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Abstract

We study variants of the classical stable marriage problem in which the preferences
of the men or the women, or both, are derived from a master preference list. This
models real-world matching problems in which participants are ranked according to
some objective criteria. The master list(s) may be strictly ordered, or may include
ties, and the lists of individuals may involve ties and may include all, or just some, of
the members of the opposite sex. In fact, ties are almost inevitable in the master list
if the ranking is done on the basis of a scoring scheme with a relatively small range of
distinct values. We show that many of the interesting variants of stable marriage that
are NP-hard remain so under very severe restrictions involving the presence of master
lists, but a number of special cases can be solved in polynomial time. Under this
master list model, versions of the stable marriage problem that are already solvable
in polynomial time typically yield to faster and/or simpler algorithms, giving rise to
simple new structural characterisations of the solutions in these cases.

1 Introduction and background

The classical stable marriage problem. The Stable Marriage problem (sm) was
introduced in the seminal paper of Gale and Shapley [3]. In its classical form, an instance
of sm involves n men and n women, each of whom specifies a preference list, which is a
total order on the members of the opposite sex. A matching M is a set of (man, woman)
pairs such that each person belongs to exactly one pair. If (m,w) ∈ M , we say that w is
m’s partner in M , and vice versa, and we write M(m) = w, M(w) = m.

We say that a person x prefers y to y′ if y precedes y′ on x’s preference list. A matching
M is stable if it admits no blocking pair, namely a pair (m,w) such that m prefers w to
M(m) and w prefers m to M(w). Gale and Shapley [3] proved that every instance of sm

admits a stable matching, and described an algorithm – the Gale-Shapley algorithm – that
finds such a matching in time that is linear in the input size. In general, there may be
many stable matchings (in fact exponentially many in n) for a given instance of sm [13].

Extensions of the classical problem. A variety of extensions of the basic problem have
been studied. In the Stable Marriage problem with Incomplete lists (smi), the numbers
of men and women need not be the same, and each person p’s preference list consists of a
subset of the members of the opposite sex (the acceptable persons for p) in strict order. A
pair (m,w) is acceptable if each member of the pair is acceptable to the other. We let a
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denote the total number of acceptable pairs. A matching M is now a set of acceptable pairs
such that each person belongs to at most one pair. In this context, (m,w) is a blocking
pair for a matching M if (a) (m,w) is an acceptable pair, (b) m is either unmatched or
prefers w to M(m), and likewise (c) w is either unmatched or prefers m to M(w). As in
the classical case, there is always at least one stable matching for an instance of smi, and
it is straightforward to extend the Gale-Shapley algorithm to this case. Again, there may
be many different stable matchings, but Gale and Sotomayor [4] showed that every stable
matching for a given smi instance has the same size and matches exactly the same set of
people. We remark that, from the point of view of finding a stable matching, we lose no
generality in assuming that, given an instance of smi, the preference lists are consistent
(i.e., for any two persons p and q, p is acceptable to q if and only if q is acceptable to p).

The Gale-Shapley algorithm for sm or smi can be man-oriented or woman-oriented,
i.e., applied from either the men’s or the women’s ‘side’. In the former case, it yields
a stable matching – the man-optimal – that is simultaneously the best possible stable
matching for all of the men and the worst possible for all of the women. The roles of
the sexes may be reversed to give the woman-optimal stable matching. Some alternative,
perhaps fairer, optimality criteria have been proposed. For example, a minimum regret
stable matching is one for which max r(p,M(p)) (defined as the regret of M) is minimised,
where the maximum is taken over all persons p, and r(x, y) represents the rank of y in
the preference list of x. An egalitarian stable matching is one for which

∑

r(p,M(p))
(defined as the weight of M) is minimised, where the sum is taken over all persons p.
Finally, a lexicographic maximum stable matching is one in which the maximum number
of people obtain their first-choice partner, and subject to this condition, the maximum
number obtain their second-choice partner, and so on. More precisely, for a matching M
define ri(M) to be the number of people for whom r(p,M(p)) = i. Then the requirement
is a stable matching M for which the vector (r1, . . . , rn) is lexicographically maximum.

Efficient algorithms have been devised for a number of variants of sm and smi; for
example:

• all of the stable pairs (i.e., the (man, woman) pairs that belong to at least one stable
matching) can be identified in O(a) time [5];

• all of the stable matchings can be found in O(a + nk) time [5], where k is the total
number of such matchings;

• a minimum regret stable matching can be found in O(a) time [5];

• an egalitarian stable matching can be found in O(a2) time [14], later improved to
O(a3/2) time [2];

• a lexicographic maximum stable matching can be found in O(n1/2a3/2) time [2].

An alternative extension of sm arises if preference lists are allowed to contain ties. In
the Stable Marriage problem with Ties (smt) each person’s preference list is a partial order
over the members of the opposite sex in which indifference is transitive. In other words,
each person p’s list can be viewed as a sequence of ties, each of length ≥ 1; p prefers each
member of a tie to everyone in any subsequent tie, but is indifferent between the members
of any single tie. In this context, three definitions of stability have been proposed [6, 11].

A matching M is

• weakly stable if there is no pair (m,w), each of whom prefers the other to his/her
partner in M ;
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• strongly stable if there is no pair (p, q) such that p prefers q to M(p) and q either
prefers p to M(q) or is indifferent between them (note that p may be either a man
or a woman here);

• super-stable if there is no pair (m,w), each of whom either prefers the other to
his/her partner in M or is indifferent between them.

It is immediate from the definitions that

super-stable ⇒ strongly stable ⇒ weakly stable.

For a given instance of smt, a weakly stable matching is bound to exist, and can be
found in O(n2) time by breaking all ties in an arbitrary way (i.e., by strictly ranking the
members of each tie arbitrarily) and applying the Gale-Shapley algorithm. A super-stable
matching may or may not exist, but there is a O(n2) algorithm to find such a matching or
report that there is none [11]. Likewise, a strongly stable matching may or may not exist,
but there is a O(n4) algorithm to find one or report that none exists [11]. An improved
O(n3) version of this latter algorithm has been described recently [18].

In the context of smt, some problems involving weakly stable matchings become NP-
hard [20] – for example:

• determining whether a given (man, woman) pair is weakly stable;

• finding a minimum regret weakly stable matching;

• finding an egalitarian weakly stable matching.

These results remain true even if the ties occur in the preference lists of one sex only,
there is at most one tie per list, and each tie is of length 2.

Note that, in order that the various forms of optimality for stable matchings are well-
defined when ties are present, we extend the notion of rank, by defining r(x, y) to be
one plus the number of strict predecessors of y in x’s preference list; so, in particular, all
entries occurring in the same tie have identical rank.

If we allow both of the above extensions of the classical problem simultaneously, we
obtain the Stable Marriage problem with Ties and Incomplete lists (smti). The three
forms of stability introduced for smt are again all meaningful (under the assumption
that a person would prefer to be matched to an acceptable partner rather than to be
unmatched). The algorithmic results for strongly stable and super-stable matchings can
be extended from smt to smti [19]. However, the situation for weakly stable matchings
turns out to be even more challenging than in smt. Once again, it is easy to find a weakly
stable matching, merely by breaking all the ties in an arbitrary way and applying the Gale-
Shapley algorithm. However, the ways in which ties are broken will, in general, affect the
size of the resulting matching, and the natural problem of finding a maximum cardinality
weakly stable matching for an instance of smti turns out to be NP-hard, even under quite
severe restrictions on the number and lengths of ties [20]. Specifically, NP-hardness holds
even if ties occur in the preference lists of one sex only, each tie is of length 2, and each
tie comprises the whole of the list in which it appears [20].

The Hospitals/Residents problem. The Hospitals/Residents problem (hr) is a many-
to-one generalisation of smi, so called because of its application in centralised matching
schemes for the allocation of graduating medical students, or residents, to hospitals [25].
The best known such scheme is the National Resident Matching Program (NRMP) [22]
in the US, but similar schemes exist in Canada [1], in Scotland [12, 27], and in a variety
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of other countries and contexts. In fact, this extension of sm was also discussed by Gale
and Shapley under the name of the College Admissions problem [3]. In an instance of hr,
each resident has a preference list containing a subset of the hospitals, and each hospital
ranks the residents for which it is acceptable. In addition, each hospital has a quota of
available posts. In this context, a matching is a set of acceptable (resident, hospital) pairs
so that each resident appears in at most one pair and each hospital in a number of pairs
that is bounded by its quota. The definition of stability has a natural extension to this
more general setting (see [6] for details). It is again the case that every problem instance
admits at least one stable matching [3], and that all stable matchings have the same size
[4]. Clearly smi is equivalent to the special case of hr in which each hospital has a quota
of 1.

