants in low-K and control

medium were grown in parallel to ensure identical thrips

exposure and accompanying conditions. Over an observation

time of 2 weeks, K-starved wild-type plants contracted signif-

icantly lower numbers of bites than K-sufficient plants,

independent of leaf size (Figure 3B). For coi1-16 plants,

thrips-inflicted damage was lethal within a few days (insets

in Figure 3A) in both control and low-K plants, and individual

bites could no longer be distinguished (Figure 3C). Mutants

deleted in CYP79B2 and B3, two genes required for the

(JA-dependent) production of indolic glucosiolates, showed

similar levels of thrips attack and a similar difference be-

tween K-sufficient and K-starved plants as wild-type plants

(Figure 3C), suggesting that neither the high susceptibility

of coi1-16 plants nor the low susceptibility of K-starved

wild-type plants were due to changes of indolic glucosinolate

levels.

DISCUSSION

Phenotype of coi1-16 Mutants on Low K

Despite the differences in gene expression between coi1-16

and wild-type plants on low K, there was no striking difference

in growth, water or K content. In agreement with this finding,

no genes encoding known K-transporters or regulators of

these featured among COI1-dependent K-responsive genes.

We conclude that JA/COI1-signaling does not play a major role

in regulating uptake or root-shoot allocation of K. However,

coi1-16 plants did flower earlier than wild-type plants, partic-

ularly on low K. In accordance with existing knowledge that (1)

JA is an important signal for senescence (Reinbothe et al.,

2009), (2) K-deficiency induces senescence and the expression

of senescence-related genes (Armengaud et al., 2004; Cao

et al., 2006), and (3) this induction is inhibited by salicylic acid

(probably through antagonistic function with JA), early flow-

ering in coi1-16 mutants could indicate defective nutrient re-

covery from senescent leaves, which is particularly important

under long-term nutrient shortage. The fact that wild-type

plants also flowered earlier in low-K conditions (albeit to

a lesser extent than coi1-16) supports a linkage between early

flowering and K-deficiency. This issue should be investigated in

the future by fine-mapping K-concentration in different tis-

sues and at different developmental stages in both genotypes.

Treatments and K Status of the Plants

As before, two treatments were applied to assess transcrip-

tional responses of the plants to external K supply. In

a long-term starvation experiment, plants were grown from

germination for 2 weeks on a medium that was not supplied

with K (but contained traces of K at the beginning of the ex-

periment; see Methods). This experiment was designed to re-

veal long-term adaptive responses of the plants to K-deficiency

but will also, to a minor extent, reflect secondary changes

caused by deficiency symptoms. We have reported before that

the K-starved plants had significantly lower root and shoot

Figure 3. K-Deficiency Reduced Thrips Damage on A. thaliana.

(A) Typical appearance of control (left) or K-starved (right) Arabi-
dopsis thaliana Col0 wild-type plants exposed to thrips (Frankli-
niella sp., middle inset, bar is 100 lm). Insect bites are visible as
white spots on the leaves of control plants. Bar = 1 cm.
(B) Numbers of insect bites on leaves of control (black bars) or K-
starved (white bars) wild-type plants. Forty plants were analyzed
for each condition. Average numbers of bites for different leaf sizes
(large: .25 mm2, medium: 10–25 mm2, small: ,10 mm2 leaf sur-
face) are shown. All differences are significant at p , 0.001 (t-test).
(C) Numbers of insect bites on leaves of control (black bars) or K-
starved (white bars) wild-type and mutant plants. Mutants were de-
fective for JA-dependent indolic gucosinolate production
(cyp79b2/b3) or JA-signaling through COI1 (coi1-16).
A color version of this figure is available from the Supplemental
Material (SI6).
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K-concentrations than the control plants but showed no visible

