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GENERALIZED MAASS RELATIONS AND LIFTS

SHUICHI HAYASHIDA

1. INTRODUCTION

Let $S_{k-\frac{1}{2}}^{+(1)}$ be the space of the cusp forms in the Kohnen plus space of weight

$k- \frac{1}{2}$ . The purpose of this exposition is to explain the lifting map:

$S_{k-n+\frac{1}{2}}^{+(1)} \cross S_{k-\frac{1}{2}}^{+(1)} arrow S_{k-\frac{1}{2}}^{+(2n-2)}$

(1) $(v$

$(f g)$ $\mapsto \mathcal{F}_{f,g}$

Namely, it is a lifting map from pairs of elliptic modular forms of half-integral
weight to Siegel modular forms of half-integral weight of even degree. Here
$S_{k-\frac{1}{2}}^{+(2n-2)}$ is the space of the cusp forms of the generalized plus space of weight

$k- \frac{1}{2}$ of degree $2n-2$ , which is a certain subspace of Siegel cusp forms of weight
$k- \frac{1}{2}$ of degree $2n$ . The case $2n-2=2$ had been announced in [Ha llb], and
in this exposition we will explain the above lifts for arbitral even positive integers
$2n-2.$

In the above lifts we need the assumption that the constructed $\mathcal{F}_{f,g}$ is not
identically zero. We checked by numerical calculations that $\mathcal{F}_{f,g}$ is not identically

zero for $(n, k)$ which satisfy $n\leq 6,$ $k\leq 18$ and $\dim S_{k-n+\frac{1}{2}}^{+(1)}\cross\dim S_{k-\frac{1}{2}}^{+(1)}\neq$ O.

Therefore, we expect that any $\mathcal{F}_{f,g}$ is not identically zero. The main theorem is

Theorem 1 ([Ha15 Let $k$ be an even integer and $n$ be a natural number. Let
$f\in S_{k-n+\frac{1}{2}}^{+(1)}$ and $g\in S_{k-\frac{1}{2}}^{+(1)}$ be Hecke eigenforms. Then there exists $\mathcal{F}_{f,g}\in S_{k-\frac{1}{2}}^{+(2n-2)}.$

Under the assumption that $\mathcal{F}_{f,g}$ is not identically zero, the form $\mathcal{F}_{f,g}$ is a Hecke
eigenform and the Zhuravlev $L$ -function $L(s, \mathcal{F}_{f,g})$ of $\mathcal{F}_{f,g}$ satisfies

$L(s, \mathcal{F}_{f,g}) = L(s, 9)\prod_{i=1}^{2n-3}L(s-i, f)$ .

Here the Zhuravlev $L$ -junction is a generalization of the Shimura $L$ -function which
is a $L$ -function of modular $for^{\gamma}ms$ of half-integral weight. $L(s, g)$ and $L(\mathcal{S}, f)$ are
the Shimura $L$ -junction of $g$ and $f$ , respectively. The above identity involves also
the Euler 2-factors.

The above lift was first conjectured by Ibukiyama and the author [H-I 05] for
the case $2n-2=2$ . The construction of $\mathcal{F}_{f,g}$ was suggested by T. Ikeda to the
author. To show the fact that $\mathcal{F}_{f,g}$ is a Hecke eigenform, we will use a generalized
Maass relation.
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We remark that $\mathcal{F}_{f,g}$ satisfies the generalized Ramanujan conjecture if $2n-2=$
$2$ . It means that the absolute value of the p-th parameters of $\mathcal{F}_{f,g}$ are all the same
for each fixed prime $p$ . And if $2n-2\geq 4$ , then the constructed lift $\mathcal{F}_{f,g}$ does not
satisfy the generalized Ramanujan conjecture.

We now explain the generalized Maass relations. The usual Maass relation is
a certain relation among Fourier coefficients of certain Siegel modular forms of
integral weight of degree 2. In particular, the Siegel-Eisenstein series of degree 2
and the Saito-Kurokawa lifts satisfy the Maass relation. Several generalizations of
the Maass relation for higher degree or for half-integral weight have been known
for the following cases:

$\bullet$ Siegel-Eisenstein series of integral weight of higher degree (cf. [Yk 86,
Yk 89, Ha 13])

$\bullet$ Siegel-Eisenstein series of half-integral weight of degree 2 (cf. [Ta 86])
$\bullet$ The Ikeda lifts (cf. [Ko 02, K-K 05, Yn 10, Ha 13, G-H 15

