

Bounded arithmetic theory for the counting functions and Toda＇s theorem

Satoru Kuroda
Gunma Prefectural Women＇s University

Abstract

In this paper we give a two sort bounded arithmetic whose provably total functions coincide with the class $F P^{\# P}$ ．Our first aim is to show that the theory proves Toda＇s theorem in the sense that any formula in Σ_{∞}^{B} is provably equivalent to a Σ_{0}^{B} formula in the language of $F P^{\# P}$ ．We also argue about some problems concerning logical theories for counting classes．

1 Introduction

In this note，we argue about logical theories for the counting class $P^{\# P}$ ．In［2］，Toda proved the celebrated result that $P H \subseteq P^{\# P}$ ，thus the whole polynomial hierarchy collapses to polynomial time with the aid of \＃P oracles．

In the context of Bounded Reverse Mathematics，it is natural to ask whether there is a minimal theory for $F P^{\# P}$ which proves Toda＇s theorem．Here，minimal intuitively means that it provably defines all functions in $F P^{\# P}$ and any such theory contains it．

Toda＇s original proof is divide it into two part；firstly it is proved that $P H$ is prob－ abilistically simulated in polynomial time with oracle access to $\oplus P$ ，then $B P \cdot \oplus P$ is derandomized by the counting function．

In［1］，Buss et．al．proved that the first part of Toda＇s theorem can be formalized and proved in their theory $A P C_{2}^{\oplus_{p} P}$ which extends T_{2}^{1} by the modular counting quantifier and surjective weak pigeonhole principle for $P V_{2}^{\oplus_{p} P}$ functions．

Here we pose on the problem of whether a minimal theory for $P^{\# P}$ proves the whole Toda＇s theorem．A candidate for such a theory is $P V$ or S_{2}^{1} extended by axioms stating that
for any PTIME relation $\varphi(\bar{X}, Y)$ and a term t we can compute $C_{\varphi}(\bar{X})=\# Y<$ $t \varphi(\bar{X}, Y)$ ．

However，it seems that we need some extra concept for proving Toda＇s theorem．The main obstacle is that Toda＇s proof requires a bijection defined by $P V_{2}$ functions，which is not known to be formalized in our theory．

Below we will give a sketch of a partial result on the provability of the whole Toda＇s theorem together with some open problems．

2 A Theory for $P^{\# P}$

First we overview complexity classes which are treated in this paper. Let $F P$ denote the class of functions computable by some deterministic Turing machine within time bounded by a polynomial in the length of the input. The counting class $\# P$ consists of functions

$$
F_{M}(X)=\text { the number of accepting path of } M \text { on input } X
$$

for some polynomial time bounded nondeterministic Turing machine $M . F P^{\# P}$ is the class of functions which are computable by some polynomial time bounded determinstic Turing machine with oracle accesses to a function in $\# P$. A set A is in the parity class $\oplus P$ if

$$
X \in A \Leftrightarrow \text { the number of accepting path of } M \text { on input } X \text { is odd }
$$

Probabilistic classes also plays crucial roles in the proof of Toda's theorem. A set A is in $P P$ if there exist a nondeterministic polynomial time machine M and a polynomial $q(n)$ such that

$$
X \in A \Leftrightarrow \mid\left\{W \in\{0,1\}^{q(|X|)}: M(X, W)=1\right\}>2^{q(|X|)} / 2 .
$$

The language L_{2} of two-sort bounded arithmetic comprises number variables x, y, z, \ldots and string variables X, Y, Z, \ldots together with function symbols $Z()=0, x+y, x \cdot y,|X|$ and relation symbols $x \leq y, x \in X$.

The classes Σ_{i}^{B} and Π_{i}^{B} for $i \geq 0$ is defined inductively as follows:

- $\Sigma_{i}^{B}=\Pi_{i}^{B}$ consists of all L_{2} formulas containing only bounded number quantifiers.
- Σ_{i+1}^{B} is the smallest class containing Π_{i}^{B} and closed under Boolean operations bounded number quantifications and positive occurrences of bounded exsitential string quantifiers.
- Π_{i+1}^{B} is the smallest class containing Σ_{i}^{B} and closed under Boolean operations bounded number quantifications and positive occurrences of bounded universal string quantifiers.

