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Bounded arithmetic theory for the counting functions and

Toda’s theorem

Satoru Kuroda
Gunma Prefectural Women’s University

Abstract

In this paper we give a two sort bounded arithmetic whose provably total functions
coincide with the class $FP\# P$ . Our first aim is to show that the theory proves Toda’s
theorem in the sense that any formula in $\Sigma_{\infty}^{B}$ is provably equivalent to a $\Sigma_{0}^{B}$ formula
in the language of $FP\# P$ . We also argue about some problems concerning logical
theories for counting classes.

1 Introduction

In this note, we argue about logical theories for the counting class $P\# P$ . In [2], Toda proved
the celebrated result that $PH\subseteq P\# P$ , thus the whole polynomial hierarchy collapses to
polynomial time with the aid of $\# P$ oracles.

In the context of Bounded Reverse Mathematics, it is natural to ask whether there is $a$

minimal theory for $FP\# P$ which proves Toda’s theorem. Here, minimal intuitively means
that it provably defines all functions in $FP\# P$ and any such theory contains it.

Toda’s original proof is divide it into two part; firstly it is proved that $PH$ is prob-
abilistically simulated in polynomial time with oracle access to $\oplus P$ , then $BP\cdot\oplus P$ is
derandomized by the counting function.

In [1], Buss et.al. proved that the first part of Toda’s theorem can be formalized and

proved in their theory $APC_{2}^{\oplus {}_{p}P}$ which extends $T_{2}^{1}$ by the modular counting quantifier and

surjective weak pigeonhole principle for $PV_{2}^{\oplus {}_{p}P}$ functions.
Here we pose on the problem of whether a minimal theory for $P\# P$ proves the whole

Toda’s theorem. A candidate for such a theory is $PV$ or $S_{2}^{1}$ extended by axioms stating

that

for any PTIME relation $\varphi(\overline{X}, Y)$ and a term $t$ we can compute $C_{\varphi}(\overline{X})=\# Y<$

$t\varphi(\overline{X}, Y)$ .

However, it seems that we need some extra concept for proving Toda’s theorem. The
main obstacle is that Toda’s proof requires a bijection defined by $PV_{2}$ functions, which is

not known to be formalized in our theory.
Below we will give a sketch of a partial result on the provability of the whole Toda’s

theorem together with some open problems.
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2 A Theory for $P\# P$

First we overview complexity classes which are treated in this paper. Let $FP$ denote the

class of functions computable by some deterministic Turing machine within time bounded

by a polynomial in the length of the input. The counting class $\# P$ consists of functions

$F_{M}(X)=the$ number of accepting path of $M$ on input $X$

for some polynomial time bounded nondeterministic Turing machine M. $FP\# P$ is the

class of functions which are computable by some polynomial time bounded determinstic

Turing machine with oracle accesses to a function in $\# P$ . A set $A$ is in the parity class
$\oplus P$ if

$X\in A\Leftrightarrow the$ number of accepting path of $M$ on input $X$ is odd

Probabilistic classes also plays crucial roles in the proof of Toda’s theorem. A set $A$ is in

$PP$ if there exist a nondeterministic polynomial time machine $M$ and a polynomial $q(n)$

such that
$X\in A\Leftrightarrow|\{W\in\{0, 1\}^{q(|X|)} : M(X, W)=1\}>2^{q(|X|)}/2.$

The language $L_{2}$ of two-sort bounded arithmetic comprises number variables $x,$ $y,$ $z$ , . . .
and string variables $X,$ $Y,$ $Z$, . . . together with function symbols $Z()=0,$ $x+y,$ $x\cdot y,$ $|X|$

and relation symbols $x\leq y,$ $x\in X.$

The classes $\Sigma_{i}^{B}$ and $\Pi_{i}^{B}$ for $i\geq 0$ is defined inductively as follows:

$\bullet$ $\Sigma_{i}^{B}=\Pi_{i}^{B}$ consists of all $L_{2}$ formulas containing only bounded number quantifiers.