In this exposition we also explain a new generalization of the Maass relation
for Siegel modular forms of half-integral weight of general degrees. For example,

some Siegel modular forms which satisfy the generalized Maass relation of half-
integral weight are constructed by the composition of the three linear maps: the
Ikeda lifts, the 1st Fourier-Jacobi map and the Eichler-Zagier-Ibukiyama corre-
spondence. Here the 1st Fourier-Jacobi map is the map from Siegel modular form
to Jacobi forms of index 1 by the Fourier-Jacobi expansion. We remark that
the Ikeda lift is a linear map, if we regard it as a lifting map from the Kohnen
plus-space.

To construct $\mathcal{F}_{f_{9}},\in S_{k-\frac{1}{2}}^{+(2n-2)}$ we first construct a Siegel modular form of half-

integral weight $F\in S_{k-\frac{21}{2}}^{+(n-1)}$ from $f\in S_{k-n+\frac{1}{2}}^{+(1)}$ in the above manner. Then we

will show that $F$ satisfies the generalized Maass relation of half-integral weight, if
$f$ is a Hecke eigenform. The form $\mathcal{F}_{f,g}$ is constructed from the pair $(F, g)$ . Once
we show the fact that $F$ satisfies the generalized Maass relation, it is not difficult
to show that $\mathcal{F}_{f,g}$ is a Hecke eigenform and the Hecke eigen values of $\mathcal{F}_{f,g}$ are
also calculated by the formula of the generalized Maass relation. The difficult
part of the proof of Theorem 1 is to show that $F$ satisfies the generalized Maass
relation. It is shown from the fact that the form $F$ is constructed through the Ikeda
lift and that $F$ satisfies a similar formula which Siegel-Eisenstein series satisfies.
Therefore, we need to investigate the Siegel-Eisenstein series. In particular, we
need to investigate a certain Siegel modular form of half-integral weight which
is obtained by the Eichler-Zagier-Ibukiyama correspondence of the l-st Fourier
Jacobi coefficient of Siegel-Eisenstein series. Such a Siegel modular form of half-
integral weight can be regarded as a generalization of the Cohen-Eisenstein series
for general degree.

In Section 2 we will explain a generalized Maass relation for Siegel modular
forms of integral weight. In Section 3 we will explain a generalized Maass rela-
tion for Siegel modular forms of half-integral weight and give briefly the proof of
Theorem 1.
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In this exposition we use the following notation: We denote by $\mathfrak{H}_{n}$ the Siegel
upper half space of degree $n$ and denote by $Sp(n, K)$ the symplectic group of
size $2n$ with entries in a commutative ring $K$ . We set $\Gamma_{n}$ $:=Sp(n, \mathbb{Z})$ . We put
$e(A):=\exp(2\pi itr(A))$ for any symmetric matrix $A$ . The symbol $M_{k}^{n}$ denotes the
vector space of all Siegel modular forms of weight $k$ of degree $n$ . We write $S_{k}^{n}$ for
the vector space of all Siegel cusp forms in $M_{k}^{n}.$

2. GENERALIZED MAASS RELATIONS OF INTEGRAL WEIGHT

We start with the following question. Let $F\in 1II_{k}^{n+r}$ be a Siegel modular
form of degree $n+r$ . We consider the pullback of $F$ with respect to the map
$\mathfrak{H}_{n}\cross \mathfrak{H}_{r}arrow \mathfrak{H}_{n+r}$ :

(2)
$F((_{0\omega}^{\tau 0})) = \sum_{g_{i}:Heckeeigenform}f_{i}(\tau)g_{i}(\omega).(\tau\in \mathfrak{H}_{n}, \omega\in \mathfrak{H}_{r}\cdot)$

Here $g_{i}$ runs over all forms in a Hecke eigenbasis of $M_{k}^{r}$ . The question is

(Q1) Is $f_{i}$ a Hecke eigenform?

For usual Siegel modular form $F$ we can not expect that the answer for (Q1)

is true. However, if $F$ is a Siegel-Eisenstein series then it is known that $f_{i}$ is
essentially a Klingen type Eisenstein series and the answer for (Q1) is true.