symptoms until day 12, probably due to effective K-uptake and

redistribution (Armengaud et al., 2004, 2009). Over the last 2 d

before harvest, the plants developed K-deficiency symptoms in

the form of leaf chlorosis, decrease in shoot growth rate, and

arrest of lateral root growth, indicating that whole-plant

K levels had reached a critical level. Indeed, cytoplasmic K in

epidermal root cells had fallen to low mM concentrations

(Armengaud et al., 2009). We also previously recorded changes

in the metabolite spectrum (especially with respect to reducing

sugars, organic acids, and glutamate/glutamine ratio) but not

the total protein or chlorophyll content (Armengaud et al.,

2009), suggesting that the plants had successfully adjusted

their growth, photosynthetic rate, and metabolism to the

limited nutrient supply (Amtmann and Armengaud, 2009;

Tschoep et al., 2009). A short-term K re-supply experiment

(6 h K re-supply to K-deficient plants) was designed to identify

early signals and responses directly linked to the K-stimulus.

As reported before, during this period of time, root K-

concentrations increased but there was no change in growth,

shoot K-concentration or visible symptoms (Armengaud et al.,

2004). The fact that many transcripts, metabolites and

enzymes displayed opposite changes in response to long-term

starvation and short-term re-supply (Armengaud et al., 2004,

2009) indicated not only that these changes were indeed di-

rectly related to the K supply, but also that the K-starved plants

were still capable of quickly reversing their responses to K-

deficiency. The experimental design also ensured that mea-

sured transcript responses were not linked to changes in other

ions in the medium, as these differed between the treatments

(Armengaud et al., 2004).

Genotypic Differences

To assess the dependency of transcript changes on a functional

JA-COI1-signaling pathway, we compared transcript profiles of

coi1-16 mutants to those previously obtained for Col0 wild-

type plants. It should be noted that coi1-16 mutants differ

from Col0 wild-type in two other genes: GL1 (Ellis and Turner,

2002) and PEN2 (Westphal et al., 2008). It could therefore be

possible that some of the identified differences between coi1-

16 and wild-type are in fact caused by gl1 or pen2. A previous

microarray study of A. thaliana plants subjected to MeJA, her-

bivorous insects, and wounding investigated the contribution

of gl1 to the gl1coi1 transcriptome (Reymond et al., 2004), and

found it to be generally small. Comparison of our data with

their data shows a good overlap not only between transcript

responses to K-treatments and herbivore attack, but also be-

tween COI1-dependence of these changes (Supplemental Ta-

ble SI3). For all genes that had significantly lower response

to both K and herbivores in the coi1 genotype than in the

wild-type (marked with ** in SI3), the difference between

gl1 mutant and wild-type (if any) was considerably smaller

than between gl1/coi1 mutant and wild-type, and can there-

fore be assigned to COI1. The good overlap between our

results and those from Reymond and colleagues (who used

a different coi1 mutant from the one used here) is particularly

reassuring in the light of the recent finding that the coi1-16

mutant contains a hitherto unidentified mutation in PEN2

(Westphal et al., 2008). PEN2 is a glycosyl hydrolase that con-

verts 4-methoxyindol-3-ylmethylglucosinolate to downstream

products with antifungal properties (Bednarek et al., 2009).

We carried out a qPCR analysis for a number of K-responsive

genes (selected for their COI1 (in-)dependence and possible re-

lation to glucosinolate biosynthesis in general and PEN2 in par-

ticular). As shown in Supplemental Figure SI4, in all cases but

one, the response to K was similar between pen2 mutants and

wild-type and different between pen2 and coi1-16 mutants

(Supplemental Figure SI5). The only gene for which a signifi-

cant effect of the pen2 mutation on its response to low K

was found was At5g28510, encoding a glucosyl hydrolase

(marked with * in Table 3) closely related to PEN2. The re-

sponse of another gene of the same family (BG1, AtAt1g52400)

did not differ between pen2 and wild-type. We conclude that

the effects of GL1 and PEN2 on K-responsiveness are minor

compared to COI1. Nevertheless, future studies investigating

specific genes listed in Tables 3 and 4 should confirm their

COI1 dependence in other coi1 lines.

