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MODEL COMPLETE GENERIC GRAPHS I

HIROTAKA KIKYO
GRADUATE SCHOOL OF SYSTEM INFORMATICS
KOBE UNIVERSITY

1. INTRODUCTION

Generic structures constructed by the Hrushovski’s amalgamation con-
struction are known to have theories which are nearly model complete. If
an amalgamation class has the full amalgamation property then its generic
structure has a theory which is not model complete [2]. On the other hand,
Hrushovski’s strongly minimal structure constructed by the amalgamation
construction which refuted a Zilber’s conjecture has a model complete the-
ory [4].

We have shown that the genenc structure for K for 3-hypergraphs is
model complete under some assumption on £ [8]. In this case, the coeffi-
cient for the predimension function is 1.

In this paper, we show a similar result for binary graphs with coefficient
1/2 for the predimension function. This will be extended to any positive
rational coefficient less than 1 in subsequent papers.

For a graph G, V(G) will denote the set of vertices of G and E (G) the set
of edges of G. To see a graph G as a structure in the model theoretic sense,
it is a structure in language {£} where E is a binary relation symbol. V' (G)
will be the universe, and E(G) will be the interpretation of E.

We essentially use notation and terminology from Wagner [10].

For a set X, [X]" denotes the set of all #n-element subsets of X.

For a set X, | X| denotes the cardinality of X.

Suppose 4 is a graph. If X C V' (4), A|X denotes the induced subgraph B
of 4 such that V'(B) = X. If there is no ambiguity, X denotes A|X. B C 4
means that B is an induced subgraph of 4. This means that B is a substruc- -
ture of 4 in the model theoretic sense.

Definition 1.1. For a finite graph 4, we define a predimension function &
as follows:

6(4) = [V(4)| - (1/2)|E(4)].
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H. KIKYO

Suppose 4,B,C are graphs such that 4,B C C. AB denotes C|(V(4) U
V(B)). Put
6(4/B) = 6(AB) — 8(B).

Definition 1.2. Assume that 4, B are graphs such that 4 C B and 4 is finite.
A < B if whenever A C X C B with X finite then 6(4) < 6(X).
A < B if whenever 4 C X C B with X finite then 6(4) < §(X). In this
case, we say that A4 is closed in B if A < B. We also say that B is a strong
extension of A.

Note that < and < are order relations.

Suppose 4 < B and 4 < C. A graph embedding g: B — C is called a
closed embedding of B into C over A4 if g(B) < C and g(x) = x for any
x € A.

With this notation, put

Ky = {4 : finite | 4 > 0}.

Definition 1.3. Let K C K /; be an infinite class. K has the amalgamation
property if for any 4,B,C € K, whenever 4 < B and 4 < C then there is
D € K such that there is a closed embedding of B into D over 4 and a
closed embedding of C into D over A.

K has the hereditary property if for any finite graphs 4, B, whenever 4 C
BeKthen4 € K.

K is called an amalgamation class if @ € K and K has the hereditary
property and the amalgamation property.

Definition 1.4. Suppose K C K| /,. A countable graph M is a generic graph
of (K, <) if the following conditions are satisfied:

(1) If A C M and 4 is finite then there exists a finite graph B C M such
that A CB < M.
(2) IfAC Mthen 4 € K.
(3) Forany 4, B€ K, if A < M and 4 < B then there is a closed embed-
ding of B into M over 4.
If K is an amalgamation class then there is a generic graph of (K, <).
There is a smallest B satisfying (1), written cl(4). We have 4 C cl(4) <
M and if 4 C B < M then cl(4) C B. The set cl(4) is called a closure of A
in M. Apparently, cl(4) is unique for given finite set 4.
In general, if 4 and D are graphs and 4 C D, we write clp(4) for the
smallest subgraph B such that 4 C B < D.