The L_{2} theory V_{0} consists of defining axioms for symbols in the language L_{2} together with

$$
\Sigma_{0}^{B}-C O M P: \exists X \forall x<a(x \in X \leftrightarrow \varphi(x)), \varphi \in \Sigma_{0}^{B} .
$$

We extend the language L_{2} by a symbol expressing the cardinality of finite sets. Let L_{C} be the language L_{2} extended by a function symbol $S(X)$, relation symbol $X<_{s} Y$ and an operator C. Defining axioms for $S(X)$ and $X<{ }_{s} Y$ are

$$
\begin{aligned}
& S(X)=Y \Leftrightarrow \\
& \exists i<|X| \neg X(i) \rightarrow \\
& \left(|X|=|Y| \wedge \forall i<|X|\left(i \leq i_{\text {min }} \rightarrow(X(i) \leftrightarrow \neg Y(i))\right) \wedge\left(i>i_{\text {min }} \rightarrow(X(i) \leftrightarrow Y(i))\right)\right) \\
& \wedge \forall i<|X| X(i) \rightarrow \\
& (|X|+1=|Y| \wedge Y(|Y|-1) \wedge i<|Y|-1 \rightarrow \neg Y(i))
\end{aligned}
$$

where $i_{\text {min }}=\min \{j: \neg X(j)\}$, and

$$
\begin{aligned}
& X<_{s} Y \Leftrightarrow|X|<|Y| \vee \\
& (|X|=|Y| \wedge \exists i<|X|(\neg X(i) \wedge Y(i) \wedge \forall j<|X|(j>i \rightarrow(X(j) \leftrightarrow Y(j)))))
\end{aligned}
$$

Axioms $\mathrm{Ax}-\mathrm{C}[\varphi(X)]$ consists of the followings:

$$
\begin{aligned}
& \mathrm{C}[\varphi(X)](0,0) \\
& \mathrm{C}[\varphi(X)](Y, Z) \wedge \mathrm{C}[\varphi(X)]\left(Y, Z^{\prime}\right) \rightarrow Z=Z^{\prime} \\
& \mathrm{C}[\varphi(X)](Y, Z) \wedge \varphi(S(Y)) \rightarrow \mathrm{C}[\varphi(X)](S(Y), S(Z)) \\
& \mathrm{C}[\varphi(X)](Y, Z) \wedge \neg \varphi(S(Y)) \rightarrow \mathrm{C}[\varphi(X)](S(Y), Z)
\end{aligned}
$$

Intuitively,

$$
\mathrm{C}[\varphi(X)](Y, Z) \Leftrightarrow\left|\left\{X<_{s} Y: \varphi(X)\right\}\right|=Z .
$$

Definition 1 The L_{C} theory $V \# C$ has the following axioms:

- BASIC axioms,
- $\Sigma_{0}^{B}\left(L_{C}\right)$-COMP,
- $M C V \equiv \exists Y \leq a+2 \delta_{M C V}(a, G, E, Y)$, where

$$
\begin{aligned}
& \delta_{M C V}(a, G, E, Y) \equiv \\
& \neg Y(0) \wedge Y(1) \wedge \forall x<a 2 \leq x \rightarrow \\
& Y(x) \leftrightarrow[(G(x) \wedge \forall y<x(E(y, x) \rightarrow Y(y))) \vee(\neg G(x) \wedge \exists y<x(E(y, x) \wedge Y(y)))]
\end{aligned}
$$

- $A x-\mathrm{C}[\varphi(X)]$ for $\varphi \in \Sigma_{0}^{B}\left(L_{2}\right)$

Theorem $1 A$ function is Σ_{1}^{B} definable in $V \# C$ if and only if it is in $F P^{\# P}$.

3 Formalizing Toda's theorem

We augument the theory $V \# C$ by some axioms and show that Toda's theorem can be proven in the extended theory.

Definition $2 C P V$ is the theory $V \# C$ extended by the following axioms:

- $\Sigma_{1}^{B}-S I N D: ~ \varphi(0) \wedge \forall X(\varphi(X) \rightarrow \varphi(S(X))) \rightarrow \forall X \varphi(X)$.
- Σ_{∞}^{B}-Implication: for Σ_{∞}^{B}-formulas φ, ψ,

$$
\begin{aligned}
& \forall X<A(\varphi(X) \rightarrow \psi(X)) \wedge C X[\varphi(X)](A, Z) \wedge C X[\psi(X)]\left(A, Z^{\prime}\right) \\
& \rightarrow Z \leq Z^{\prime} .
\end{aligned}
$$