The Hospitals / Residents problem with Ties (hrt) allows arbitrary ties in the prefer-
ence lists. Since hrt is clearly an extension of smti, the hardness results for weak stability
problems in the latter extend to the former. On the other hand, the polynomial-time algo-
rithms for strongly stable matchings and super-stable matchings in smti can be extended
to the analogous variants of hrt [16, 17, 18]. These results have potentially important
implications for large-scale real-world matching schemes. It is unreasonable to expect,
say, a large hospital to rank in strict order all of its many applicants, and any artificial
strict rankings, whether submitted by the hospitals themselves, or imposed by the match-
ing scheme administrators, may have significant implications for the number of residents
assigned in a stable matching.

Master lists. In this paper, we focus on special cases of these variants of sm in which the
preference lists on one or both sides may be derived from a single master list, which may
or may not contain ties. To be more precise, a master list of men consists of a single list
containing all of the men, which may or may not contain ties; each woman’s preference list
contains her acceptable partners ranked precisely according to the master list. In other
words, the preference list of a woman w is precisely the master list of men, except that
each man m that w finds unacceptable is deleted (so in general, the deletions that give
rise to w’s preference list could be made from any part of the master list). An analogous
meaning is attached to a master list of women. Hence, in sm and smt, the existence of
a master list for one sex implies that all preference lists for the members of the opposite
sex are identical, but of course this is not necessarily the case for smi and smti. It does,
however, follow from the construction that the individual preference lists are consistent,
given an instance of smi or smti with master lists.

The study is motivated by the fact that, in a practical matching scheme, applicants
for posts might be ranked, strictly or with ties, on the basis of some more or less objective
criteria, such as academic performance. A particular instance of this has occurred recently
in the context of MTAS (Medical Training Application Service), for allocating junior
doctors to medical posts in the UK. The applicants were assigned a numerical score based
on a combination of their academic record and an evaluation of their completed application
forms for the scheme, and a master preference list, inevitably containing many ties of
substantial size, was derived from these scores. Given the numbers of posts involved
(in 2006-07, applicants were competing for 6,000 foundation posts and 19,000 specialty
posts), MTAS gives the largest example of a centralised matching scheme involving master
preference lists that we are currently aware of. (For various reasons, not directly associated
with the concept of a master list, the whole MTAS system became the subject of national
controversy [8], and has since been largely abandoned in its present form. However it
is likely that its successor, to be used during 2007-08, will also involve a master list of
applicants, albeit based on different criteria.) A case study of a different kind involving
master lists is reported by Perach et al. [24]. The authors describe a method for allocating
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students to dormitories at the Technion-Israel Institute of Technology. The assignment
produced is a stable matching according to the preferences of students over dormitories;
students are ranked using master lists that refer to socio-economic characteristics as well
as academic excellence.

We consider a range of possible variants of sm in which there may be a master list on
just one side or on both sides, and in which the master list(s), and the lists of individuals,
may or may not contain ties. For convenience, we use the extensions -2ml and -1ml to
denote problem variants involving master lists on both sides and on one side respectively;
for example, smti-2ml represents the Stable Marriage problem with Ties and Incomplete
Lists with a Master List on both sides – i.e., a master list of men from which the women’s
preferences are derived, and a master list of women from which the men’s preferences are
derived. In the case of just one master list, in what follows it will not usually be necessary
to specify whether this list involves men or women, hence the suffix -1ml does not include
this information.

The main results in this paper, and their organisation, are as follows. Section 2 contains
an algorithm and a theorem showing that every instance of smi-1ml has a unique stable
matching that can be found in linear time. The next three sections cover variants of
smt involving master lists under the weak stability condition. Section 3 deals with smti,
and shows that existing hardness results for problems involving finding maximum weakly
stable matchings and weakly stable pairs (i.e, (man, woman) pairs that belong to some
weakly stable matching) typically apply even in the much more restricted case of smti-2ml.
Section 4 covers the case of smt-2ml, and shows that the various problems that arise, such
as finding weakly stable pairs, generating weakly stable matchings, and finding optimal
(egalitarian, minimum regret and lexicographic maximum) weakly stable matchings, can
typically be solved by simpler and more efficient algorithms than in the general case.
Section 5 deals with smt-1ml, and proves a number of hardness results involving finding
weakly stable pairs and types of optimal weakly stable matchings. We then switch our
attention in Section 6 to variants of smt with master lists under the strong and super-
stability criteria. We give algorithms that are simpler, and in the case of strong stability,
faster, than those for the general smti case, to find a super-stable or a strongly stable
matching or report that none exists. We conclude with a summary, some additional
observations, and some open questions in Section 7.

2 smi with master lists

Let I be an instance of smi-1ml (or smi-2ml). We demonstrate in this section that a
greedy algorithm, reminiscent of, but simpler than, the man-oriented version of the Gale-
Shapley algorithm, may be used to find the unique stable matching in I. Without loss of
generality suppose that there is a master list of men, say m1 m2 . . . mn. Consider the
greedy algorithm Greedy-SMI-1ML as described in Figure 1.

M = ∅;
for i in 1 . . . n

if mi’s list contains an unmatched woman {
w := first unmatched woman on mi’s list;
M := M ∪ {(mi, w)};

}
return M ;

Figure 1: Algorithm Greedy-SMI-1ML.
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Theorem 2.1. For a given instance of smi-1ml (or smi-2ml) there is a unique stable
matching, which may be found in linear time using Algorithm Greedy-SMI-1ML.

Proof. It is immediate that the set of pairs returned by Algorithm Greedy-SMI-1ML is a
matching M . To see that M is stable, suppose that (mi, w) is a blocking pair. Then
w must be matched to some mj where j < i, for otherwise Algorithm Greedy-SMI-1ML

would have matched mi to w. But mj precedes mi on the master list of men, giving a
contradiction to the assumed blocking pair.

Assume that there is a second stable matching M ′ 6= M , and let i be the smallest
index such that M ′(mi) 6= M(mi). Then each of m1, . . . ,mi−1 has the same partner in M ′

as he has in M . Hence, and since Algorithm Greedy-SMI-1ML gave mi his best available
partner, it follows that mi is either unmatched in M ′ or prefers w = M(mi) to M ′(mi).
Moreover, w cannot be matched in M ′ with any of m1, . . . ,mi−1, since again, each such
man has the same partner in M ′ as he has in M . Hence w is either unmatched in M ′ or
prefers M(w) to M ′(w), so that (mi, w) is a blocking pair for M ′ – a contradiction.

We finally remark that it is straightforward to verify that Algorithm Greedy-SMI-1ML

runs in time linear in the length of the given preference lists.

3 smti with master lists

3.1 Maximum cardinality weakly stable matchings

In this section we present hardness results for the problem of finding a maximum weakly
stable matching, given an instance of smti-2ml. We firstly note that an instance of smti-

2ml can have weakly stable matchings of different sizes. For, consider the smti instance I
shown in Figure 2, where, as throughout this paper, entries within parentheses in a given
person’s preference list are tied.

m1 : w1 w1 : (m1 m2)
m2 : w1 w2 w2 : m2

Men’s preferences Women’s preferences

Figure 2: smti instance with weakly stable matchings of different sizes.

Firstly, it is straightforward to verify that w1 w2 is a master list of the women, whilst
(m1 m2) is a master list of the men. Each of the matchings M1 = {(m2, w1)} and
M2 = {(m1, w1), (m2, w2)} is weakly stable in I. Hence, this observation leads naturally
to the problem of finding a maximum cardinality weakly stable matching (henceforth a
maximum weakly stable matching), given an instance of smti-2ml.

Define max smti-2ml to be the problem of finding a maximum weakly stable matching,
given an instance of smti-2ml, and let max smti-2ml-d denote the decision version of
max smti-2ml. In this section we show that max smti-2ml-d is NP-complete, even
under various restrictions involving the positions and lengths of ties in the master lists,
and involving the lengths of individual preference lists. In fact our first two results establish
NP-completeness for the special case of max smti-2ml-d in which the number of men n
is equal to the number of women, and the target size of weakly stable matching is equal to
n. We refer to this restriction as complete smti-2ml. Given an instance of this problem,
we refer to a weakly stable matching of size n as a complete weakly stable matching.

We firstly show that complete smti-2ml is NP-complete even in the case that there
is a single tie in one of the master lists. To do this, we show that the transformation
of Lemma 1 of [20] can have master lists imposed directly. As in that lemma, we use a
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reduction from a problem involving matchings in graphs. A matching M in a graph G
is said to be maximal if no proper superset of M is a matching in G. Define min mm

(respectively exact mm) to be the problem of deciding, given a graph G and integer K,
whether G admits a maximal matching of size at most (respectively exactly) K. min mm

is NP-complete, even for subdivision graphs [10]. (Given a graph G, the subdivision graph
of G, denoted by S(G), is obtained by subdividing each edge {u,w} of G in order to obtain
two edges {u, v} and {v, w} of S(G), where v is a new vertex.) It turns out that exact

mm is NP-complete for the same class of graphs [21].
We now show how to modify the transformation of Lemma 1 of [20] to show that

complete smti-2ml is NP-complete even if there is a single tie in one of the master lists.
For completeness we present the proof of correctness of the reduction in its entirety.

