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Bounded arithmetic theory for the counting functions and
Toda’s theorem

Satoru Kuroda
Gunma Prefectural Women’s University

Abstract

In this paper we give a two sort bounded arithmetic whose provably total functions
coincide with the class FP#F. Qur first aim is to show that the theory proves Toda’s
theorem in the sense that any formula in ¥Z is provably equivalent to a £§ formula
in the language of FP#F. We also argue about some problems concerning logical
theories for counting classes.

1 Introduction

In this note, we argue about logical theories for the counting class P#. In [2], Toda proved
the celebrated result that PH C P#FP | thus the whole polynomial hierarchy collapses to
polynomial time with the aid of #P oracles. '

In the context of Bounded Reverse Mathematics, it is natural to ask whether there is a’
minimal theory for FP#F which proves Toda’s theorem. Here, minimal intuitively means
that it provably defines all functions in FP#¥ and any such theory contains it.

Toda’s original proof is divide it into two part; firstly it is proved that PH is prob-
abilistically simulated in polynomial time with oracle access to &P, then BP - P is
derandomized by the counting function. '

In [1], Buss et.al. proved that the first part of Toda’s theorem can be formalized and
proved in their theory APC’2 P Wwhich extends T} by the modular counting quantifier and
surjective weak pigeonhole principle for P-V;B” P functions.

Here we pose on the problem of whether a minimal theory for P#F proves the whole
Toda’s theorem. A candidate for such a theory is PV or S} extended by axioms stating
that

for any PTIME relation ¢(X,Y) and a term ¢ we can compute C. (X)) =#Y <
tp(X,Y).

However, it seems that we need some extra concept for proving Toda’s theorem. The
main obstacle is that Toda’s proof requires a bijection defined by PV, functions, which is
not known to be formalized in our theory.

Below we will give a sketch of a partial result on the provability of the whole Toda’s
theorem together with some open problems.



2 A Theory for P#F

First we overview complexity classes which are treated in this paper. Let FP denote the
class of functions computable by some deterministic Turing machine within time bounded
by a polynomial in the length of the input. The counting class # P consists of functions

Fp(X) = the number of accepting path of M on input X

for some polynomial time bounded nondeterministic Turing machine M. FP#F is the
class of functions which are computable by some polynomial time bounded determinstic
Turing machine with oracle accesses to a function in #P. A set A is in the parity class
@GP if «
X € A & the number of accepting path of M on input X is odd

- Probabilistic classes also plays crucial roles in the proof of Toda’s theorem. A set A is'in
PP if there exist a nondeterministic polynomial time machine M and a polynomial g(n)
such that ,

X e Ae |{We{0,1}90X): M(x, W) =1} > 290X 2,

The language Lo of two-sort bounded arithmetic comprises number variables z, y, z,
and string variables X,Y, Z, ... together with function symbols Z() = 0,z + y,z - y, | X|
and relation symbols x < y,zr € X.

The classes EB and HB for ¢ > 0 is defined inductively as follows:

. EB T2 consists of all Ly formulas contammg only bounded number quantifiers.

e 8 | is the smallest class containing 12 and closed under Boolean operations bounded
number quantifications and positive occurrences of bounded exsitential string quan-
tifiers.

e IIZ | is the smallest class containing %8 and closed under Boolean operations bounded
number quantifications and posrclve occurrences of bounded universal string quan-
tifiers.

The L, theory Vj consists of defining axioms for symbols in the language Ly together
with
©§-COMP : 3XVz < a(x € X o ox), peXd.

We extend the language Ly by a symbol expressing the cardinality of finite sets. Let
L¢ be the language Ly extended by a function symbol S(X), relation symbol X <s Y and
an operator C. Defining axioms for S(X) and X <, Y are

S(X)=Y &
3i < |X|-X () —

(IX| = Y| AVi < |X|(i < bmin — (X (1) © Y ()) A (i > bmin — (X (i) < Y(2))))
AVi < | X|X (1) — ‘
(IX|+1=Y|AY(Y] -1 Ai<|V] -1 — =Y (i)

where imin = min{j : =X (j)}, and

X< Yel|X|<|YlV
(1X] =Y|A < |X|(-X(0) AY () AV < |X[([G > i = (X() = V()

29



30

Axioms Ax-C[p(X)] consists of the followings:

Cle(X)])(0,0)

Clp(X)](Y, 2) A Clp(X)](Y, 2") —» 2 = Z'
Clp(X)(Y, 2) A ( (Y)) = Clp(X)(S(Y), 5(2))
Clp(X)IY, 2) A —p(S(Y)) = Clo(X)(S(Y), Z)

Intuitively,
Cle(ON(Y, 2) & X <, Y : p(X)}| = Z.

Definition 1 The Lo theory V#C has the following azioms:
e BASIC azxioms,
o Z8(Lc)-COMP,
e MCV =3Y <a+20mcv(a,G,E,Y), where

5Mcv(a, G, E, Y) =

“YO)AY(1)AVr <a2<z —

Y(z) < [(G(z) AVy < z(E(y,z) = Y(y))) V (-G(z) A Fy < 2(E(y,z) A Y (y)))]
o Az-Clp(X)] for ¢ € E§(L2)

Theorem 1 A function is 8 definable in V#C if and only if it is in FP#F.

3 Formalizing Toda’s theorem

We augument the theory V#C by some axioms and show that Toda’s theorem can be
proven in the extended theory.