Transcript Profiles Identify Known and Novel Targets of JA-

Signaling

A central role of JA-signaling through COI1 in plant responses

to varying K supply was apparent in the fact that the total

number of K-responsive transcripts was significantly smaller

in coi1-16 than in wild-type plants. Based on a quantitative

comparison of transcript changes between coi1-16 and wild-

type plants, we assigned all transcripts into four main catego-

ries, and those abiding to strict statistical constraints are shown

in Tables 3 and 4 (see Methods for statistical cut-offs). The ob-

servation that several known JA/COI1 targets had lost respon-

siveness to K-starvation (e.g. VSP1 and PDFs; Table 3) and/or K

re-supply (e.g. VSP2 and Thi2.1; Table 4) in coi1-16 validated

our experimental approach. We also explored how the tran-

scripts listed in Tables 3 and 4 responded to other conditions

using Genevestigator (Zimmermann et al., 2004). Most of the

‘loss-of-regulation’ transcripts but very few ‘same-regulation’

transcripts displayed a strong response to OPDA and MeJA

treatments (Supplemental Figure SI4, B–E). This adds further

support to the notion that the categories identified here sep-

arate well between genes that respond to K through the oxy-

lipin-COI1-signaling pathway and those that do not.

Particular suitability of the short-term K re-supply experi-

ment to identify novel K-dependent COI1 targets was evident

in the fact that the transcriptional profiles of coi1-16 plants

showed a clear separation between JA/COI1-dependent and

JA/COI1-independent K-regulated transcripts (Figure 2). More

than half of the genes that were previously identified as K-

regulated in the wild-type displayed the same response to

K re-supply in coi1-16 plants (Figure 2A), which indicates that

the loss of responsiveness in other genes was indeed due to

a lack of COI1 function rather than a general problem with
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transcriptional regulation. Novel targets of JA/COI-signaling

identified in the re-supply experiment (Table 4) include genes

with function in transport, primary metabolism, and cell wall

composition, which are likely to be related to previously

reported reversible changes in primary metabolism (pyruvate

kinase), membrane potential, and growth during plant adap-

tation to low K (Armengaud et al., 2009), as well as a number

of regulatory proteins (Table 4). Identification of genes that

were significantly independent of COI1 in their response to

K (‘same regulation’) are also interesting, as they will include

upstream components of the JA/COI1 pathway and/or compo-

nents of parallel signaling pathways. For example, we identi-

fied COI1-independent up-regulation by low K of JAZ1 (Table

3), a repressor of JA-dependent transcription that is regulated

by JA via protein degradation (Thines et al., 2007). Transcrip-

tional induction of JAZ1 is likely to exert a negative feedback

regulation during transient JA responses; however, fast induc-

tion of JAZ1 after wounding and herbivore attack is COI1-

dependent (Chung et al., 2008).

‘Gain’ of Regulation in coi1-16 Mutants during Long-Term

K-Deficiency

Long-term K-starvation produced very different transcript pro-

files. Here, the majority of genes ‘gained’ K-responsiveness in

the coi1-16background. In most cases, this involved a transcrip-

tional down-regulation that did not occur in wild-type plants.

A function of COI1 in repressing K-regulation of these genes is

unlikely, as such function should be similarly apparent during

short-term re-supply (as ‘gain of regulation’ with opposite

changes in the same transcripts), which was not the case. It

is more likely that the coi1-16 plants induce new responses

to K-starvation because they experience a different physiolog-

ical state under K-deficiency from wild-type plants. This raises

the question of whether the K-regulated genes in coi1-16

mutants functionally compensate for the lack of JA-mediated

responses, and thus account for the absence of a growth phe-

notype in low K. ‘Gain-of-regulation’ genes covered indeed

similar functional categories as direct COI1-targets identified

in the K re-supply experiment (e.g. metabolism, cell wall mod-

ification and transport; Figure 2C) and included a number of

ethylene and auxin-responsive genes, indicating that coi1-1

mutants mobilize alternative pathways.