Definition 1.5. Suppose f : Rt — R* is a monotone increasing concave
(convex upward) unbounded function. Assume that f(0) <0, and f(1) <1.
Define K as follows:

Ky={d€K,|BC4=6(B)=f(|V(B))}

16



MODEL COMPLETE GENERIC GRAPHS 1

Note that if K is an amalgamation class then the genenc graph of (Ky, <)
has a countably categorical theory.

In order to discuss if a given graph isin K r or not, the following definition
will be convenient.

Definition 1.6. Let B be a graph and c an integer. B is called c-normal to
Sif6(B) > f(|V(B)|+c). B is called normal to f if B is c-normal to f for
some ¢ > 0. B is called critical to f if it is 0-normal but not 1-normal to f.

The following lemma is immediate from the definition above, but it is
very important.

Lemma 1.7. Suppose a graph B is critical to f. Then whenever B C C with
CeKythenB<C.

4 € Ky if and only if every induced subgraph of 4 is normal to f. If 4 is
c-normal, 4 C B, 8(B/4) =0, |[V(B) —V(4)| < c then B is normal.

Fact 1.8. Let (K, <) be an amalgamation class and M the generic graph
of (K, <). If A and B are finite subgraphs of M and 6o : A — B is a graph
isomorphism then there is a graph automorphism & of M extending oy (i.e.,
9 IA = 0yp).

Proof. ]
' The following is the main theorem.

Theorem 1.9. Suppose f: Rt — R is a monotone increasing concave
unbounded function. Assume that f(0) <0, f(1) < 1, and f (x)+1/2 >
f(2x) for any positive integer x.

Then (Kz, <) has the free amalgamation property and the generic graph
of (Kr, <) is model complete.

In the rest of the paper, we assume that the assumption of Theorem 1.9
holds:

Assumption 1.10. (1) #:R* — Rt is a monotone increasing concave
unbounded function.

@ £(0) <0, f(1) < L.
(3) f(x)+1/2 > f(2x) for any positive integer x.

Definition 1.11. Suppose X, Y are sets and j : X — Y amap. For Z C [X]™,
put j(Z) = {{j(x1);- -, JCm)} | {x1,...,%m} € Z}.
Let B, C are graphs and assume that X C V(B) NV (C). Let D be a graph.
We write D = B xx C if the following hold:
(1) Thereisa 1-1 map f: V(B) — V(D).
(2) Thereisa 1-1 map g: ¥V (C) — V(D).

17



H. KIKYO

(3) f(x) =g(x) forany x € X.
(4) V(D) = f(B)Ug(C).
(5) f(B)Ng(C) = f(X) = g(X).
(6) £(D) = f(E(B)) Ug(E(C) — E(C|X)).
f is a graph isomorphism from B to D|f(¥(B)) but C and D|g(V (C)) are
not necessarily isomorphic as graphs.

If C|X = 0, then B xx C is a graph obtained by attaching C to B at points
in X. We have 6(B xxC) = 8(B) + 6(C) — 6(C|X).

In case that B|X = C|X, we write BQx C for Bxx C. If A = B|X = C|X,
then we also write B®, C instead of B®y ) C.

The following lemma is immediate.

Lemma 1.12. Suppose D = B xxC where X CV(B)NV(C).

(1) IfC|X < C then B < D.
(2) IfC|X < C then B < D.

Definition 1.13. Suppose K C K /5. K has the free amalgamation property
if whenever 4,B,C e Kwith4 < B, A<CthenB®,4C € K.

Fact 1.14. If a class K C K| /; has the free amalgamation property then it
has the amalgamation property.

Lemma 1.15. Suppose A, B, C are graphs suchthat A C B, A CC, 6(4) <
6(B) and 6(A4) < 86(C). If B and C are normal to f then BQ4C is normal

to f.

Proof. Put D = B®4C. By symmetry, we can assume that |V (C)| < |[V(B)|.
Thus, |V(D)| < 2|V (B)|. Also, 8(D) = 8(B) + 6(C) — 8(4) > 6(B) since
3(C)—8(4) > 0.