T. Ikeda showed that the answer for (Q1) is true for Ikeda lifts $F.$

Theorem 2 $([Ik06 Let k\in 2\mathbb{Z} and n, r\in \mathbb{N}(r\leq n)$ . Let $F\in S_{k}^{2n}$ be a lkeda

lift of a Hecke eigenform $h\in S_{2k-2n}^{1}$ . Let $f_{i}$ be as in (2). If $f_{i}\not\equiv 0$ , then $f_{i}\in S_{k}^{2n-r}$

is a Hecke eigenform which satisfies

$L(s, f_{i}, \mathcal{S}l)=L(s, g_{i}, \mathcal{S}t)\prod_{j=1}^{2n-2r}L(\mathcal{S}+k-r-j, h)$ .

Here $L(\mathcal{S}, f_{i}, st)$ is the standard $L$-junction of $f_{i}$ . Namely, it gives a lifting map

for even integer $k$ :

$S_{2k-2n}^{1} \cross S_{k}^{r} arrow S_{k}^{2n-r}$

(3) $(v (v (v$
$(h g_{i}) \mapsto f_{i}$

In this exposition we call the lifts in Theorem 2 Miyawaki lifts.
The Miyawaki lifts were first conjectured by Miyawaki [Mi 92] in the case

$(n, r)=(2,1)$ . He calculated some Euler factors of the spinor $L$-fUnctions of
Siegel modular forms of degree 3 of weight 12 and also of weight 14 and he ob-
tained two kinds of conjectures. The above Miyawaki lifts are generalizations
of one of the Miyawaki’s conjectures. Here the other Miyawaki’s conjecture is a
conjecture about the existence of the lifting map:

$S_{2k-2}^{1} \cross S_{k-2}^{1} arrow S_{k}^{3}$

and is still an open problem (see also [Ik 06, Remark 2.1]).
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As for the expression of the spinor $L$-function of Miyawaki lifts in the case of
$r=1$ of the map (3), we have

Theorem 3 ([He12] $(n=2)$ , [Ha 14] $(n\geq 3$ Assume $r=1$ . Let $f_{i}\in S_{k}^{2n-1}$ be
as in Theorem 2. If $f_{i}\not\equiv 0$ , then we have

$L(s, f_{i}, spin) =$

$\prod_{m=1}^{n}\prod_{j}L(s-(n-m)(k-n)+j, g_{i}\otimes sym^{m-1}h)^{R_{m-1,m-1}(j)}.$

Here $h\in S_{2k-2n}^{1}$ is the preimage of the Ikeda lift $F$ , and $L(s, f_{i}, spin)$ is the spinor
$L$ -junction of $f_{i}$ . And where $L(s, g_{i}\otimes sym^{m}h)$ is a symmetric power $L$ -function of
$g_{i}$ and $h$ . The natural number $R_{m,m}(j)$ is determined by a certain combinatorial
way. In the second product $j$ runs over certain integers in a finite set. For the
detail of this theorem and of symbols the reader is referred to [He 12, Ha 14].

To show Theorem 3 we used the generalized Maass relations for Siegel modular
forms of integral weight of general degrees. We can expect that Theorem 3 for
$r>1$ will be obtained, if we get the corresponding generalized Maass relations of
integral weight.

3. GENERALIZED MAASS RELATIONS OF HALF-INTEGRAL WEIGHT

We consider the same question of (Q1) for the case of the Siegel modular forms

of half-integral weight. Let $F\in S_{k-\frac{1}{2}}(\Gamma_{0}^{(n+r)}(4))$ be a Siegel modular form of

weight $k- \frac{1}{2}\in \mathbb{Z}-\frac{1}{2}$ of degree $n+r$ . We take an expansion:

$F((\begin{array}{l}0\tau 0\omega\end{array}))$ $=$ $\sum$ $f_{i}(\tau)g_{i}(\omega)$ . $(\tau\in \mathfrak{H}_{n}, \omega\in \mathfrak{H}_{r}\cdot)$

$g_{i}$ :Hecke eigen form

Here $g_{i}$ runs over all forms in a Hecke eigenbasis of the vector space $M_{k-\frac{1}{2}}(\Gamma_{0}^{(r)}(4))$ .

Here $M_{k-\frac{1}{2}}(\Gamma_{0}^{(r)}(4))$ denotes the space of Siegel modular forms of weight $k- \frac{1}{2}$ of
degree $r$ . The question is

(Q2) Is $f_{i}$ a Hecke eigenform?