Defense-related genes constituted the only functional

category of K-responsive genes that lost responsiveness to

K re-supply in coi1-16 but did not feature among ‘gain-of-

regulation’ transcripts in K-starved coi1-16 plants. Considering

that this class was the largest class of K-regulated genes in the

wild-type, it is surprising that the observed changes should

be unnecessary for plant adaptation to low K. One possible

explanation is that an increase in JA-mediated defense during

K-deficiency has evolved to counteract their increased suscep-

tibility to biological enemies (discussed below). In this case, the

real advantage of a JA/COI1 response to K-deficiency would

remain unnoticed in sterile laboratory conditions. In this con-

text, it is interesting that many of the transcripts identified by

Reymond et al. (2004) as regulated by herbivorous insects

(S. littoralis and P. rapa) also responded to at least one of

the K-treatments (Supplemental Table SI3). Considerably less

overlap was found between K and MeJA treatment or wound-

ing (Supplemental Table SI3).

‘Prophylactic’ Defense against Insects in K-Deficient

Plants?

Investigating the effect of the K-deficiency-induced rise in JA

on plant resistance against pathogens and pest is not an easy

undertaking, as K-deficiency causes several changes in the

plants that ease the attack (e.g. weakened skeleton and cell

wall), improve the feeding quality (e.g. higher content of

low-molecular sugars and nitrogen compounds), and increase

the relative damage (smaller leaf size) (Amtmann et al., 2008).

Even if partially offset by increased defense, one would there-

fore still expect to see more damage in K-deficient plants. We

tried to eliminate the above factors by growing the plants first

with sufficient K for a period of time before removing K from

the growth medium. This yielded plants that were comparable

in size but nevertheless induced a JA signal (enhanced LOX2

expression). After transfer to a thrips-infested growth cham-

ber, the low-K plants suffered considerably less damage from

the herbivorous insect than the control plants (Figure 3B). The

observations suggest that the main function of JA/COI1 in K-

deficient plants is to enhance their defense potential against

herbivorous insects and other biological enemies. Such ‘pro-

phylaxis’ could be advantageous, especially in small plants,

which cannot afford to loose a substantial proportion of their

leaf surface to herbivory. Unfortunately, insect damage of the

coi1-16-mutants was so rapid and devastating that it was im-

possible to measure quantitative differences between control

and K-deficient mutant plants. The difference in insect attack

between control and low-K wild-type plants is clearly not due

to JA-induced production of indolic glucosinolates (see up-

regulation of CYP79B in K-deficient plants, Table 3) because

it is still apparent in cyp79b2/b3 mutants that are defective

in this pathway (Mikkelsen et al., 2003). More detailed experi-

ments are now required to consolidate our hypothesis that

K-deficiency induces a ‘prophylactic’ defense response via JA

and COI1.

METHODS

Plant Material and Growth Conditions

Arabidopsis thaliana (Col0 wild-type or mutants coi1-16)

plants were grown on sterile vertical agar plates or hydropon-

ically as described previously (Maathuis et al., 2003;

Armengaud et al., 2004). The composition of the nutrient

media was (in mM) 1.25 KNO3, 0.5 Ca(NO3)2, 0.5 MgSO4,

0.625 KH2PO4, NaH2PO4, 2 NaCl in the control medium,

and 1.0 Ca(NO3)2, 0.5 MgSO4, 0.625 NaH2PO4, 1.375 NaCl in

the –K (‘K-free’) medium. Both media contained the following

micronutrients (in lM): 42.5 FeNaEDTA, 0.16 CuSO4, 45 H3BO3,

0.015 (NH4)6Mo7O24, 0.01 CoCl2, 0.38 ZnSO4, 1.8 MnSO4 (both
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media). Final concentrations of the altered ion in the two me-

dia, control (‘K-free’), were 1.875 (0) mM K, 0.5 (1) mM Ca2+,

1.25 (1) mM NO3
– and 2 (1.375) mM Cl–. Plates contained 70 ml

medium, supplemented with 3% sucrose and 1% agar (Type A,

Sigma, Poole, UK). This agar contains a small amount of K

(approx 80 lM), which is rapidly depleted by the growing

plants. Changes in root and shoot K contents over the course

of the long-term-starvation experiment and after K re-supply

have been documented before (Armengaud et al., 2004, 2009).