6(D) > d6(B)+1)2
= fe(v®B))
> f(IV(D))).
Therefore, D is normal to f. O

Proposition 1.16. (K, <) has the free amalgamation property.

Proof. Suppose A, B,C €Ky, A<B,and 4 <C. Put D =B®,4C. We can
assume that BC D, CCD, BNC =A.

Suppose U CD. IfU CBor U C Cthen U € K/ since B,C € Ky.

Now, suppose that U € Band U Z C. Then U = (UNB) ®uyny (UNC),
6(UNB) > 8(UNA), and 6(UNC) > 6(UNA). UNB and UNC are
normal to f since B and C are in K. U is normal to / by Lemma 1.15.

Therefore, D € K. O
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MODEL COMPLETE GENERIC GRAPHS 1

2. 0-EXTENSIONS

Definition 2.1. Suppose 4, B are graphs such that 4 C B. B is a 0-extension
of Aif A< Band 6(B/4) = 0. B is a minimal O-extension of A if B is a
minimal graph D such that 4 < D and §(D/4) = 0. In this case, 4 CU C B
implies 4 < U.

Definition 2.2. Let n > 3 be an integer. Let B = {by,b1,...,b,—1} and
F ={co,c1,...,cn-1} be two disjoint sets of size n. A jellyfish is a graph J
such that V' (J) = BUF and

E(J) = {bib(i+1)modn I i=0,1,...,n— I}U{b,-c,- l i=0,1,..._,n~ 1}.

n will be called the length of the jellyfish. B will be called the body of the
Jellyfish and F the set of feet of the jellyfish. Each edge b;c; will be called
a leg.

For a subgraph D C J, put Dp = {x € V(D) | x € B}, and D = {x €
V(D) |xeF}.

By abuse of notation, D|Dg and D|Dg will also be denoted by Dp and
Dr respectively.

 Definition 2.3. A graph W such that V(W) = {cg,c1,b}, E(W) = {bcy, bcy }
is called a wedge. We call {co,c; } the set of feet and {5} the body. We call
each edge a leg.

Definition 2.4. When we can write C = 4 xx B, we call C an extension of
A by B. When B is a named graph like a jellyfish or a wedge, we also call C
an “extension of 4 by a jellyfish” or an “extension of 4 by a wedge.”

Lemma 2.5. Let J be a jellyfish. Suppose D C J. Let k be the number of
vertices v in Dp such that v is not adjacent to any vertices in Dr.
The following hold:
(1) If Dp = Jp then §(D/Dr) = (1/2)k.
(2) lfDB 75 Jp then S(D/DF) > (1/2)k+ 1/2.
(3) If D is a proper induced subgraph of J then Dr < D.
(4) J is a minimal 0-extension of Jr.

Proof. (1) Suppose D = Jp. Since 6(J/Jr) = 0, by considering the number
of deleted legs, we have 6(D/Dr) = 6(Dp/Dr) = (1/2)k.

(2) Suppose Dg # Jp. Dp is not a cycle. If Dg is connected in D and every
vertices in Dg is adjacent to some vertex in Dp, then 6(D/Dp) =1/2. In
general, D has at most k less edges than that of D described just above.
Therefore, 3(D/Dr) > (1/2)k+1/2.

(3) follows from (1) and (2).

(4) follows from 6(J/Jr) = 0 and (3). O
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Lemma 2.6. Suppose A is normal to f. Let D be a proper induced subgraph
of a jellyfish J such that D C V(A4) and Dg # 0. Put G = A Xp, D. Then
the following hold:

(1) 6(4) < 6(G).

(2) Suppose Dy = Jp. If there are at least 2 vertices in Dy which are
not adjacent to any vertices in D then G is normal to f.

(3) If D # Jp then G is normal to f.

(4) If A is c-normal to f for some ¢ > 1 then G is c-normal.