Theorem 3.1. complete smti-2ml is NP-complete, even if there is only a single tie
that occurs in one of the master lists.

Proof. Clearly complete smti-2ml is in NP. We transform from exact mm for subdivi-
sion graphs, which is NP-complete as indicated above. Hence let G (a subdivision graph
of some graph) and K (a positive integer) be an instance of exact mm. Then G is a
bipartite graph, so that G = (U,W,E), where, without loss of generality, each vertex in
U has degree 2. Further, without loss of generality, we assume that |U | = |W |. For if
|U | = |W |+ r for some r > 0, then we may add r vertices a1, . . . , ar to U , and 2r vertices
b1, . . . , br, c1, . . . , cr to W , where ai is adjacent to bi and ci for each i (1 ≤ i ≤ r). Clearly
every vertex in the new set U has degree 2 in the new graph, and G has a maximal match-
ing of size K if and only if the transformed graph has a maximal matching of size K + r.
(A similar transformation can be carried out if |W | = |U | + r ′ for some r′ > 0.) Finally,
without loss of generality, we may assume that K ≤ n, where n = |U | = |W |.

Let U = {m1, . . . ,mn} and let W = {w1, . . . , wn}. We construct an instance I of
complete smti-2ml as follows: let U∪U ′∪X be the set of men in I, and let W ∪Y ∪Z be
the set of women in I, where U ′ = {m′

1, . . . ,m
′
n}, X = {x1, . . . , xn−K}, Y = {y1, . . . , yn}

and Z = {z1, . . . , zn−K}. For each vertex mi ∈ U , let wji
and wki

be the two vertices
adjacent to mi in G, where ji < ki. For each woman wj ∈ W , let Uj = {mi : {mi, wj} ∈
E}, and let U ′

j = {m′
i : {mi, wj} ∈ E ∧ j = ki}. The preference lists of the people in I are

as follows:
mi : yi wji

wki
z1 z2 . . . zn−K (1 ≤ i ≤ n)

m′
i : yi wki

(1 ≤ i ≤ n)
xi : w1 w2 . . . wn (1 ≤ i ≤ n − K)
wj : (Uj ∪ U ′

j) x1 x2 . . . xn−K (1 ≤ j ≤ n)

yj : (mj m′
j) (1 ≤ j ≤ n)

zj : (m1 m2 . . . mn) (1 ≤ j ≤ n − K)

It is straightforward to verify that

(m1 m2 . . . mn m′
1 m′

2 . . . m′
n) x1 x2 . . . xn−K

is a master list of the men in I, and

y1 y2 . . . yn w1 w2 . . . wn z1 z2 . . . zn−K

is a master list of the women in I. Clearly there is a single tie in the master list of
men, whilst the master list of women is strictly ordered. We claim that G has a maximal
matching of size K if and only if I has a complete weakly stable matching.

For, suppose that G has a maximal matching M , where |M | = K. We construct a
matching M ′ in I as follows. For each edge {mi, wj} in M , if j = ji, then we add (mi, wji

)
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and (m′
i, yi) to M ′. If j = ki, then we add (m′

i, wki
) and (mi, yi) to M ′. There remain

2(n − K) men of the form mpi
,m′

pi
(1 ≤ i ≤ n − K) who are as yet unmatched. Add

(mpi
, zi) and (m′

pi
, ypi

) to M ′ (1 ≤ i ≤ n−K). Similarly there remain n−K women of the
form wqi

(1 ≤ i ≤ n−K) who are as yet unmatched. Add (xi, wqi
) to M ′ (1 ≤ i ≤ n−K).

Clearly every man and woman in I is matched in M ′.
It is straightforward to verify that no woman in Y ∪ Z can be involved in a blocking

pair of M ′, and hence neither can a man in U ′. No man in X can be involved in a blocking
pair, since the women in W are matched in M ′ to men in X in increasing indicial order.
Finally, suppose that (mi, wj) is a blocking pair of M ′, where mi ∈ U and wj ∈ W . Then
(mi, zk) ∈ M ′ for some zk ∈ Z, and (xl, wj) ∈ M ′ for some xl ∈ X. Thus no edge of M is
incident to mi or wj in G. Hence M ∪ {{mi, wj}} is a matching in G, contradicting the
maximality of M . Thus M ′ is a complete weakly stable matching in I.

Conversely, suppose that M ′ is a complete weakly stable matching in I. For each i
(1 ≤ i ≤ n), exactly one of mi, m′

i is matched in M ′ to yi, for otherwise yi is unmatched
in M ′, a contradiction. Hence at most one of mi, m′

i is matched in M ′ to a woman in W .
It follows that

M =
{

{mi, wj} ∈ E : (mi, wj) ∈ M ′ ∨ (m′
i, wj) ∈ M ′

}

is a matching in G. There are exactly n−K men mri
(1 ≤ i ≤ n−K) who have a partner

from Z in M ′. Since M ′(m′
ri

) = yri
(1 ≤ i ≤ n − K) by the above remark, it follows that

|M | = K.
To complete the proof, it remains to show that M is maximal. For, suppose not. Then

there is some edge {mi, wj} in G such that no edge of M is incident to either mi or wj .
Thus (mi, zk) ∈ M ′ for some zk ∈ Z, and (xl, wj) ∈ M ′ for some xl ∈ X. But then
(mi, wj) is a blocking pair of M ′, a contradiction. Hence M is maximal in G.

The proof of Theorem 3.1 shows that the problem of finding a maximum cardinality
weakly stable matching for an instance of SMTI is NP-hard, even if there is a master list
on both sides, one of the master lists is strictly ordered, and the other has a single tie at
its head.

It is interesting to observe that the situation is quite different if the tie is at the tail
of the list. In fact, if there is such a master list on one side, and on the other side all
preferences are strict (with or without a master list), we can find a maximum cardinality
weakly stable matching in polynomial time. Suppose that the master list is of men. Process
the men, in order, from the strictly ranked part of the master list, matching each man
in turn with his favourite unmatched woman (if any). It is easy to see that all the pairs
formed in this way must belong to every weakly stable matching. On reaching the master
list tie, form a maximum cardinality matching of the men contained in it with unmatched
acceptable partners, and adjoin these new pairs to those formed previously to obtain a
maximum cardinality weakly stable matching.

This is a case where a master list makes the problem easier. The variant of SMTI
(without master lists) in which all the ties are on one side and at the ends of the preference
lists is known to be NP-hard [20], though a 5/3-approximation algorithm for this variant
has recently been described [15].

Let I be the instance of smti as created by the proof of Theorem 3.1. We note that
the proof is unchanged if the men in X are tied in the master list (and consequently in
the preference list of each wj ∈ W ). Therefore in this modified instance, each woman
has either one or two ties in her preference list. Moreover, if S1 is the set of men who
collectively occupy the first tie in the women’s lists (or the only tie, in the case that there
is just one), and S2 is the set of men who occupy the second tie in the lists of the women
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who have two ties, then it follows that S1 = U ∪U ′, S2 = X, and consequently S1∩S2 = ∅.
We use this restriction for the transformation in the next theorem, which demonstrates the
NP-completeness of complete smti-2ml for another restricted case. The transformation
itself is similar to that of Theorem 2 in [20].

Theorem 3.2. complete smti-2ml is NP-complete, even if the ties occur in one master
list only and are of length 2.

Proof. As in Theorem 3.1, complete smti-2ml is in NP. We transform from the version
of complete smti-2ml as described in the paragraph preceding this theorem. Let I be an
instance of this problem, where U = {m1, . . . ,mn} is the set of men and W = {w1, . . . , wn}
is the set of women. Without loss of generality let w1 w2 . . . wn be the master list of women.
Recall that every woman has one or two ties in her list. For each woman wj ∈ W , let Uh

j

denote the set of men who appear in the first tie in wj ’s list (or the only tie, in the case
that there is just one), and let U t

j denote the set of men who appear in the second tie in

wj ’s list (U t
j = ∅ in the case that there is no such tie). Let U h

j = {mkj,1
, . . . ,mkj,hj

} for

some hj > 0, and let U t
j = {mlj,1

, . . . ,mlj,tj
} for some tj ≥ 0. We form an instance I ′ of

complete smti-2ml as follows: let U ∪X∪Z be the set of men in I ′, and let
⋃n

j=1 Wj∪Y
be the set of women in I ′, where X =

⋃n
i=1 Xi, Y =

⋃n
j=1 Yj and Z =

⋃n
i=1 Zi, and

Wj = {wj,r : 1 ≤ r ≤ hj + tj} (1 ≤ j ≤ n)
Xi = {xi,r : 1 ≤ r ≤ hi + ti} (1 ≤ i ≤ n)
Yj = {yj,r : 1 ≤ r ≤ hj + tj} (1 ≤ j ≤ n)
Zi = {zi,r : 1 ≤ r ≤ hi + ti − 1} (1 ≤ i ≤ n).

