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ONE-STEP EXTENSIONS OF SUBNORMAL 2-VARIABLE WEIGHTED SHIFTS

SANG HOON LEE
(BASED ON JOINT WORK WITH R. CURTO AND J. YOON.)

1. INTRODUCTION
Consider the following reconstruction-of-the-measure problem:

Problem 1.1 (A). Given two probability measures p; and po on R2, find necessary and sufficeint conditions for
the existence of a probability measure u on R such that

sdu(s,t) tdu(s,t)
(1.1) —————fsdy(s,t) = du;(s,t) and —ftdp(s,t) = dpa(s, t).

Note that (1.1) implies that tdu;(s,t) = Asduz(s,t) for some A > 0.
In this talk, we solve this interpolation problem using techniques from multivariable operator theory, namely
the theory of 2-variable weighted shifts.

Definition 1.2. T € B(H) : normal if T*T = TT*,
subnormal if T = N|y, where N normal and N(H)C H,

hyponormal if [T*,T) := T*T - TT* > 0.
Definition 1.3. T = (Ty,--- ,Ty) : hyponormal if

[T°,T]: = ([T;’ Ti])?,j:l
T8 7)) T3] -~ (T2, Ty
(15, T2] (T3, T2] -+ [T%, T
[T Ta) (0570l o (T3, T]
Definition 1.4. The n-tuple T = (T1, T, -- ,T,) is said to be normal if T is commuting and each T; is normal,

and T is subnormal if T is the restriction of a normal n-tuple to a common invariant subspace.

o Clearly, normal => subnormal ==+ hyponormal.

o Normality(sub-, hypo-) of T is not affected by permuting of the operators T;.

o If (T1,---,T,) is normal(sub-, hypo-) then so is (k;T1, -+ ,knT}) for any ki, ,kn € C.

o If (T, -+, Ty,) is normal(sub-, hypo-) then any operator in LS{T1,--- ,T,} is normal(sub-, hypo-).

Problem 1.5 (Lifting Problem for Commuting Subnormals). Find necessary and sufficient conditions for a pair
of subnormal operators on a Hilbert space to admit commuting normal extensions i.e., to be subnormal.

Necessary Conditions: Commuting
Sufficient Conditions: Doubly commuting, either T} or T is normal, either T} or T5 is isometry,-: - -
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Besides their relevance for the construction of examples and counterexamples in Hilbert space operator theory,
weighted shifts can also be used to detect properties such as subnormality, via the Lambert-Lubin Criterion([15, 17]):
Theorem 1.6 ([15]). If T € B(H) is one-one, then T is subnormalif and only if T; is subnormal for all z(# 0) € H

n+1
where T, is the weighted shift with weights {ﬂﬁl—:;ﬁ“}?:o.

Theorem 1.7 ([17]). If T1,T> € B(H) are commuting and one-one, then T = (T, T3) is subnormal if and only if
T, is subnormal for all z(# 0) € H where Ty is the 2-variable weighted shift with weights
_ Tt iTpa) o TP Tt |
Amn = T and B = T -
Thus, to study the subnormality of commuting pairs, we focus on weighted shifts in the sequel.
Example 1.8 (1-variable weighted shift). For a bounded sequence a = {a,}32, of positive real numbers (called
weights), let W, : £2(Z,) — €%(Z.,) be the associated unilateral weighted shift, defined by Waep, := anens1 (all
n > 0), where {e,}3, is the canonical orthonormal basis in £2(Z..).
For a weighted shift W,, the moments of a are given as
 (a) i= 1, if k=0
Ve = kAG) = agu-a;‘:_l, if k> 1.
It is easy to see that W, is never normal, and that it is hyponormal if and only if ap < a; < ---.
We shall often write shift(ag, a1, - ) to denote the weighted shift W,.
Example 1.9 (2-variable weighted shift). For a = {ox},8 = {8k} € £°(Z2), we define the 2-variable weighted
shift Wia,g) = (Wa, W) on £2(Z2%) by
Waex = Yk Ck+ey and Wﬁ(:k = 1'.3kl',k+52,
where € := (1,0),£2 := (0,1) and {ex : k € Z2} is the canonical orthonormal basis of £2(Z2).

In an entirely similar way one can define multivariable weighted shifts.

Q0,2 1,2

(0,2)

Ws

! 80,1 31,1 32,1

@Q,1 1,1

(0,1)

80,0 31,0 32,0

0,0 «1,0

(0,0) (1,0) (2,0)

B ——

Wa

FIGURE 1. Weight diagram for 2-variable weighted shift W, g

Clearly,
(1.2) WaWp = WaW, <= axBicre, = BxQute, (Vk € Z2).
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In the sequel, we assume that all 2-variable weighted shifts W(, g) are commuting, i.e., it satisfies condition
(1.2).
Given k € Zﬁ_, the moments v« = (a, 8) of (o, B) of order k is defined by

1 ifk = (kl, kz) = (0,0)
0‘?0,0) e a(zkl_l’o) ifky >1and ky =0
ﬂ(20,0) e ’3(20,k2—1) ifky =0and ko > 1

a@m~ua&r4m-ﬂahm-nﬁahh_n ifk; >1and kg > 1.