Proof. (1) By Lemma 2.5 (3), Dr < D. Hence, A < A Xp, D.

For the rest of the proof, let k£ be the number of x € Dp such that x is
not adjacent in D to any y € Dr, and / the number of x € Dg such that x is
adjacent in D to some y € Dr. We have Dp =I+kand ] < |Dp|. Since D C
V(4), we have I < |V (A)|. Hence, |V (G)| = |V (4)| + |Ds| < 2|V (4)| +k.

(2) Suppose Dp = Jp. By Lemma 2.5 (1), 6(D/Dr) = (1/2)k. Hence,
6(G/A) = 6(D/Dr) = (1/2)k. Since k > 2,

6(G) 6(4)+(1/2)k

SV ) +(1/2)k
@)

feIV )+ -2)v(4)))

AV AV

I

2F —2 > kby k > 2. Hence, 8(G) > f2|V(4)|+k) > f([V(G))).
(3) Suppose D C Jp. By Lemma 2.5 (2), 6(D/Dr) > (1/2)k+1/2.

6(G) 6(4)+(1/2)(k+1)

SV () +(1/2)(k+1)
&)

fev @)+ @2 -2)|v@)))
f2V(4)|+k)

AV (G))).

iV IV

AVARAVARN|

(4) Suppose 6(4) > f(|V(4)|+c) (c>1).
Case Dg=Jp.



MODEL COMPLETE GENERIC GRAPHS I

Since D is a proper induced subgraph of J, By Lemma 2.5 (1), we have
0(G) > 6(A4)+(1/2)k with k > 1.
o(G) 6(4)+(1/2)k
SV () +e)+(1/2)k
F2H7 ()] +2%¢) |
@RIV A+ 25 =)V (4)|+ (2~ 1)c+c)
SRIVA)|+(k—1)+1+c¢)
SV ()] +k)+c)
SV (G)| +¢).

v

IV IV IV IV IV IV

Case DB 75 JB.
We have 6(G) > 6(4) + (1/2)(k+ 1) with k£ > 0. Similar argument to
that for Case D = Jg shows the same inequality. O

Lemma 2.7. Let A be a graph with at least one vertex which is normal
to f. Let P| be a graph with one vertex, and P, = P, @ P,. Then A QP
is (3|V(4)| — 1)-normal to f, and AQ P, is (15|V(4)| — 2)-normal to f.
Especially, AQ Py is |V(A® Py)|-normal to f, and AQ P, is [V (A ® By)|-
normal to f.
Proof.

0(4A®P) 6(4)+1
Sy +1
f@y(4)))
SV ) +1)+ BV (4)-1)).

VIV IVl

5(A’P)

I

5(4) +2

SV ()
SV (4)]+2) + 15|V (4)| - 2)).

IV IV

O

Lemma 2.8. Suppose A; € K, ACA, P, CA, A =AQP, where Pyis a
graph with 2 vertices and no edge. Let J be a jellyfish such that Jp = V (4q)
with Py C Ay C Ay. Put G= A4, Xy (49)J- Then the following hold.

(1) G is a 0-extension of 4.

@) fUCG UZA;and 3(U/UNA;) =0 then Ay C U.

B)4<G.

4) GeKy.

21
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Proof. (1) By Lemma 2.5 (4) and Lemma 1.12. (2) Suppose U C G, U € 4,
and 6(U/UNA;y)=0.If 4g Z U then 6(U/UNA;) > 0 by Lemma 2.5 (3).
Hence, P, C Ay CUNA;.

(3) Suppose 4 C U C G. Note that V(G) =V (41)UJp. Put Up =U —
Ay CJgand Uy =UNA;. Then

8(U/A4) = 6(UplU1/4) = 6(Up/AUn) + 6(U1 /4).

Since 4; < G, we have 6(Uy/AUy) > 6(Up/A1) > 0. Since 4 < A4;, we
have 6(U;/4) > 0.

If §(Up/AU,) > 0 then 6(U/A) > 0.