To give a partial answer for the question (Q2) we consider the composition of
the following three maps. From now on we assume $k\in 2\mathbb{Z}.$

(4)

$f\in S_{k-n-\frac{3}{2}}^{+(1)}$
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where $J_{k,1}^{(2n-1)cusp}$ is the space of Jacobi cusp forms of weight $k$ of index 1 and

of degree $2n-1$ , and where $S_{k-\frac{1}{2}}^{+(2n-1)}$ consists of cusp forms in the generalized

plus space of weight $k- \frac{1}{2}$ of degree $2n-1$ . Here 1st F-J,, is the map which is
obtained by Fourier-Jacobi expansion and “E-Z I,, is the Eichler-Zagier-Ibukiyama
correspondence (cf. [Ib 92 It is shown in [Ha lla] that if $f$ is a Hecke eigenform,
then $F$ is not identically zero and is a Hecke eigenform, and the Zhuravlev L-

function $L(s, F)$ of $F$ satisfies

$L(s, F) = \prod_{i=0}^{2n-2}L(s-i, f)$ .

Here $L(s, f)$ is the Shimura $L$-function of $f$ which coincides with a usual L-
function of an elliptic modular form of integral weight with respect to $SL(2, \mathbb{Z})$ .

For any Hecke eigenform $G\in S_{k-\frac{1}{2}}^{+(n)}$ the Zhuravlev $L$-function of $G$ is defined

by

$L(s, G) := \prod_{p}\prod_{j=1}^{n}\{(1-\beta_{p,j}p^{-s+k-\frac{3}{2}})(1-\beta_{p,j}^{-1}p^{-s+k-\frac{3}{2}})\}^{-1}$

Here $\{\beta_{p,j}^{\pm}\}_{j=1,n}$ is the $p$-parameters of $G$ in the sense [Zh 84, \S 10] for odd prime

$p$ . For $p=2$ we define $\{\beta_{2,j}^{\pm}\}_{j=1,n}$ by using the Hecke eigenvalues of a Jacobi form

in $J_{k,1}^{(n)}$ which corresponds to $G$ by the Eichler-Zagier-Ibukiyama correspondence.

We now explain the generalized Maass relations for half-integral weight.
Let

(5)
$F( (\begin{array}{ll}\tau ztz \omega\end{array}))=\sum_{m\in \mathbb{Z}}\phi_{m}(\tau, z)e(m\omega) (\tau\in \mathfrak{H}_{n}, \omega\in \mathfrak{H}_{1})$

be the Fourier-Jacobi expansion of $F$ which is constructed in (4). We remark that
$\phi_{m}$ is identically zero unless $m\equiv 0$ , 3 mod4, since $F$ belongs to the generalized

plus-space $S_{k-\frac{1}{2}}^{+}(\Gamma_{0}^{(2n-1)}(4))$ and due to the definition of the generalized plus-space.

Theorem 4 ([Ha15 We have the identity

$(\phi_{m}|\tilde{V}_{0,2n-2}(p^{2}), \phi_{m}|\tilde{V}_{1,2n-3}(p^{2}), \phi_{m}|\tilde{V}_{2n-2,0}(p^{2}))$

$= ( \phi_{\frac{m}{p}z}|U_{p^{2}}, \phi_{m}|U_{p}, \phi_{mp^{2}})(p^{k-2}00p^{k-2}p^{2k-3}1(\frac{-m}{p}))A(\alpha_{p})$

for any prime $p$ . (The both sides are vectors of Jacobi forms of index $mp^{2}$).
Here $A(\alpha_{p})$ is a certain $2\cross(2n-1)$ matrix which depends on the choice of $f\in$

$S_{k-n-\frac{3}{2}}^{+(1)}$ and does not depend on the choice of $m$ , and where $\{\alpha_{p}^{\pm 1}\}_{p}$ are the Satake

parameters of $f$ in the sense [Ik 01], and where the operators $\tilde{V}_{i,2n-2-i}(p^{2})(i=$

$0,$ $2n-2)$ and $U_{pJ}(j=1, 2)$ are generalizations of $V$ -operator and $U$ -operator
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in the book of Eichler-Zagier [E-Z 85]. These are maps

$\tilde{V}_{i,2n-2-i}(p^{2})$ : $J_{k-\frac{1}{2},m}^{(2n-2)}arrow J_{k-\frac{1}{2},mp^{2}}^{(2n-2)},$

$U_{p^{j}}$ : $J_{k-\frac{1}{2},m}^{(2n-2)}arrow J_{k-\frac{1}{2},mp^{2j}}^{(2n-2)}$

for odd prime $p$ . Here $J_{k-\frac{1}{2},m}^{(2n-2)}$ denotes the space of Jacobi forms of weight $k- \frac{1}{2}$

of index $m$ of degree $2n-2$ . For $p=2$ we can introduce the operators $\tilde{V}_{i,2n-2-i}(4)$

and $U_{2j}$ through the relation between Jacobi forms of half-integral weight of integer
index and Jacobi forms of integral weight of matrix index.