$\bullet$ $\Sigma_{i+1}^{B}$ is the smallest class containing $\Pi_{i}^{B}$ and closed under Boolean operations bounded

number quantifications and positive occurrences of bounded exsitential string quan-

tifiers.

$\bullet$ $\Pi_{i+1}^{B}$ is the smallest class containing $\Sigma_{i}^{B}$ and closed under Boolean operations bounded

number quantifications and positive occurrences of bounded universal string quan-

tifiers.

The $L_{2}$ theory $V_{0}$ consists of defining axioms for symbols in the language $L_{2}$ together

with
$\Sigma_{0}^{B}$-COMP : $\exists X\forall x<a(x\in Xrightarrow\varphi(x))$ , $\varphi\in\Sigma_{0}^{B}.$

We extend the language $L_{2}$ by a symbol expressing the cardinality of finite sets. Let
$L_{C}$ be the language $L_{2}$ extended by a function symbol $S(X)$ , relation symbol $X<_{s}Y$ and

an operator C. Defining axioms for $S(X)$ and $X<_{s}Y$ are

$S(X)=Y\Leftrightarrow$

$\exists i<|X|\neg X(i)arrow$

$(|X|=|Y|\Lambda\forall i<|X|(i\leq i_{\min}arrow(X(i)rightarrow\neg Y(i)))\wedge(i>i_{\min}arrow(X(i)rightarrow Y(i))))$

$\wedge\forall i<|X|X(i)arrow$

$(|X|+1=|Y|\wedge Y(|Y|-1)\wedge i<|Y|-1arrow\neg Y(i))$

where $i_{\min}= \min\{j:\neg X(j)\}$ , and

$X<_{s}Y\Leftrightarrow|X|<|Y|\vee$

$(|X|=|Y|\wedge\exists i<|X|(\neg X(i)\wedge Y(i)\wedge\forall j<|X|(j>iarrow(X(j)rightarrow Y(j)))))$
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Axioms Ax-C $[\varphi(X)]$ consists of the followings:

$C[\varphi(X)](0,0)$

$C[\varphi(X)](Y, Z)\wedge C[\varphi(X)](Y, Z’)arrow Z=Z’$

$C[\varphi(X)](Y, Z)\wedge\varphi(S(Y))arrow C[\varphi(X)](S(Y), S(Z))$

$C[\varphi(X)](Y, Z)\wedge\neg\varphi(S(Y))arrow C[\varphi(X)](S(Y), Z)$

Intuitively,
$C[\varphi(X)](Y, Z)\Leftrightarrow|\{X<_{s}Y : \varphi(X)\}|=Z.$

Definition 1 The $L_{C}$ theory $V\# C$ has the following axioms:

$\bullet$ BASIC axioms,

$\bullet$ $\Sigma_{0}^{B}(L_{C})$ -COMP,

$\bullet$ $MCV\equiv\exists Y\leq a+2\delta_{MCV}(a, G, E, Y)$ , where

$\delta_{MCV}(a, G, E, Y)\equiv$

$\neg Y(0)\wedge Y(1)\wedge\forall x<a2\leq xarrow$

$Y(x)rightarrow[(G(x)\wedge\forall y<x(E(y, x)arrow Y(y)))\vee(\neg G(x)\wedge\exists y<x(E(y, x)\wedge Y(y)))]$

$\bullet$ $Ax-C[\varphi(X)]for\varphi\in\Sigma_{0}^{B}(L_{2})$

Theorem 1 A function is $\Sigma_{1}^{B}$ definable in $V\# C$ if and only if it is in $FP\# P.$

3 Formalizing Toda’s theorem

We augument the theory $V\# C$ by some axioms and show that Toda’s theorem can be
proven in the extended theory.

Definition 2 $CPV$ is the theory $V\# C$ extended by the following axioms:

$\bullet$ $\Sigma_{1}^{B}$ -SIND: $\varphi(0)\wedge\forall X(\varphi(X)arrow\varphi(S(X)))arrow\forall X\varphi(X)$ .