K re-supply to plants growing on plates with K-free medium

consisted in replacing the condensed solution at the bottom

of the Petri dishes with 5 ml K-free medium supplemented

with 10 mM KCl. As a control, K-free medium was given in-

stead. Plates were positioned vertically under a light source

(16 h/d at 100 lE) at a constant temperature of 22�C.

For thrips experiments, plants were grown hydroponically

in short days (9 h light at 200 lE) on control medium for 7 d

and subsequently exposed to K-free medium for 4 weeks

(control plants had a continuous supply of K) before being

transferred to a growth chamber infested with thrips

(Frankliniella sp.). Insect bites on leaves were counted

2 weeks later.

Microarray Experiments and Data Analysis

RNA extraction, reverse transcription, and direct Cy3 and Cy5

labeling of cDNA were performed as previously described

(Armengaud et al., 2004). Glass arrays spotted with the Arabi-

dopsis Genome Oligo Set version 1.0. (Qiagen) were obtained

from D. Galbraith (University of Arizona). Array preparation,

hybridization, washing, scanning (ScanArray Express scanner

and software suite, Perkin Elmer, Warrington, UK), and signal

quantification (QuantArray, Perkin Elmer, Warrington, UK)

were carried out as described previously (Armengaud et al.,

2004). Hybridization signals for control and treatment were

quantile-normalized (Bolstad et al., 2003). Genes were sorted

by their normalized expression ratio for each replicate in as-

cending and descending order. Rank products (RPs) across rep-

licates were calculated for each gene (Breitling et al., 2004).

Comparison between transcript changes in wild-type and

coi1-16 mutants was performed using vector analysis (Breitling

et al., 2005). For each gene expression, changes in the two ge-

netic backgrounds were represented by a vector in a Cartesian

plane. The length of the sum vector resulting from nine pair-

wise comparisons across three replicate experiments was

calculated using a Perl script (Breitling et al., 2005) and com-

pared to 100 random permutations of the original dataset,

thus generating a consistency p-value. To eliminate inconsis-

tent responses, only transcripts yielding p-values less than

0.01 were considered. The overall strength of the response,

l, was given by the average length of the nine individual vec-

tors and only transcripts with l greater than 0.5 were chosen

for further analysis. The angle between the sum vector and

a prototypic vector was used for assignment into regulatory

classes (Figure 2A and Supplementary Information SI2). To

avoid ambiguous assignment, only those transcripts producing

sum vectors that deviated by less than 15 degrees from the

closest prototype were considered.

Microarray Data

A search engine based on AGI codes for expression profiles

in roots and shoots of wild-type plants grown under different

K-conditions is provided at www.brc.dcs.gla.ac.uk/;rb106x/

Arabidopsis_results.htm. Expression profiles for coi1-16 shoots

are available at www.brc.dcs.gla.ac.uk/;rb106x/coi_results.htm.

Supplementary Information

SI1 contains lists of K-responsive genes in coi1-16 mutants as

identified by Rank Products. SI2 contains lists of genes assigned

to four regulatory classes by Vector Analysis. Gene annotations

are linked to TAIR and TIGR websites. SI3 contains a table

showing comparison between our dataset and that generated

by Reymond et al. (2004). SI4 shows the response to OPDA and

MeJA treatments of the genes listed in Tables 3 and 4 (from

Genevestigator). SI5 shows qPCR results for selected genes

in Col0 wild-type, coi1-16 and pen2 mutants. SI6 is a color ver-

sion of Figure 3.

SUPPLEMENTARY DATA

Supplementary Data are available at Molecular Plant Online.
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