If §(Uy/AUy) = 0 then P, C Uj by (1). Therefore, 6 (U; /4) = 6(P/A4) >
0.

(4) Suppose U C G.

Case V(J) CV(U).

In this case, U = (UNA1) Xy (4,)J. Wehave UN4; = (UNA)®P;. Since
a length of a jellyfish is at least 3, we have UNA # 0. By Lemma 2.7, UNA;
is [UNA1]-normal. U is a 0-extension of UN A and |V(U) -V (UNA4;)| =
|J8| = [JF| = |4o| < |UNA;|. Hence, U is normal to f.

Case JZ U.

In this case, U is an extension of U N A4; by a proper induced subgraph D
of J. If Dp =0 then U C 4, € Ky, and thus U € K.

If Dg # Jp, U is normal by Lemma 2.6 (3).

Suppose Dp = Jp. fUNP, # @ then U is 1-normal to f. By Lemma 2.6
(4), U is also normal. If U NP, = 0 then more than 2 vertices in Dg = Jp
are not adjacent to any vertices in Dr. U is normal to f by Lemma 2.6 (2).

Now, we have G € K. O

Lemma 2.9. Suppose A1 € Ky, AC Ay, P, C Ay, Ay =AQP, where P, is
a graph with 2 vertices and no edge. Let W be a jellyfish such that Wr =
V(P,). Put G = (A1 X, W) X W. Then the following hold.

(1) G is a 0-extension of A;.

RQQUCGUZA andd(U/UNA;) =0 thenP, CU.

3)A4<G.

4) GeK.

Lemma 2.10. Suppose Ay = AQP, and P, C Ao C Ay where A C Ay and P,
is a graph with 2 vertices and no edge. Suppose further that Ay C B € Ky
and B is a 0-extension of Ay. Assume also that if U C B, U € A, and
O6(U/UNA;)=0then P, CU.
Let J be a jellyfish such that Jr =V (A4,) and put G = B x ;. J. Then the

following hold:

(1) G is a 0-extension of A;.

R IFUCGUZA and6(U/UNA1)=0then P, CU.
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B)4<aG
(4) If G is normal to f then G € K.

Proof. Proof for (1) and (2) are similar to that for Lemma 2.8.

(3) Suppose G is normal to f and U C G. We show that U is normal to f.

Let H=A; %y 4,)J. H€ Kyby Lemma2.8. We have U = (UNB) Quny,
(UNH).

IfU C BorU C H then U is normal to f since B,H € Ky.

We assume that U N B and U N H are proper extensions of U N 4.

Case 6(UNA4;) < 6(UNB)and 6(UN4;) < S§(UNH).

Since Be Krand H € Ky, UNBand UNH are normal to f. U is normal
to /by Lemma 1.15. ;

Case 6(UNA;) =8(UNB) and §(UN4,) < S(UNH).

Let c = |[V(UNB) —¥V(UNA;)|. Since UNB is normal, U N4 is c-
normal. Since 6(UNA4;) < §(UNH), UNH = (UNA4;) xp, D for some
proper induced subgraph D of U. Since ¢ > 1, UNH is also c-normal
by Lemma 2.6 (4). Therefore U is normal because 6(U) = §(UNH) and
V({U)-V(UNH)|=c.

Case 6(UNA;) = §(UNH). In this case, UNA4; =4, and UNH = H.
Since 41 < B, §(UNB) > 8(41). U is a 0-extension of UNB. Hence,
6(U) =6(UNB) > 8(4;) = 8(B) = §(G). Since G is normal, §(G) >
SV (G)]) = f(IV(U)]). Therefore, U is normal to f. O

3. MODEL COMPLETENESS

Proposition 3.1. Suppose A € K. There is B € K such that A < B and B
is critical to f.