- Σ_{∞}^{B}-Surjection: for Σ_{∞}^{B}-formula φ, ψ and $F \in P V_{2}$,

$$
\begin{aligned}
& \forall F: \varphi(X)_{<A} \longrightarrow \psi(X)_{<A}: \text { onto } \wedge C X[\varphi(X)](A, Z) \wedge C X[\psi(X)]\left(A, Z^{\prime}\right) \\
& \rightarrow Z \geq Z^{\prime} .
\end{aligned}
$$

Toda's theorem is formalized in bounded arithmetic as
Theorem 2 For any $\varphi(X) \in \Sigma_{\infty}^{B}$ there exists a Σ_{0}^{B} formula $\psi(X, Y)$ and a $P V$ predicate $P(Z)$ such that

$$
\begin{aligned}
& \varphi(B) \wedge C Y[\psi(X, Y)](A, B, Z) \rightarrow P(Z) \\
& \varphi(B) \wedge C Y[\psi(X, Y)](A, B, Z) \rightarrow \neg P(Z)
\end{aligned}
$$

The first part of the theorem is formalized as follows:
Theorem 3 (CPV) For any $\varphi(X) \in \Sigma_{\infty}^{B}$ there exists a Boolean PV function $F(X, Z, W)$ such that

1. $\varphi(X) \rightarrow \operatorname{Pr}_{W}\left[\oplus_{Z} F(X, Z, W)=1\right] \geq 3 / 4$
2. $\neg \varphi(X) \rightarrow \operatorname{Pr}_{W}\left[\oplus_{Z} F(X, Z, W)=1\right] \leq 1 / 4$

Note that we cannot compute the exact value of $\operatorname{Pr}_{W}\left[\oplus_{Z} F(X, Z, W)=1\right]$ since it counts $\oplus P$ prdicate. Nevertheless, we can approximate it by $P^{\# P}$ functions using Implicaiton and Surjection axioms.

The first part of Toda's theorem is proved using
Theorem 4 (Valiant-Vazirani in $C P V$) For any $\varphi(X, Y) \in \Sigma_{0}^{B}$ there exists $\tau(Y, Z) \in$ Σ_{0}^{B} such that

$$
\exists Y<t \varphi(X, Y) \rightarrow \operatorname{Pr}_{Z}[\exists!Y<t \varphi(X, Y) \wedge \tau(Y, Z)]>1 / 8 n
$$

So NP predicates can be probabilistically reduced to PTIME predicates with unique solution. The construction depends only on the value t.

Valiant-Vazirani theorem yields
Theorem 5 (CPV) For any $\varphi(X, Y) \in \Sigma_{0}^{B}$ there exists a $P V$-function $F(X, Y, Z)$ such that

$$
\exists Y<t \dot{\phi}(X, Y) \rightarrow \operatorname{Pr}_{Z}\left[\oplus_{Y} F(X, Y, Z)=1\right]>1 / 8 n
$$

The following combinatorial property is the key to the proof of $\mathrm{V}-\mathrm{V}$:
Lemma 1 (Valiant-Vazirani Lemma in $C P V$) Let $n \geq 1$ and $S \subseteq\{0,1\}^{n}$ be such that $2^{k-2} \leq|S| \leq 2^{k-1}$ where $k \leq n$. For a pairwise independent hash function family $\mathcal{H}_{n, k}$

$$
\operatorname{Pr}_{h \in \mathcal{H}_{n, k}}\left[\exists!x \in \operatorname{Sh}(x)=0^{k}\right] \geq 1 / 8
$$

Proof. Use the inclusion-exclusion principle

$$
\begin{aligned}
& \operatorname{Pr}\left[\exists x \in \operatorname{Sh}(x)=0^{k}\right] \\
& \geq \sum_{x \in S} \operatorname{Pr}\left[h(x)=0^{k}\right]-\sum_{x<x^{\prime} \in S} \operatorname{Pr}\left[h(x)=0^{k} \wedge h\left(x^{\prime}\right)=0^{k}\right]
\end{aligned}
$$

and the union bound

$$
\operatorname{Pr}\left[\exists^{\geq 2} x \in S h(x)=0^{k}\right] \leq \sum_{x<x^{\prime} \in S} \operatorname{Pr}\left[h(x)=0^{k} \wedge h\left(x^{\prime}\right)=0^{k}\right] .
$$