$\bullet$ $\Sigma_{\infty}^{B}$ -Implication: for $\Sigma_{\infty}^{B}$ -formulas $\varphi,$
$\psi,$

$\forall X<A(\varphi(X)arrow\psi(X))\wedge CX[\varphi(X)](A, Z)\wedge CX[\psi(X)](A, Z’)$

$arrow Z\leq Z’.$

$\bullet$ $\Sigma_{\infty}^{B}$ -Surjection: for $\Sigma_{\infty}^{B}$ -formula $\varphi,$
$\psi$ and $F\in PV_{2},$

$\forall F:\varphi(X)_{<A}arrow\psi(X)_{<A}$ : onto $\wedge CX[\varphi(X)](A, Z)\wedge CX[\psi(X)](A, Z’)$

$arrow Z\geq Z’.$

Toda’s theorem is formalized in bounded arithmetic as

Theorem 2 For any $\varphi(X)\in\Sigma_{\infty}^{B}$ there exists a $\Sigma_{0}^{B}$ formula $\psi(X, Y)$ and a $PV$ predicate
$P(Z)$ such that

$\varphi(B)\wedge CY[\psi(X, Y)](A, B, Z)arrow P(Z)$

$\varphi(B)\wedge CY[\psi(X, Y)](A, B, Z)arrow\neg P(Z)$
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The first part of the theorem is formalized as follows:

Theorem 3 $(CPV)$ For any $\varphi(X)\in\Sigma_{\infty}^{B}$ there exists a Boolean $PV$ function $F(X, Z, W)$

such that

1. $\varphi(X)arrow Pr_{W}[\oplus_{Z}F(X, Z, W)=1]\geq 3/4$

2. $\neg\varphi(X)arrow Pr_{W}[\oplus_{Z}F(X, Z, W)=1]\leq 1/4$

Note that we cannot compute the exact value of $PrW[\oplus zF(X, Z, W)=1]$ since it

counts $\oplus P$ prdicate. Nevertheless, we can approximate it by $P\# P$ functions using Impli-

caiton and Surjection axioms.
The first part of Toda’s theorem is proved using

Theorem 4 (Valiant-Vazirani in $CPV$ ) For any $\varphi(X, Y)\in\Sigma_{0}^{B}$ there exists $\tau(Y, Z)\in$

$\Sigma_{0}^{B}$ such that

$\exists Y<t\varphi(X, Y)arrow Pr_{Z}[\exists!Y<t\varphi(X, Y)\wedge\tau(Y, Z)]>1/8n$

So NP predicates can be probabilistically reduced to PTIME predicates with unique

solution. The construction depends only on the value $t.$

Valiant Va’zirani theorem yields

Theorem 5 $(CPV)$ For any $\varphi(X, Y)\in\Sigma_{0}^{B}$ there exists a $PV$-function $F(X, Y, Z)$ such

that
$\exists Y<t\phi(X, Y)arrow Pr_{Z}[\oplus_{Y}F(X, Y, Z)=1]>1/8n$

The following combinatorial property is the key to the proof of V-V:

Lemma 1 (Valiant-Vazirani Lemma in $CPV$) Let $n\geq 1$ and $S\subseteq\{0, 1\}^{n}$ be such

that $2^{k-2}\leq|S|\leq 2^{k-1}$ where $k\leq n$ . For a pairwise independent hash function family
$\mathcal{H}_{n,k}$

$Pr_{h\in \mathcal{H}_{n,k}}[\exists!x\in Sh(x)=0^{k}]\geq 1/8.$

Proof. Use the inclusion-exclusion principle

$Pr[\exists x\in Sh(x)=0^{k}]$

$\geq\sum_{x\in S}Pr[h(x)=0^{k}]-\sum_{x<x\in S}Pr[h(x)=0^{k}\wedge h(x’)=0^{k}]$

and the union bound

$Pr[ \exists^{\geq 2}x\in Sh(x)=0^{k}]\leq\sum_{x<x’\in S}Pr[h(x)=0^{k}\wedge h(x’)=0^{k}].$

To prove these principles we construct a $PV_{2}$ surjection and use Surjection axiom.