Finally let W t
j =

⋃hj+tj
r=hj+1{wj,r}. The preference lists in I ′ are formed as follows: each

man mi ∈ U starts with his preference list from I. Let wj ∈ W be an arbitrary woman on
mi’s list in I. If mi ∈ Uh

j then mi = mkj,a
for some a (1 ≤ a ≤ hj), while if mi ∈ U t

j then
mi = mlj,b

for some b (1 ≤ b ≤ tj). In the former case we replace wj by the women in
W t

j ∪{wj,a} in increasing order of the second subscript, while in the latter case we replace
wj by wj,b+hj

. The remaining preference lists are as follows:

xi,r : (wi,r yi,r) (1 ≤ i ≤ n) (1 ≤ r ≤ hi + ti)
zi,r : yi,1 yi,2 . . . yi,hj+tj (1 ≤ i ≤ n) (1 ≤ r ≤ hi + ti − 1)
wj,r : xj,r mkj,r

(1 ≤ j ≤ n) (1 ≤ r ≤ hj)

wj,r+hj
: xj,r+hj

mkj,1
mkj,2

. . . mkj,hj
mlj,r

(1 ≤ j ≤ n) (1 ≤ r ≤ tj)

yj,r : xj,r zj,1 zj,2 . . . zj,hj+tj−1 (1 ≤ j ≤ n) (1 ≤ r ≤ hj + tj)

Assume that
⋃n

j=1 Uh
j = {ma1

,ma2
, . . . ,mac} and

⋃n
j=1 U t

j = {mb1 ,mb2 , . . . ,mbd
}, where

a1 < a2 < · · · < ac. Then ai 6= bj (1 ≤ i ≤ c, 1 ≤ j ≤ d) by the discussion preceding the
theorem. Without loss of generality let the men in U h

j be ordered such that if 1 ≤ p <
q ≤ hj then kj,p < kj,q. Then it is straightforward to verify that

x1,1 x1,2 . . . x1,h1+t1 x2,1 . . . xn,hn+tn ma1
ma2

. . . mac mb1 mb2 . . . mbd

z1,1 z1,2 . . . z1,h1+t1−1 z2,1 . . . zn,hn+tn−1

is a master list of the men in I ′, and

(w1,1 y1,1) (w1,2 y1,2) . . . (w1,h1+t1 y1,h1+t1) (w2,1 y2,1) . . . (wn,hn+tn yn,hn+tn)

is a master list of the women in I ′. Clearly there are ties in only one master list, they are
of length 2, and a tie forms the whole of the individual list in which it appears. We claim
that I has a complete weakly stable matching if and only if I ′ does.
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For, suppose that I has such a matching M . We form a matching M ′ in I ′ as follows.
Let (mi, wj) ∈ M . If mi ∈ Mh

j , then mi = mkj,a
for some a (1 ≤ a ≤ hj). If mi ∈ M t

j ,
then mi = mlj,b

for some b (1 ≤ b ≤ tj); let a = b + hj . In both cases, add the pairs
(mi, wj,a), (xj,r, wj,r) (1 ≤ r ≤ hj + tj , r 6= a), (xj,a, yj,a), (zj,k, yj,k) (1 ≤ k ≤ a − 1), and
(zj,k−1, yj,k) (a + 1 ≤ k ≤ hj + tj) to M ′. It is clear that M ′ is a complete weakly stable
matching in I ′.

It is straightforward to verify that no man in X can be involved in a blocking pair of
M ′ in I ′. Hence, and since the men in Z are matched to women in Y in increasing order
of their second subscript, neither can any person in Y ∪ Z. Now suppose that (mi, wj,a)
blocks M ′ in I ′. Then a > hj and mi ∈ Mh

j . Let mp = M ′(wj,a); then mp = mlj,b
, where

b = a − hj . Clearly (mi, wj,a) /∈ M ′, and also (mi, wj,r) /∈ M ′ (for 1 ≤ r ≤ hj + tj , r 6= a),
since (xj,r, wj,r) ∈ M ′ (for the same r). Thus M ′(mi) 6∈ Wj, so that in I, mi strictly
prefers wj to M(mi). Also, in I, wj strictly prefers mi to mp. Hence (mi, wj) blocks M
in I, a contradiction. Thus M ′ is weakly stable in I ′.

Conversely, suppose that M ′ is a complete weakly stable matching in I ′. We form a
matching M in I as follows. Let j (1 ≤ j ≤ n) be given. Since |Zj | = hj + tj − 1 and
|Yj| = hj + tj, it follows that M ′(yj,a) = xj,a for some a (1 ≤ a ≤ hj + tj), and hence
M ′(wj,a) = mi, for some mi ∈ U . Since M ′(xj,r) = wj,r (for 1 ≤ r ≤ hj + tj, r 6= a), then
M ′∩ (U ×Wj) = {(mi, wj,a)}. Let mi be the partner of wj in M . Clearly M is a complete
matching in I.

Suppose that (mi, wj) blocks M in I. Let mp = M(wj). Then in I, wj strictly prefers
mi to mp, so that mi ∈ Uh

j and mp ∈ U t
j . Thus mp = mlj,b

for some b (1 ≤ b ≤ tj), so that
M ′(mp) = wj,a, where a = b + hj . Now in I ′, wj,a strictly prefers mi to mp. Also in I ′,
mi strictly prefers wj,a to M ′(mi) (since M(mi) 6= wj implies that M ′(mi) /∈ Wj). Thus
(mi, wj,a) blocks M ′ in I ′, a contradiction. Hence M is weakly stable in I.

We now give an inapproximability result. We show it is NP-hard to approximate
max smti-2ml within δ, for some δ > 1, even if the individual preference lists in the
given instance are of constant length and there is only one tie in each master list. The
transformation is similar to that of Theorem 6 of [7].

Theorem 3.3. It is NP-hard to approximate max smti-2ml within δ, for some δ > 1.
The result holds even if the individual preference lists in the given instance are of constant
length and there is only one tie in each master list.

Proof. By [7, Theorem 1], it is NP-hard to approximate min mm for subdivision graphs
of cubic graphs within δ0, for some δ0 > 1. Let G be an instance of this problem. Then
G is the subdivision graph of some cubic graph, and hence G = (U,W,E) is a bipartite
graph where without loss of generality each vertex in U has degree 3 and each vertex in W
has degree 2. Let U = {m1, . . . ,ms} and let W = {w1, . . . , wt}. For each vertex mi ∈ U ,
let Wi denote the three vertices adjacent to mi in G. Similarly for each vertex wj ∈ W ,
let Uj denote the two vertices adjacent to wj in G. We construct an instance I of max

smti-2ml as follows: let U ∪ X be the set of men and let W ∪ Y be the set of women,
where X = {x1, . . . , xt} and Y = {y1, . . . , ys}. The preference lists in I are as follows:

mi : (Wi) yi (1 ≤ i ≤ s) wj : (Uj) xj (1 ≤ j ≤ t)
xi : wi (1 ≤ i ≤ t) yj : mj (1 ≤ j ≤ s)

It is straightforward to verify that

(m1 m2 . . . ms) x1 x2 . . . xt

is a master list of the men, and

(w1 w2 . . . wt) y1 y2 . . . ys
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is a master list of the women in I. Moreover the length of each man’s preference list is at
most 4, whilst the length of each woman’s preference list is at most 3.

Suppose that M is a maximal matching in G such that |M | = β−
1 (G), where β−

1 (G)
denotes the minimum size of a maximal matching in G. We construct a matching M ′ in
I as follows. Initially let M ′ = M . For each man mi ∈ U who is unmatched in M , add
(mi, yi) to M ′. Similarly for each woman wj ∈ W who is unmatched in M , add (xj , wj) to
M ′. Clearly M ′ is a matching in I, and |M ′| = |M |+ (s− |M |) + (t− |M |) = s + t− |M |.
It is straightforward to verify that the maximality of M in G implies that M ′ is weakly
stable in I. Hence s+(I) ≥ s+ t−|M | = s+ t−β−

1 (G), where s+(I) denotes the maximum
size of a weakly stable matching in G.