Proof. Suppose 4 € K. By adding an isolated point to make a strong ex-
tension, we can assume that |V'(4)| > 1. Let 4] = A® P, where P, is a
graph with 2 vertices and no edge. We can assume that 2, C 4;. Note that
41| > 3.

Let N be a largest integer x such that §(4;) > f(x). Since 4; € K, and
Ay is not critical, N > |4,|. Let N = m|4;|+r with 0 < r < |4;].

Ifr=0,put By =A;. Ifr=1, put By = 4, Xy (p) W where W is a wedge.
Ifr=2,put By = (A] Xy (p) W) Xy (p) w.1Ifr >3, put B() = A XV(AO)J’
where P, C 4 C 4; with [V(4o)| =r, and J' is a jellyfish with J,. = V' (4,).

In any of these cases, we have the following:

e By is a 0-extension of 4;;

o ifUCBy,UZAyand §(U/UNA,)=0then P, C Uj;
e A < By; and

e By eKy.
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Let J be a jellyfish with Jr = V(4;). Fori=1,....m—1, put B; =
Bi_1 Xy (4y) Y. |
Then by Lemma 2.10, we have the following: Foreachi=1,...,m—1,

e B; is a 0-extension of 4;
e ifUCB;,UZ Ay and 6(U/UNA;) =0then B, CU;

e A< B;;and
e B; € Kf.
By the construction, |V (By,—1)| = N and 8(B,,—1) = 6(4;). Therefore,
A < Bp—1 and B, is critical to f, and B,,_; < K. O

Now, we prove that the generic graph of (K, <) is model complete.

Proof of Theorem 1.9. Let M be a generic graph for (K, <).

Let T be the theory of M in the graph language. Since T is countably
categorical, M is saturated. So, every finite type (over empty set) is realised
in M. Our aim is to show that 7" is model compete.

Claim 1. Every finite type realised in M is generated by a single existential
formula of the graph language.

Let 4 be a finite subgraph of M. We show that tp(4) is generated by an
existential formula. Consider the closure cl(4) of 4 in M. cl(4) is also finite
becuase M is a generic graph. By Proposition 3.1, there is B € K/ such that
cl(4) < B and B is critical to f. Since cl(4) < B and cl(4) < M, we can
embed B in M over cl(4) as a closed subset of M.

We can assume that BC M and cl(4) < B < M.

Suppose V' (4) = {ay,...,a,} and V(B) = {b1,...,bm}. Let

l[l(xl,.. s Xns Y1y .- ,ym) = qﬁp(al,.. . ,a,,,bl,. . .,bm)
be a formula representing the quantifier-free type of (4, B). Then (ay,...,an)
realises an existential formula
BYI,---,EYmW(xla---,me’I,-- '7ym)-

Let @(xy,...,x,) denote this formula. We show that @(x,...,x,) deter-
mines tp(ay, ... ,ay).

Let {ci,...,cn} C V(M) be arbitrary. Assume that (cy,...,c,) satisfies
©(x1,...,x,) in M. We show that (c,...,c,) realises tp(ai,...,an).

Thereis dy,...,dn € V(M) such that M = y(cy,...,cn,d1,...,dm). Then

qﬁp(cl,...,cn,dl,...,dm) =qftp(al,...,an,bl,...,bm).

Hence, there is a graph isomorphism 6 such that 6o(d;) = b; fori=1,...,m
and op(c;) =a; fori=1,...,n. Put

CZMI{C],...,C,,} andDzM]{dl,...,dm}.
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Then oy : D — B is a graph isomorphism such that 6y|C is a graph isomor-
phism from C to 4.

D is also critical to f. Then D C U C M with U finite implies that U €
K and thus 6(D) < §(U) by Lemma 1.7. Hence D is also closed in M.
Therefore, oy can be extended to an graph automorphism o of M by Fact
1.8. Hence, tp(cy,...,cn) =tp(ay,...,a,). The claim is proved.

By the claim, every formula is equivalent to an existential formula mod-
ulo T'. Therefore, T is model complete. : O
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