Given $n$ and $k\leq n$ we define a family of pairwise independent hash functions

$\mathcal{H}_{n,k}=\{h_{A,b}(x)=Ax+b$ mod2: $A\in\{0,$ $1\}^{n\cross k},$ $b\in\{0,$ $1\}^{k}\}.$

Let $S_{X}=\{Y\in\{0, 1\}^{n} : \varphi(X, Y)\}$ and $k$ be such that $2^{k-2}\leq|S|\leq 2^{k-1}$
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By Valiant-Vazirani Lemma,

$Pr_{h\in \mathcal{H}_{n,k}}[\exists!Y\in S_{X}h(Y)=0^{k}]>1/8.$

So first take $1\leq k\leq n$ randomly and then pick $h\in \mathcal{H}_{n,k}$ yields a formula such that

$\exists Y\varphi(X, Y)arrow Pr_{h\in \mathcal{H}_{n,k}}[\exists!Y\varphi(X, Y)\wedge 1h(Y)=0^{k} >1/8n$

Theorem 6 $(CPV)$ For any $\varphi(X)\in\Sigma_{\infty}^{B}$ there exists a Boolean $PV$ function $F(X, Z, W)$

such that

1. $\varphi(X)\Rightarrow Pr_{W}[\oplus_{Z}F(X, Z, W)=1]\geq 3/4$

2. $\neg\varphi(X)\Rightarrow Pr_{W}[\oplus_{Z}F(X, Z, W)=1]\leq 1/4$

(Proof Sketch).

We construct $F$ by structural induction on $\varphi$ . We only sketch the case for the formula
$\exists Y<t\psi(X, Y)$ . In this case, we iterately apply Valiant-Vazirani Theorem $O(n)$ times
and take conjunction of them. Then if $\exists Y<t\psi(X, Y)$ is true then with high probabil-
ity $\oplus_{Y}F(X, Y, W)=1$ . We also note that Valiant-Vazirani theorem does not use any
information from the propositional formula $\phi$ except for the number$\cdot$of variables in it. $\square$

The second part is easily formalized in $CPV.$

Theorem 7 $(CPV)BP\cdot\oplus P\subseteq P\# P$

(Proof Sketch).
The probabilistic reduction $F(X, Z, W)$ is actually a PTIME function on two inputs

and we can derandomize it using “‘ Toda polynomial”

Lemma 2 There exists a PTIME junction $T(\phi, l)$ such that

$\phi\in\oplus SAT\Rightarrow\# T(\phi, l)\equiv-1mod 2^{l}$

$\phi\not\in\oplus SAT\Rightarrow\# T(\phi, l)\equiv 0mod 2^{l}$

Using this we compute

$\sum_{w}\# T(f(\phi, w), |w|+2)$

$= \sum_{w,\phi\in\oplus P}\# T(f(\phi, w), |w|+2)+\sum_{w,\phi\not\in\oplus P}\# T(f(\phi, w), |w|+2)$

Computing RHS requires $\mathcal{B}(\Sigma_{1}^{B})$ counting. $\square$

4 Final Remarks

We conjecture that the theory the provably total functions of $CPV$ are $FP\# P$ . It is likely
that the proof of Toda’s theorem does not require counting over $\oplus P$ predicates. Instead,
the proof may be formalized using counting over $\Sigma_{1}^{B,1}$ , i.e. $\Sigma_{1}^{B}$ formulas where $\exists X<t$

is replaced by $\exists!X<t$ . The circuit-based proof of Toda’s theorem by Kannan et. al.
establishes a probabilistic simulation ofconstant-depth $\exp$-size circuits by $\exp$-size $XOR$

circuits. Formalization of the circuit proof may yield an alternative proof of our result in
a different theory.

Finally, we give an idea of weaken the theory $CPV$ as an open problem:

Problem 1 Does $PV+\mathcal{B}(\Sigma_{1}^{B})$ counting prove Toda’s $Theorem^{J}$?
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