Conversely, suppose that M ′ is a weakly stable matching in I, where |M ′| = s+(I).
Let M = M ′ ∩E. It is straightforward to verify that the weak stability of M ′ in I implies
that M is maximal in G. Also |M ′| ≤ |M |+ (t− |M |) + (s− |M |) = s + t− |M |, for every
edge in M contributes one (man, woman) pair to M ′, and in addition, at most (t − |M |)
men in X can be matched in M ′, and at most (s − |M |) women in Y can be matched in
M ′. Hence s+(I) = |M ′| ≤ s + t − |M | ≤ s + t − β−

1 (G).
Thus s+(I)+β−

1 (G) = s+ t. Now 2t = 3s, as G is the subdivision graph of some cubic
graph. Also n = s + t and m = 2t, where n is the number of men in I and m = |E|.

Theorem 1 of [7] shows that it is NP-hard to distinguish between the cases that
β−

1 (G) ≤ c0m and β−
1 (G) > δ0c0m, where c0 > 0 is some constant. Hence if β−

1 (G) ≤ c0m,
then s+(I) ≥ cn, whilst if β−

1 (G) > δ0c0m, then s+(I) < δcn, where c = 5−6c0
5 and

δ = 5−6δ0c0
5−6c0

. The result follows by Theorem 1 and Proposition 4 of [7].

3.2 Weakly stable pairs in smti-2ml

In this section we consider the complexity of the problem of finding all weakly stable pairs,
given an instance of smti-2ml. Define weakly stable pair of Π to be the problem of
deciding, given an instance I of Π and a (man, woman) pair (m,w), whether (m,w) is a
weakly stable pair in I.

Theorem 3.4. weakly stable pair of smti-2ml is NP-complete, even if there are ties
in only one of the master lists.

Proof. Clearly weakly stable pair of smti-2ml is in NP. To show that the problem is
NP-hard, we transform from the variant of complete smti-2ml in which ties occur only in
the master list of men, which is NP-complete by Theorem 3.1. Let I be an instance of this
problem, where U = {m1, . . . ,mn} and W = {w1, . . . , wn} are the sets of men and women
in I respectively. Let Lm and Lw be the master lists of men and women respectively,
and let Pi and Qj be the preference lists of each mi ∈ U and wj ∈ W respectively. We
construct an instance I ′ of weakly stable pair of smti-2ml as follows: the set of men
in I ′ is {m0} ∪ U , and the set of women in I ′ is {w0} ∪ W . The preference lists for each
person in I ′ are as follows:

m0 : Lw w0 w0 : Lm m0

mi : Pi w0 (1 ≤ i ≤ n) wi : Qi m0 (1 ≤ i ≤ n)

Clearly a master list L′
m of the men in I ′ may be obtained by appending m0 to Lm, whilst

a master list L′
w of the women in I ′ may be obtained by appending w0 to Lw. This gives

an instance of smti-2ml in which there are no ties in the master list of women. It is
straightforward to check that I admits a complete weakly stable matching if and only if
I ′ has a weakly stable matching containing the pair (m0, w0).
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4 smt with master lists on both sides

4.1 Finding all weakly stable pairs

We now show that, in contrast to Theorem 3.4, for an instance I of smt-2ml, we can find
all the weakly stable pairs in time O(n + s), where n is the number of men and s is the
number of weakly stable pairs in I. Let Lm and Lw be the master lists in I. Henceforth
we assume, without loss of generality, that the men are indexed so that mi is listed before
mj in Lm if and only if i < j (note that this includes the possibility that mi and mj are
tied in Lm), and similarly for the women on Lw. We say that a tie T ∈ Lm overlaps a tie
T ′ ∈ Lw if and only if there is some i such that mi ∈ T and wi ∈ T ′, and for every such
i we say that mi and wi are in the overlap between T and T ′. If all the ties in a given
preference list are broken in some way, making the list strictly ordered, we say that the
list has been resolved.

Lemma 4.1. Let I be an instance of smt-2ml. The pair (mi, wj) is a weakly stable pair
in I if and only if T and T ′ overlap, where T and T ′ are the ties in Lm and Lw containing
mi and wj respectively.

Proof. Suppose that T and T ′ overlap. Then it is possible to resolve the master lists so
that mi and wj occupy the same position in the (strictly ordered) resolved master lists.
We then match the man at position k with the woman at position k (1 ≤ k ≤ n) in these
resolved lists, where n is the size of the instance. It is immediate that this matching is
weakly stable.

Suppose that T and T ′ do not overlap. Let M be a weakly stable matching containing
(mi, wj). Let p and q be the minimum and maximum indices of men mk appearing in T
respectively, and let r and s be the minimum and maximum indices of women wk appearing
in T ′ respectively. Then [p..q] ∩ [r..s] = ∅. Without loss of generality suppose that p > s.
There are p − 1 men on Lm who are strictly preferable to mi on Lm. As p > s, at least
one such man, mx say, is matched in M to a woman who is strictly inferior to wj on Lw.
Hence (mx, wj) is a blocking pair of M , a contradiction.

Theorem 4.2. Given an instance I of smt-2ml we can find all the weakly stable pairs in
O(n + s) time, where s is the number of weakly stable pairs.

Proof. By Lemma 4.1, a given pair (mi, wj) is weakly stable in I if and only if T and T ′

overlap, where T and T ′ are the ties in Lm and Lw containing mi and wj respectively.
Consider a tie T in Lm. We can find the weakly stable partners of each man in T as
follows: let fT = min{k : mk ∈ T}, and let lT = max{k : mk ∈ T}. Let X and Y be
the ties in Lw such that wfT

∈ X, and wlT ∈ Y . Let fX = min{k : wk ∈ X}, and let
lY = max{k : wk ∈ Y }. Then the weakly stable partners of the men in T are wfX

, ..., wlY .
Finding fT and lT for every tie T takes O(n) overall time, while finding fX and lY takes
O(sT ) time, where sT is the number of weakly stable partners of the men in T . If we
repeat this process for every tie in Lm then it follows that we can find all the weakly
stable pairs in O(n + s) time.

4.2 Generation of all weakly stable matchings

We next show that we can find all the weakly stable matchings for an instance I of smt-

2ml, with sublinear time between the generation of successive matchings.
Let I be an instance of smt-2ml of size n, and let U = {m1, . . . ,mn} and W =

{w1, . . . , wn} be the sets of men and women respectively in I. By Theorem 4.2, we can
list the weakly stable pairs for I in O(n + s) time, where s is the number of such pairs.
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We construct a bipartite graph GI , the matching graph, as follows. The set of vertices in
GI is U ∪ W , and there is an edge from mi ∈ U to wj ∈ W if and only if wj is a weakly
stable partner of mi. This construction takes O(n + s) time.

Lemma 4.3. Let I be an instance of smt-2ml. Then there is a one-to-one correspondence
between the weakly stable matchings for I and the perfect matchings in the matching graph
GI .

Proof. Let M = {(m1, wk1
), . . . , (mn, wkn

)} be a weakly stable matching for I. It is clear
that {mi, wki

} is an edge in GI (1 ≤ i ≤ n), and hence M is a perfect matching in GI .
Conversely, let M = {(m1, wk1

), . . . , (mn, wkn
)} be a perfect matching in GI , and

suppose M is not weakly stable. Let (m,w) be a blocking pair for M . Then w prefers m
to M(w), so m is a strict predecessor of M(w) in Lm. Since (m,M(m)) ∈ M , the tie in Lm

containing m must overlap with that in Lw containing M(m), by Lemma 4.1. Similarly,
m prefers w to M(m), so w is a strict predecessor of M(m) in Lw. Since (M(w), w) ∈ M ,
the tie in Lw containing w must overlap with that in Lm containing M(w), by Lemma
4.1. It is clear that not all of these four conditions can be satisfied simultaneously, and
the result follows.

Uno [28] describes an algorithm which, given an initial perfect matching in a bipartite
graph G = (V,E), generates all k perfect matchings for G in O(k log |V |) time. By Lemma
4.1, the matching produced by breaking the ties in the two master lists arbitrarily, and
then matching the man at position i with the woman at position i, for each 1 ≤ i ≤ n,
is weakly stable, and can be produced in O(n) time. Then, using Uno’s algorithm, the
remaining perfect matchings in GI can be generated in O(log n) time per matching, giving
overall complexity O(n + s + k log n) to generate the k perfect matchings in GI , which,
by Lemma 4.3, are exactly the weakly stable matchings for I. Thus we have the following
theorem.

Theorem 4.4. Let I be an instance of smt-2ml of size n. All the weakly stable matchings
for I can be generated in O(n+s+k log n) time, where k is the number of such matchings,
and s is the number of weakly stable pairs in I.

4.3 Optimal weakly stable matchings

It turns out that finding the various kinds of optimal weakly stable matchings is straight-
forward in the case of smt-2ml, as the following theorem shows. Henceforth, minimum

regret Π, egalitarian Π and lex max Π denote the problems of finding a minimum
regret, egalitarian and lexicographic maximum weakly stable matching respectively, given
an instance of Π. The decision version of each problem is obtained by appending “-d”.