Definition 2 CPV is the theory V#C extended by the following axioms:
e TB_SIND: o(0) AVX (p(X) — ¢(S(X))) = VX o(X).
‘o X8 _Implication: for B _formulas o, ¥,
VX < A(p(X) = %(X)) ACX[p(X)](A, Z) ANCX[$(X))(4, Z)
—-Z<Z.
o X8 _Surjection: for LB -formula ¢, ¢ and F € PV,

VE : p(X)<ca — ¥(X)<a : onto ACX[p(X)](A,Z) NCXP(X)I(4,2Z")
—7>7.

Toda’s theorem is formalized in bounded arithmetic as

Theorem 2 For any p(X) € X2 there ezists a £F formula ¢(X,Y) and a PV predicate
P(Z) such that

#(B) ACY[$(X,Y)|(4, B, Z) — P(2)

©(B) ANCY [$(X,Y)](4, B, Z) - ~P(Z)



The first part of the theorem is formalized as follows:

Theorem 3 (CPV) For any p(X) € ©E there exists a Boolean PV function F(X,Z, W)
such that

1. p(X) = Prw[®zF(X,Z,W) =1] > 3/4

2. =p(X) — Priw[®zF(X,Z,W)=1]<1/4

Note that we cannot compute the exact value of Prw[®zF(X,Z,W) = 1] since it
counts ®P prdicate. Nevertheless, we can approximate it by P#P functions using Impli-

caiton and Surjection axioms.
The first part of Toda’s theorem is proved using

Theorem 4 (Valiant-Vazirani in CPV) For any o(X,Y) € £§ there exists 7(Y, Z) €
8 such that |

Y <tp(X,Y) — Prz[3Y <tp(X,Y)AT(Y,Z)] > 1/8n

So NP predicates can be probabilistically reduced to PTIME predicates with unique
solution. The construction depends only on the value t.
Valiant-VaZirani theorem yields

Theorem 5 (CPV) For any p(X,Y) € BF there exists a PV-function F(X,Y, Z) such
that
IY < t4(X,Y) — Prz[@yF(X,Y,2) = 1] > 1/8n

The following combinatorial property is the key to the proof of V-V:

Lemma 1 (Valiant-Vazirani Lemma in CPV) Let n > 1 and S C {0,1}" be such

that 2k=2 < |S| < 2%~! where k < m. For a pairwise independent hash function family
Hnk :
‘ Pryen, [z € Sh(z) = 0¥] > 1/8.

Proof. Use the inclusion-exclusion principle

Pr[3z € Sh(z) = 0F]
> s Prib(z) = 0% = =, e Prih(z) = OF A h(z') = 0F]

and the union bound

Pr[3*%c € Sh(z) = 0] < > Prih(z) = 0* A h(z') = 0],
z<x'eS .

To prove these principles we construct a PV; surjection and use Surjection axiom.
Given n and k < n we define a family of pairwise independent hash functions

Hp g = {hap(x) = Az +bmod 2 : A€ {0,1}™* be {0,1}*}.

Let Sx = {Y € {0,1}" : ¢(X,Y)} and k be such that 2¥=2 < |§| < 281
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By Valiant-Vazirani Lemma,
Prpen, [3Y € Sxh(Y) = 0] > 1/8.
So first take 1 < k < n randomly and then pick h € H,, x yields a formula such that
Y p(X,Y) = Praen, [3Yo(X,Y) A ||R(Y) = 0%|]] > 1/8n

Theorem 6 (CPV) For any p(X) € S8 there exzists a Boolean PV function F(X,Z,W)
such that

1. o(X) = Prw[®zF(X,2,W) =1] > 3/4
2. ~p(X) = Prw[®zF(X,Z,W) =1 < 1/4

(Proof Sketch). _

We construct F' by structural induction on ¢. We only sketch the case for the formula
FY < ty(X,Y). In this case, we iterately apply Valiant-Vazirani Theorem O(n) times
and take conjunction of them. Then if 3Y < ty(X,Y) is true then with high probabil-
ity @y F(X,Y,W) = 1. We also note that Valiant-Vazirani theorem does not use any
information from the propositional formula ¢ except for the number-of variables in it. O

The second part is easily formalized in CPV'.

Theorem 7 (CPV) BP-@®P C P#P

(Proof Sketch).
The probabilistic reduction F(X, Z, W) is actually a PTIME function on two 1nputs
and we can derandomize it using " Toda polynomial”

Lemma 2 There exists a PTIME function T(¢,1) such that

¢ € ®SAT = #T(¢,1) = —1 mod 2!
¢ &€ OSAT = #T(¢,1) = 0 mod 2!

Using this we compute

2w #T(f(¢,w), [w| +2)
= Zw,¢€@P #T(f(¢’ w)’ |w| + 2) + Zw,qﬁ&’@P #T(f(¢’ w)a |’LU, + 2)

Computing RHS requires B(X%) counting. a

4 Final Remarks

We conjecture that the theory the provably total functions of CPV are FP#F. 1t is likely
that the proof of Toda’s theorem does not require countmg over @P predicates. Instead,
the proof may be formalized using counting over ¥ Bl je. ¥8 formulas where 3X < ¢
is replaced by 3!X < ¢. The circuit-based proof of Toda’s theorem by Kannan et. al.
establishes a probabilistic simulation ofconstant-depth exp-size circuits by exp-size XOR
circuits. Formalization of the circuit proof may yield an alternative proof of our result in
a different theory.
Finally, we give an idea of weaken the theory CPV as an open problem:

Problem 1 Does PV + B(XP)-counting prove Toda’s Theorem?



33

References

[1] S. R. Buss, L. A. Kotodziejezyk and K. Zdanowski, Collapsing modular counting in
bounded arithmetic and constant depth propositional proofs, to appear in Transac-

tions of the AMS. (2015).

[2] S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J.Computing
20(1991),pp.865-877.