We remark that the generalized Maass relations depends on the choice of $f,$

besides the usual Maass relation does not depend on the choice of the preimage of
the Saito-Kurokawa (Maass) lift. To obtain Theorem 4 we needed to show similar
identities for Siegel Eisenstein series. It means that we take the Siegel Eisenstein
series instead of the Ikeda lift $I(f)$ and Theorem 4 holds for Siegel Eisenstein
series. The steps for the proof of Theorem 4 are as follows.

(i) By the virtue of the Ikeda lift, it is enough to show Theorem 4 for the
case of generalized Cohen-Eisenstein series. Here the generalized Cohen-
Eisenstein series are certain Siegel modular forms of half-integral weight,
which are not cusp forms. (As for the definition of Cohen-Eisenstein series,
see [Co 75] for degree one and [Ar 98] for general degree).

(ii) Show certain linear isomorphisms between the space of certain Jacobi
forms of half-integral weight of integer index and the space of Jacobi forms
of integral weight of matrix index.

(iii) Show a compatibility between the linear isomorphisms in (ii) and certain
operators which shift the indices of Jacobi forms.

(iv) We use relations between Fourier-Jacobi coefficients of Siegel-Eisenstein
series and Jacobi-Eisenstein series of matrix index which is obtained by
S. Boecherer [Bo 83].

(v) Calculate the action of shift operators on Jacobi-Eisenstein series of matrix
index explicitly.

(vi) Obtain Theorem 4 for the case of generalized Cohen-Eisenstein series by
using (.ii), (iii), (iv) and (v).

For the detail of the proof of Theorem 4, the reader is referred to [Ha 15, Theorem
8.2].

We also remark that $\phi_{m}(\tau, 0)$ belongs to $S_{k-\frac{1}{2}}^{+}(\Gamma_{0}^{(2n-2)}(4))$ . By the virtue of the

definition of $\tilde{V}_{i,2n-2-i}(p^{2})$ we have the identity

(6) $(\phi_{m}|\tilde{V}_{i,2n-2-i}(p^{2}))(\tau, 0) = \phi_{m}(\tau, 0)|\tilde{T}_{i,2n-2-i}(p^{2})$ .

Here $\tilde{T}_{i,2n-2-i}(p^{2})$ is a Hecke operator acting on $S_{k-\frac{1}{2}}^{+}(\Gamma_{0}^{(2n-2)}(4))$ , which corre-

sponds to the double coset $\Gamma_{2n-2}diag(1_{i},p1_{2n-2-i},p^{2}1_{i},p1_{2n-2-i})\Gamma_{2n-2}.$
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By using Theorem 4 we shall show Theorem 1. Let $F$ be the form as before
which is constructed in (4). We write

$F((_{0\omega}^{\tau 0})) = \sum_{g:Heckeeigenform}\mathcal{F}_{f_{9}},(\tau)g(\omega). (\tau\in \mathfrak{H}_{n}, \omega\in \mathfrak{H}_{1}\cdot)$

Here $g$ runs over all modular forms in a Hecke eigenbasis of the Kohnen plus

space $S_{k-\frac{1}{2}}(\Gamma_{0}^{(1)}(4))$ . We normalize $g$ such that the eigenvalues of $g$ are all real

numbers. Remark that we write $\mathcal{F}_{f,g}$ instead of $f_{i}$ in the question (Q2). Thus,

we constructed $\mathcal{F}_{f,g}\in S_{k-\frac{1}{2}}^{+(2n-2)}$ from $(f, g)\in S_{k-n+\frac{1}{2}}^{+(1)}\cross S_{k-\frac{1}{2}}^{+(1)}$ and it gives the map

(1).
We write the matrix $A(\alpha_{p})=(a_{j,i})_{j,i}(1\leq j\leq 3,0\leq i\leq 2n-2)$ . We

now assume that $\mathcal{F}_{f,g}$ is not identically zero. The Hecke operator $\tilde{T}_{i,2n-2-i}(p^{2})$