Theorem 4.5. minimum regret smt-2ml, egalitarian smt-2ml and lex max smt-

2ml can all be solved in O(n) time.

Proof. For every position i in one master list, some person from the other master list must
be matched with the person at that position. It follows that every weakly stable matching
for I must have the same regret and the same weight, and the numbers of people matched
to their ith choice is the same in every weakly stable matching, for each value of i.

If we resolve the master lists arbitrarily, and match the entries at position i in each
resolved list, for each i, then we obtain a weakly stable matching, and this can be found
in O(n) time. By the foregoing it is simultaneously a minimum regret, egalitarian and
lexicographic maximum weakly stable matching, and the result follows.
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5 smt with a master list on one side

In the case of smt-1ml, it turns out that, in contrast to Section 4, various problems
associated with finding weakly stable matchings become NP-hard.

5.1 Finding all weakly stable pairs

We firstly consider the problem of finding the weakly stable pairs, given an instance of
smt-1ml. We give an NP-completeness result along the lines of Theorem 3.4.

Theorem 5.1. weakly stable pair of smt-1ml is NP-complete.

Proof. Clearly weakly stable pair of smt-1ml is in NP. To show that the problem is
NP-hard, we transform from complete smti-2ml, which is NP-complete by Theorem 3.1.
Let I be an instance of this problem, where U = {m1, . . . ,mn} and W = {w1, . . . , wn}
are the sets of men and women in I respectively. Let Lm denote the master list of men,
and let Pi be the preference list of mi in I (1 ≤ i ≤ n). We construct an instance I ′ of
weakly stable pair of smt-1ml as follows: the set of men in I ′ is {m0} ∪ U , and the
set of women in I ′ is {w0} ∪ W . The preference lists for the men are as follows:

m0 : −− w0

mi : Pi w0 −− (1 ≤ i ≤ n)

In a given preference list, the symbol −− denotes all remaining people of the opposite sex
in arbitrary strict order. We obtain a master list L′

m of men in I ′ by appending m0 to
Lm. It is straightforward to verify that I admits a complete weakly stable matching if
and only if I ′ has a weakly stable matching M ′ containing (m0, w0).

Since complete smti-2ml is NP-complete even if ties occur only in one master list,
the above reduction implies that weakly stable pair of smt-1ml is NP-complete even
if ties occur only in the master list, or if ties occur only in the lists on the other side.

5.2 Minimum regret weakly stable matchings

We next consider minimum regret weakly stable matchings in smt-1ml. We show that
the problem of finding such a matching is solvable in linear time for a specific restriction
of smt-1ml, and NP-hard in general.

Theorem 5.2. minimum regret smt-1ml can be solved in O(n2) time if there is no tie
at the tail of the master list.

Proof. Every person must be matched in every weakly stable matching. Since there is a
unique person p at the end of the master list, in every weakly stable matching p’s partner
must have regret n. Break all the ties arbitrarily and find a stable matching for the derived
instance of sm. This matching must be weakly stable in the initial instance, and can be
found in O(n2) time.

If there is a tie at the tail of the master list, it turns out that minimum regret

smt-1ml is NP-hard, even if there are no ties on the other side.

Theorem 5.3. minimum regret smt-1ml-d is NP-complete if there is a tie at the tail
of the master list, even if there are no ties in the lists on the other side.
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Proof. Clearly minimum regret smt-1ml-d is in NP. To show that the problem is NP-
hard, we transform from the variant of complete smti-2ml in which ties occur only in
the master list of men, which is NP-complete by Theorem 3.1.

Let I be an instance of this problem, where U = {m1, . . . ,mn} and W = {w1, . . . , wn}
are the sets of men and women in I respectively, and let Pi be the preference list of mi

in I (1 ≤ i ≤ n). Let Lm denote the master list of men. We construct an instance I ′ of
minimum regret smt-1ml as follows: the set of men in I ′ is U ∪X and the set of women
in I ′ is W ∪Y , where X = {x1, . . . , xn+1} and Y = {y1, . . . , yn+1}. The preference lists of
the men are as follows:

mi : Pi y1 y2 . . . yn+1 −− (1 ≤ i ≤ n)
xi : y1 y2 . . . yn+1 −− (1 ≤ i ≤ n + 1)

while the master list of men becomes L′
m : Lm (X). Clearly there are no ties in the men’s

lists. It is straightforward to verify that I admits a complete weakly stable matching if
and only if I ′ has a weakly stable matching of regret at most n + 1.

5.3 Egalitarian weakly stable matchings

We now consider egalitarian weakly stable matchings. We give an NP-hardness and ap-
proximability result for the problem of finding such a matching, given an instance of
smt-1ml.

Theorem 5.4. egalitarian smt-1ml-d is NP-complete.

Proof. Clearly egalitarian smt-1ml-d is in NP. To show that the problem is NP-hard,
we transform from complete smti-2ml, which is NP-complete, even if one master list
is strictly ordered, by Theorem 3.1. Let I be an instance of this problem, where U =
{m1, . . . ,mn} and W = {w1, . . . , wn} are the sets of men and women in I respectively.
Let Lm denote the master list of men. Without loss of generality we assume that Lm

contains no ties. Let Pi be the preference list of mi in I (1 ≤ i ≤ n). We construct an
instance I ′ of egalitarian smt-1ml-d as follows: the set of men in I ′ is U ∪ X and
the set of women in I ′ is W ∪ Y , where X = {x1, . . . , xn2} and Y = {y1, . . . , yn2}. The
preference lists of the men are as follows:

mi : Pi y1 y2 . . . yn2 −− (1 ≤ i ≤ n)
xi : yi −− (1 ≤ i ≤ n2)

while the master list of men becomes:

L′
m : x1 . . . xn2 Lm.

We show that I admits a complete weakly stable matching if and only if I ′ has a weakly

stable matching M ′ where the weight of M ′, w(M ′), is at most K = (n2+n)(n2+n+1)
2 +2n2.

For, suppose that I admits a complete weakly stable matching M . We create a match-
ing M ′ = M ∪{(xi, yi) : 1 ≤ i ≤ n2} in I ′. It is straightforward to verify that M ′ is weakly
stable in I ′. Each of the n2 men in X contributes 1 to the weight of M ′, while each of the
n men in U contributes at most n to the weight of M ′. Finally, there are n2 + n women

in I ′, so, since there are no ties in L′
m, the women contribute

∑n2+n
i=1 i = (n2+n)(n2+n+1)

2 to
the weight of M ′. It follows that w(M ′) ≤ K.

Conversely suppose that I ′ admits a weakly stable matching of weight at most K.
Suppose for a contradiction that I does not admit a complete weakly stable matching. Let
M ′ be an arbitrary weakly stable matching in I ′. Then (xi, yi) ∈ M ′ (1 ≤ i ≤ n2). Also
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there is some man mi ∈ U who is not matched with a woman from Pi. Then mi contributes
at least n2 + 2 to w(M ′). Each of the remaining n2 + n − 1 men contributes at least 1 to

w(M ′). Since L′
m contains no ties, it follows that w(M ′) ≥ (n2+n)(n2+n+1)

2 +2n2+n+1 > K.
Since M ′ is arbitrary, we obtain a contradiction. Hence I admits a complete weakly stable
matching after all.

The above reduction implies that egalitarian smt-1ml is NP-complete even if the
master list contains no ties. We also observe that, given an instance I of smt-1ml, any
weakly stable matching M in I satisfies

1

2
n2 +

3

2
n = n +

n(n + 1)

2
≤ w(M) ≤ n2 +

n(n + 1)

2
=

3

2
n2 +

1

2
n.

This observation leads to the following result.

Theorem 5.5. egalitarian smt-1ml is approximable within a factor of 3 when the
master list is strict.

5.4 Lexicographic maximum weakly stable matchings

Our final result in this section concerns the NP-hardness of computing a lexicographic
maximum weakly stable matching, given an instance of smt-1ml. Define the following
decision problem:

restricted lex max smt-1ml-d

Instance: Instance I of smt-1ml, and in addition, a vector 〈c1, . . . , cn〉, where n is
the number of men in I.
Question: Is there a weakly stable matching M in I such that ri(M) ≥ ci, for each
i (1 ≤ i ≤ n)?

We firstly show that restricted lex max smt-1ml-d is NP-complete.

Lemma 5.6. restricted lex max smt-1ml-d is NP-complete.

Proof. Clearly restricted lex max smt-1ml-d is in NP. To show NP-hardness, we
transform from exact mm in subdivision graphs, which is NP-complete as discussed in
the preamble to Theorem 3.1. Hence let G (a subdivision graph of some graph) and K
(a positive integer) be an instance of exact mm. Then G is a bipartite graph, so that
G = (U,W,E), where without loss of generality each vertex in U has degree 2. As in the
proof of Theorem 3.1, we assume that |U | = |W | = n and that K ≤ n.