To prove these principles we construct a $P V_{2}$ surjection and use Surjection axiom.
Given n and $k \leq n$ we define a family of pairwise independent hash functions

$$
\mathcal{H}_{n, k}=\left\{h_{A, b}(x)=A x+b \bmod 2: A \in\{0,1\}^{n \times k}, b \in\{0,1\}^{k}\right\} .
$$

Let $S_{X}=\left\{Y \in\{0,1\}^{n}: \varphi(X, Y)\right\}$ and k be such that $2^{k-2} \leq|S| \leq 2^{k-1}$

By Valiant-Vazirani Lemma,

$$
P r_{h \in \mathcal{H}_{n, k}}\left[\exists!Y \in S_{X} h(Y)=0^{k}\right]>1 / 8 .
$$

So first take $1 \leq k \leq n$ randomly and then pick $h \in \mathcal{H}_{n, k}$ yields a formula such that

$$
\exists Y \varphi(X, Y) \rightarrow P r_{h \in \mathcal{H}_{n, k}}\left[\exists!Y \varphi(X, Y) \wedge\left\|h(Y)=0^{k}\right\|\right]>1 / 8 n
$$

Theorem $6(C P V)$ For any $\varphi(X) \in \Sigma_{\infty}^{B}$ there exists a Boolean PV function $F(X, Z, W)$ such that

1. $\varphi(X) \Rightarrow \operatorname{Pr}_{W}\left[\oplus_{Z} F(X, Z, W)=1\right] \geq 3 / 4$
2. $\neg \varphi(X) \Rightarrow \operatorname{Pr}_{W}\left[\oplus_{Z} F(X, Z, W)=1\right] \leq 1 / 4$
(Proof Sketch).
We construct F by structural induction on φ. We only sketch the case for the formula $\exists Y<t \psi(X, Y)$. In this case, we iterately apply Valiant-Vazirani Theorem $O(n)$ times and take conjunction of them. Then if $\exists Y<t \psi(X, Y)$ is true then with high probability $\oplus_{Y} F(X, Y, W)=1$. We also note that Valiant-Vazirani theorem does not use any information from the propositional formula ϕ except for the number of variables in it.

The second part is easily formalized in $C P V$.
Theorem $7(C P V) B P \cdot \oplus P \subseteq P^{\# P}$
(Proof Sketch).
The probabilistic reduction $F(X, Z, W)$ is actually a PTIME function on two inputs and we can derandomize it using "Toda polynomial"

Lemma 2 There exists a PTIME function $T(\phi, l)$ such that

$$
\begin{aligned}
& \phi \in \oplus S A T \Rightarrow \# T(\phi, l) \equiv-1 \bmod 2^{l} \\
& \phi \notin \oplus S A T \Rightarrow \# T(\phi, l) \equiv 0 \bmod 2^{l}
\end{aligned}
$$

Using this we compute

$$
\begin{aligned}
& \sum_{w} \# T(f(\phi, w),|w|+2) \\
& =\sum_{w, \phi \oplus \oplus P} \# T(f(\phi, w),|w|+2)+\sum_{w, \phi \notin \oplus P} \# T(f(\phi, w),|w|+2)
\end{aligned}
$$

Computing RHS requires $\mathcal{B}\left(\Sigma_{1}^{B}\right)$ counting.

4 Final Remarks

We conjecture that the theory the provably total functions of $C P V$ are $F P^{\# P}$. It is likely that the proof of Toda's theorem does not require counting over $\oplus P$ predicates. Instead, the proof may be formalized using counting over $\Sigma_{1}^{B, 1}$, i.e. Σ_{1}^{B} formulas where $\exists X<t$ is replaced by $\exists!X<t$. The circuit-based proof of Toda's theorem by Kannan et. al. establishes a probabilistic simulation ofconstant-depth exp-size circuits by exp-size $X O R$ circuits. Formalization of the circuit proof may yield an alternative proof of our result in a different theory.

Finally, we give an idea of weaken the theory $C P V$ as an open problem:
Problem 1 Does $P V+\mathcal{B}\left(\Sigma_{1}^{B}\right)$-counting prove Toda's Theorem?

References

[1] S. R. Buss, L. A. Kołodziejczyk and K. Zdanowski, Collapsing modular counting in bounded arithmetic and constant depth propositional proofs, to appear in Transactions of the AMS. (2015).
[2] S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J.Computing 20(1991),pp.865-877.