(resp. $\tilde{T}_{1,0}(p^{2})$ ) acts on $F((\begin{array}{l}0\tau 0\omega\end{array}))$ as a function of $\tau$ (resp. of $\omega$ ), and we write it
$F((_{0\omega}^{\tau 0}))|{}_{\tau}\tilde{T}_{i,2n-2-i}(p^{2})$ $($ resp. $F((_{0\omega}^{\tau 0}))|{}_{\omega}\tilde{T}_{1,0}(p^{2}))$ . We remark

$F((_{0\omega}^{\tau 0}))|{}_{\omega}\tilde{T}_{1,0}(p^{2})$

(7)
$= \sum_{m}(p^{2k-3}\phi_{\overline{p}}m_{Z}(\tau, 0)+(\frac{-m}{p})p^{k-2}\phi_{m}(\tau, 0)+\phi_{mp^{2}}(\tau, 0))e(m\omega)$ .

Due to the identities (5), (6), (7) and Theorem 4, we have

$F((_{0\omega}^{\tau 0}))|{}_{\tau}\tilde{T}_{i,2n-2-i}(p^{2})$ $=$ $\sum_{m}(\phi_{m}(\tau, 0)|{}_{\tau}\tilde{T}_{i,2n-2-i}(p^{2}))e(m\omega)$

$= \sum_{m}(\phi_{m}|\tilde{V}_{i,2n-2-i}(p^{2}))(\tau, 0)e(m\omega)$

$= \sum_{m}\sum_{j=1}^{3}a_{j,i}\phi_{mp^{2j-4}}(\tau, 0)e(m\omega)$

$= b_{1,i}p^{k-2}F((_{0\omega}^{\tau 0}))+b_{2},{}_{i}F((_{0\omega}^{\tau 0}))|{}_{\omega}\tilde{T}_{1,0}(p^{2})$

Here $b_{1,i}$ and $b_{2,j}$ are complex numbers which are determined by

$A(\alpha_{p}) = (\begin{array}{llll}b_{1,0} b_{l,l} \cdots b_{1,2n-2}b_{2,0} b_{2,1} \cdots b_{2,2n-2}\end{array})$

Hence

$(\mathcal{F}_{f,g}|\tilde{T}_{i,2n-2-i}(p^{2}))(\tau)$

$= \frac{1}{6\langle g,g\rangle}\int_{\Gamma_{0}(4)\backslash \mathfrak{H}_{1}}(F((_{0\omega}^{\tau 0}))|{}_{\tau}\tilde{T}_{i,2n-2-i}(p^{2}))\overline{g(\omega)}{\rm Im}(\omega)^{k-\frac{5}{2}}d\omega$

$= b_{1,i}p^{k-2}\mathcal{F}_{f,g}(\tau)+b_{2,i}\lambda_{g}(p^{2})\mathcal{F}_{f,g}(\tau)$ ,

where $\lambda_{g}(p^{2})$ denotes the Hecke eigenvalue of $g$ for $\tilde{T}_{1,0}(p^{2})$ . Thus we conclude that
$\mathcal{F}_{f,g}$ is a Hecke eigenform and the Hecke eigenvalues are $\{b_{1,i}p^{k-2}+b_{2,i}\lambda_{g}(p^{2})\}.$

The explicit formula of $A(\alpha_{p})$ is obtained by a reduction with respect to the
degree $2n-2$ , which is a generalization of the Krieg-Zarikovskaya’s Theorem (cf.
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[Kr 86, Ha 15 The Zhuravlev L–function of $\mathcal{F}_{f,g}$ is calculated by using the fact
that $A(\alpha_{p})$ is obtained through the eigenvalues of Siegel-Eisenstein series. Thus,
we conclude Theorem 1.
If we fix $k,$ $n$ and $g$ , then we can check whether $\mathcal{F}_{f,g}\not\equiv 0$ or not by a numerical

computation, because the Fourier coefficients of $F((\begin{array}{l}0\tau 0\omega\end{array}))$ and $g$ are computable
(if $k$ and $n$ are small). At least if $(n, k)$ satisfies the conditions $n\leq 6,$ $k\leq 18$ and
$\dim S_{k-n+\frac{1}{2}}^{+(1)}\cross\dim S_{k-\frac{11}{2}}^{+()}\neq 0$ , then all $\mathcal{F}_{f,g}\in S_{k-\frac{1}{2}}^{+(2n-2)}$ satisfy $\mathcal{F}_{f,g}\not\equiv 0.$
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