Let U = {m1, ...,mn} and W = {w1, ..., wn}. We construct an instance I of re-

stricted lex max smt-1ml-d as follows. Let U ∪X∪{p} be the set of men in I, and let
W ∪ Y ∪ {q} be the set of women in I, where X = {x1, ..., xn−K} and Y = {y1, ..., yn−K}.
For each mi ∈ U , let Wi denote the two vertices adjacent to mi in G. The preference lists
of the men in I are as follows:

mi : q (Wi) (Y ) −− (1 ≤ i ≤ n)
xi : (W ) −− (1 ≤ i ≤ n − K)
p : q −−

whilst each woman’s preference list is derived from the following master list of men:

Lm : p (U) (X).

Then I has N men and N women, where N = 2n −K + 1. Define the vector 〈c1, . . . , cN 〉
where c1 = n − K + 2, c2 = n + K and ci = 0 (3 ≤ i ≤ N). We claim that G has a
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maximal matching of size K if and only if I has a weakly stable matching M ′ such that
ri(M

′) ≥ ci (1 ≤ i ≤ N).
For, suppose that G has a maximal matching M , where |M | = K. We construct a

matching M ′ in I as follows. Firstly let M ′ = M ∪ {(p, q)}. There remain n − K men in
U who are as yet unmatched in M ′ – denote these men by mai

(1 ≤ i ≤ n − K). Add
(mai

, yi) to M ′ (1 ≤ i ≤ n − K). Similarly there remain n − K women in W who are as
yet unmatched in M ′ – denote these women by wbj

(1 ≤ j ≤ n−K). Add (xj , wbj
) to M ′

(1 ≤ j ≤ n − K). It is straightforward to verify that M ′ is a weakly stable matching in I
such that ri(M

′) ≥ ci (1 ≤ i ≤ N) as required.
Conversely, suppose that M ′ is a weakly stable matching in I, where ri(M

′) ≥ ci

(1 ≤ i ≤ N). We firstly observe that (p, q) ∈ M ′. It follows immediately from the value of
c1 that each man in X is matched in M ′ to a woman in W . Hence exactly K women in
W are matched in M ′ to a man in U . Now suppose that (mi, wj) ∈ M ′ where wj /∈ Wi.
Then r2(M

′) < K + K + (n − K) = c2, a contradiction. Let M = M ′ ∩ (U × W ). Then
M is a matching in G such that |M | = K. Finally the weak stability of M ′ in I implies
that M is maximal in G.

The main result of this section follows immediately from the above result and the
observation that, in the constructed instance I of restricted lex max smt-1ml-d, any
weakly stable matching M ′ in I satisfies r1(M

′) ≤ c1.

Theorem 5.7. lex max smt-1ml is NP-hard.

6 Super-stable and strongly stable matchings in smti

In this section we describe efficient algorithms to find a super-stable and a strongly stable
matching, whenever such matchings exist, for an instance of smti-1ml. These algorithms
apply, in simplified form, to more specialised variants, such as smti-2ml, smt-1ml and
smt-2ml. We also show that, in this context, if a super-stable matching exists then it
is unique. There may be more than one strongly stable matching, but the set of such
matchings can be clearly identified, and the algorithm that we describe can return any
one of these matchings depending on how the non-determinism within it is resolved. In
both cases, the algorithms use a greedy strategy, and are simpler than the algorithms for
the general case [11, 19].

6.1 Super-stable matchings

Suppose, without loss of generality, that there is a master list of men. There may or
may not be a master list of women, and there may be ties in the master list(s) and/or in
individual preference lists.

The algorithm for a super-stable matching, Algorithm SMTI-ML-Super, appears in
Figure 3. It incorporates a greedy strategy that processes each tie T in the master list
in turn. (Recall that a tie may be of length 1.) The heads of the current preference lists
of the men in T are examined – we refer to the woman (or women) at the head of such
a man’s list as the key woman (or women) for that man. If a man in T has more than
one key woman, or if any two men in T have the same key woman, then, as we will show,
no super-stable matching can exist, and the algorithm returns null. Otherwise each man
in T is paired with his key woman, these pairs are added to the potential super-stable
matching, and the women in question are deleted from the lists of all the other men. If
the end of the master list is reached then, as we will show, the matching so constructed is
the unique super-stable matching for the instance.
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M := ∅;
for each tie T in order in the master list of men {

S := set of men in T with a non-empty list;
if some man in S has a tie of length ≥ 2 at the head of his list

return null;
elsif two men in S have the same woman at the head of their lists

return null;
else {

M := M ∪ {(m, w) : m ∈ S, w at head of m’s list };
delete each such w from all other men’s lists;

}
}
return M ;

Figure 3: Algorithm SMTI-ML-Super

Note that, if the algorithm returns null, say when processing tie T , then for any man
lower than T in the master list, his set of key women is undefined. If a man’s preference
list becomes empty during the execution of the algorithm then the set of key women for
that man is empty. In all other cases, the set of key women for a man is well-defined, and
depends only on the problem instance, since the execution of the algorithm is completely
deterministic.

We now establish the correctness of Algorithm SMTI-ML-Super. We require a prelim-
inary lemma.

Lemma 6.1. (i) Let woman w be a key woman for man m, and let M be a super-stable
matching. Then (m,w) ∈ M .
(ii) If woman w is deleted from man m’s list during Algorithm SMTI-ML-Super then (m,w)
cannot be a pair in any super-stable matching.
(iii) If man m has an empty set of key women then m cannot be matched in any super-
stable matching.

Proof. (i) Suppose that M is a super-stable matching in which m is not matched to w,
and that every man preceding m in the master list is matched to a key woman (necessarily
his unique key woman) in every super-stable matching. We claim that (m,w) must be a
blocking pair for M . First of all, m cannot have a partner in M whom he prefers to w;
the fact that w is a key woman for m means that any preferred woman x must have been
deleted from m’s list before the master list tie containing m was processed during the
algorithm’s execution, hence x is the (unique) key woman for some strict predecessor p of
m in the master list, and by our assumption p must be matched to x in M . Secondly, w
cannot have a partner in M whom she prefers to m, for, again by our assumption, any such
man p is matched in M to his unique key woman y; moreover y 6= w for otherwise w would
have been deleted from m’s list before the master list tie containing m was processed, a
contradiction. This establishes the claim, so there can be no super-stable matching in
which m is not matched to w.
(ii) Suppose that w is deleted from man m’s list during Algorithm SMTI-ML-Super. Then
w must be a key woman for some other man p, and by part (i), must be matched to p in
any super-stable matching.
(iii) Man m has an empty set of key women only if all women have been deleted from his
list, so that the conclusion follows immediately from part (ii).

Theorem 6.2. (a) If Algorithm SMTI-ML-Super returns a matching M then M is the
unique super-stable matching for the given instance of smti-1ml.
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(b) If Algorithm SMTI-ML-Super returns null then there is no super-stable matching for
the given instance of smti-1ml.

Proof. (a) Suppose that the algorithm returns matching M , and that the pair (m,w) is a
blocking pair of M as a super-stable matching. Suppose first that m is unmatched in M .
Then at the point where the algorithm processes the master list tie T containing m, m’s
preference list must be empty. So w must have been removed from m’s list when some
earlier tie was processed, and as a consequence w must prefer M(w) to m. Now suppose
that m prefers w to M(m). As in the previous case, w must have been removed from m’s
list when some earlier tie was processed, so that w prefers M(w) to m. Finally, if w and
M(m) appear in the same tie on m’s list then either the previous case applies again, or m
has at least two key women, a contradiction in either case.

The fact that M is the unique super-stable matching follows at once from Lemma
6.1(i).

(b) First suppose that the algorithm returns null because two men m and p have the
same sole key woman w. By Lemma 6.1, m and p must both be matched to w in any
super-stable matching, so there can be no such matching.

Now suppose that the algorithm returns null because some man m has two key women,
say w and x. Then, again by Lemma 6.1(i), m must be matched in M to both w and x,
so again there can be no such matching.

For the complexity analysis, we make the not unreasonable assumption that every man
appears in the preference list of at least one woman, so that the sum a of the lengths of
the preference lists is at least n. It is not hard to see that, implemented with suitable
data structures, each deletion can be accomplished in constant time, so that Algorithm
SMTI-ML-Super has complexity O(a).

6.2 Strongly stable matchings

The algorithm for a strongly stable matching, Algorithm SMTI-ML-Strong, appears in
Figure 4. Again it is based on a greedy strategy that processes each tie T in the master
list in turn. The concept of key women is defined as before. However this time, the
existence of a strongly stable matching implies a weaker necessary condition on the sets of
key women, namely that their union is equal in size to the set of men in T , and that they
have a set of distinct representatives (SDR). If this is not the case, then the algorithm
returns null, and as we will show, there cannot be a strongly stable matching. Otherwise,
each of the men in T is matched with a different key woman, these pairs are added to the
potential strongly stable matching, and the women in question are deleted from the lists of
all other men. If the end of the master list is reached, then as we will show, the matching
so constructed is a strongly stable matching, and all such matchings can be obtained by
an execution of this algorithm (with suitable choices of SDRs at each stage).

We now establish the correctness of Algorithm SMTI-ML-Strong. We require a prelim-
inary lemma whose statement and proof are analogous to those of Lemma 6.1.

Lemma 6.3. (i) Let w1, . . . , wr be the set of key women for man m, and let M be a
strongly stable matching. Then (m,wi) ∈ M for some i (1 ≤ i ≤ r).
(ii) If woman w is deleted from man m’s list during Algorithm SMTI-ML-Strong then
(m,w) cannot be a pair in any strongly stable matching.
(iii) If man m has an empty set of key women then m cannot be matched in any strongly
stable matching.
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M := ∅;
for each tie T in order in the master list of men {

let {m1, . . . , mk} be the set of men in T with a non-empty list;
let Wi be the set of key women for mi (1 ≤ i ≤ k);
if |W1 ∪ . . . ∪ Wk| = k and W1, . . . , Wk have an SDR {

let w1, . . . , wk be an SDR for W1, . . . , Wk;
for i in 1 . . . k {

M := M ∪ {(mi, wi)};
delete wi from the list of each successor of mi in the master list;

}
}
else

return null;
}
return M ;

Figure 4: Algorithm SMTI-ML-Strong

Proof. (i) Suppose that M is a strongly stable matching in which m is not matched to any
of his key women, and that every man preceding m in the master list is matched to a key
woman x in every strongly stable matching. Note that this assumption also implies that
all of these women x are matched in M to a man for whom they are a key woman (since
there are exactly the right number of them). Then at least one of m’s key women, say wi,
is not matched in M to any of the men tied with m in the master list, since the number of
such men must be equal to the size of the union of their sets of key women. We claim that
(m,wi) must be a blocking pair for M . First of all, m cannot have a partner in M whom
he prefers to wi; the fact that wi is a key woman for m means that any preferred woman y
must have been deleted from m’s list before the master list tie containing m was processed
during the algorithm’s execution, hence y is a key woman for some strict predecessor(s)
of m in the master list, and by our assumption y must be matched to such a predecessor
in M . Nor, by our assumption, can m have a partner tied with wi in his preference list
– so m must strictly prefer wi to his partner in M (or is unmatched in M). Also, wi

cannot have a partner in M whom she prefers to m, for, again by our assumption, any
such man p is matched in M to a key woman z; moreover z 6= wi for otherwise wi would
have been deleted from m’s list before the master list tie containing m was processed, a
contradiction. This establishes the claim, so there can be no strongly stable matching in
which m is not matched to one of his key women.
(ii) Suppose that w is deleted from man m’s list during Algorithm SMTI-ML-Strong. Then
w must be a key woman for some other man p, and by part (i), and the fact that there
are just enough key women to be matched with the tied men at each stage, she must be
matched to p, or some man tied with p in the master list, in any strongly stable matching.
As m is a successor of p on the master list, it follows that (m,w) cannot belong to a
strongly stable matching.
(iii) Man m has an empty set of key women only if all women have been deleted from his
list, so that the conclusion follows immediately from part (ii).

Theorem 6.4. (a) If Algorithm SMTI-ML-Strong returns a matching M then M is a
strongly stable matching for the given instance of smti-1ml.
(b) If Algorithm SMTI-ML-Strong returns null then there is no strongly stable matching
for the given instance of smti-1ml.
(c) Every strongly stable matching is returned by some execution of the algorithm with
appropriate choice of SDR at each stage.
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Proof. (a) Suppose that the algorithm returns matching M , and that the pair (m,w) is a
blocking pair of M as a strongly stable matching. Suppose first that m is unmatched in
M . Then at the point where the algorithm processes the master list tie T containing m,
m’s preference list must be empty. So w must have been removed from m’s list when some
earlier tie was processed, and as a consequence w must prefer M(w) to m, a contradiction.
Next suppose that m prefers w to M(m). As in the previous case, w must have been
removed from m’s list when some earlier tie was being processed, so that w prefers M(w)
to m. Finally, if w and M(m) appear in the same tie on m’s list then either the previous
case applies again, or w and M(m) are both key women for m. In this latter case, the
algorithm will match w to some other man in tie T , so that (m,w) does not, after all,
form a blocking pair.

(b) For a tie T in the master list, let S = {m1, . . . ,mk} be the set of men in T with a
non-empty list when T is processed, and let Wi be the set of key women for mi (1 ≤ i ≤ k).
Suppose that |⋃Wi| < k or that W1, . . . ,Wk do not have an SDR. Then, in a would-be
strongly stable matching M , some man m in S is not matched to a key woman, which is
a contradiction to Lemma 6.3(i).

Now suppose that |⋃Wi| > k. Then if M is a strongly stable matching, there is some
woman w who is a key woman for a man m in S, but who is not matched in M to a man
in S. She cannot be matched to a man in T \ S since, by Lemma 6.3(iii) such men are
unmatched in M . And nor can she be matched to a man that precedes T in the master
list, since she cannot be a key woman for any such man. So w prefers m to her partner
in M , or is unmatched in M . Since, by Lemma 6.3(i), m must be matched in M to a key
woman, and therefore does not prefer w to his partner in M , the pair (m,w) is a blocking
pair of M .

(c) Let M be a strongly stable matching for the given instance. As observed earlier, M
must consist of a set of pairs (m,w) where w is a key woman for m, and every man who
has a key woman is matched with one of them. It is immediate that any such matching
can be generated by an application of the algorithm.

The complexity of algorithm SMTI-ML-Strong is dominated by the need to check for
the existence of a system of distinct representatives. If the ties T1, . . . Tk in the master
list are of lengths t1, . . . , tk, then all the checks for an SDR using the perfect matching
algorithm of Hopcroft and Karp [9] can be achieved in O(Σ

√
timi) time, where mi is the

number of (man, woman) pairs (m,w) such that m belongs to Ti and w is a key woman for
m. Here Σti = n and Σmi ≤ a. Hence the overall complexity of the algorithm is O(

√
na),

which contrasts with the best known bound for a strongly stable matching in a general
instance of smti, namely O(na) [18].

7 Summary and conclusion

In this paper we have presented a range of algorithmic results for variants of sm where
individual preference lists may be derived from master lists of the men and/or women.
Many of our results refer to the weak stability criterion – these results are summarised
in Table 1. The table rows labelled ‘Maximum’, ‘Min regret’, ‘Egalitarian’ and ‘Lexico-
graphic’ refer to the problems of finding a maximum, minimum regret, egalitarian and
lexicographic maximum weakly stable matching, given an instance of the problem speci-
fied in each column. The table row labelled ‘Stable pair’ refers to the problem of deciding
whether a given (man, woman) pair is weakly stable, given an instance of the problem
specified in each column. In the body of the table, ‘P’ denotes polynomial-time solvable,
whilst ‘N’ denotes NP-hard. Entries corresponding to ‘Min Regret’, ‘Egalitarian’ and
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‘Lexicographic’ in smti-2ml are not given, since these problems are not well-defined for
smti (in view of the fact that weakly stable matchings can have different sizes).

smi-1ml smti-2ml smt-2ml smt-1ml

Maximum P N P P
Stable pair P N P N
Min regret P – P N
Egalitarian P – P N

Lexicographic P – P N

Table 1: Summary of results for master list problems involving weak stability.

Many of the results presented in this paper first appeared in Chapter 8 of [26], to which
we refer the interested reader for more details concerning the algorithmic complexity of
variants of smti involving master lists.

As described in Section 1, stable matching problems with master lists arise in large-
scale applications such as the assignment of junior doctors to hospitals. The NP-hardness
and inapproximability results presented in this paper for variants of smt under weak
stability involving master lists clearly carry over to the corresponding variants of hrt.
Furthermore, the algorithms for smti-1ml under strong stability and super-stability have
been extended to the hrt-1ml case [23].

Also, in many practical applications, the preference lists of at least one side tend to
be short. If we combine this constraint with the presence of one or two master lists, then
we are led to instances of smti and its variants where the individual preference lists on
a given side are both of bounded length and derived from a given master list. Theorem
3.3 shows that max smti-2ml is NP-hard, even if the length of each man’s individual list
is at most L1 and that of each woman’s individual list is at most L2, where L1 = 4 and
L2 = 3. This leaves open the complexity of the problem when L1 < 4 and/or L2 < 3.
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