We remark that, due to the commutativity condition (1.2), % can be computed using any nondecreasing path
from (0,0) to k.

Question 1.10. Which weighted shifts are subnormal?

Theorem 1.11 (Berger’s Theorem(1-variable)). W, is subnormal if and only if there exists a probability measure
€ (called the Berger measure of W,) supported in [0, |Wal|?] such that yi(a) = J s* de(s) (k> 0).

Theorem 1.12 (Berger’s Theorem(2-variable)([14])). W(q4,g) is subnormal if and only if there is a probability
measure y (called the Berger measure of Wi, g)) supported in the 2-dimensional rectangle R = [0,]|W,||?] x
[0,||Ws]|%] such that

(o, ) =/ sFrek2dp(s, t) Yk = (ky, ko) € Zi.
R

2. AUXILIARY LEMMAS

For a 2-variable weighted shift W, g), we let M (resp. N) be the invariant subspace of £2(Z2) spanned by the
canonical orthonormal basis vectors associated to indices k = (k1, ko) with k1 > 0 and kg > 1 (resp. k1 > 1 and kp > 0).

We consider the following problem:

Problem 2.1 (B). Assume that W, g)lm and W, g)|n are subnormal with the Berger measures pp and py,
respectively. Find necessary and sufficient conditions on upa, pn and Boo for the subnormality of Wia,8)-

Note that Problem (B) is equivalent to Problem (A).
If W, is subnormal with Berger measure £, and if we let for fixed i > 1,

L;:= \/{en in >}
c. is de(s).

Lemma 2.2 (1-variable subnormal backward extension ([5])). If W,|z, is subnormal with Berger measure &, then
W, is subnormal if and only if

then the Berger measure §; of W,

<L
L&)

1) %eﬁ@)md% -
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FIGURE 2. 2-variable weighted shift W, g) in Problem (B)

2
In this case, the Berger measure £ of W, is dé(s) = %2d¢(s) + (1 — af H%Hu(&))déo(s).
e Let ;2 and v be two positive measures on Ry. We say that u < v if u(E) < v(E) for each Borel subset
ECR;.
e Let 4 be a probability measure on Ry x Ry and assume that } € L'(u). The extremal measure fie:
(which is also a probability measure) on Ry x Ry is given by
dptese(s,1) = (1 = bo(t)) - ——du(s, 1)
el
Here §p denotes Dirac measure at 0.
e Given a measure u on X x Y, the marginal measure u* is a measure on X given by
w* = pomy?t,
where mx : X x Y — X is the canonical projection onto X.
Lemma 2.3 (2-variable subnormal backward extension ([10])). Assume that W, g)lm is subnormal with the
Berger measure paq and that shift (ago, ori0, - +) 48 subnormal with Berger measure £. Then W, gy is subnormal
if and only if the following conditions hold:

(i) +€L'(pm);
(@) B0 < (13l pagupe) s
Moreover, if ﬁgo “%“Ll(“Ml) = 15 then (“M)g;t = E

Lemma 2.4 ([11]). Let p be the Berger measure of a subnormal 2-variable weighted shift W4, gy, and let £ be the
Berger measure of the associated 0-th horizontal 1-variable shift(ago, 010, ). Then £ = uX.

3. MAIN RESULT AND APPLICATION
We provides a concrete solution of Problem (B) in terms of paq, pa and Boo.

Theorem 3.1 (Main Theorem). Assume that Wi, g)lm and W, gy|n are subnormal with associated Berger mea-

sures upq and ppr, respectively, and let c := % = %1;;- Then W, ) is subnormal if and only if the following



(0,0) ;\ — ﬂX

FIGURE 3. 2-variable weighted shift W, gy in Lemma 2.4

conditions hold:
(i) + € L} up) and 3 e L (uw);
(i) 530”%“L1(uM) sL

(m) ‘Ugo {” %HL‘(V,M) (MM)ggCt +c ll %HLl(/.LN) do %(”N)X} < do.
For a measure p with € L? e write dfi(s) 1= —ri—du(s).
7 5 (1), we write dji(s) o 1i(s)
Lemma 3.2 ([8]). Let W, gy be the 2-variable weighted shift given in Figure 4. Then W(q gylm is subnormal if
and only if ¥ == — o, ||%|]L1<d) T is o positive measure. In this case, the Berger measure of Wq g)lm s

1 ~
;LM:(X(ZH - 0 XT+d X Y.
§llLr(o)
A
Wy m oXT

0,1 o1

Boo

(0,0) ™

W,

FIGURE 4. 2-variable weighted shift W, g) in Lemma 3.2

As a special case of Main Theorem, we have:

Theorem 3.3 (The case when W, gy has a core of tensor form). Assume that W, g)lm and Wi, g)ln are
subnormal with associated Berger measures paq and jpr, respectively, and let p := ,uff,t. Also assume that ppnn =
o x 1 for some 1-variable probability measures o and T. Then p= pX; = (p M)XK, and hence Wi, ) is subnormal
if and only if the following conditions hold:

(i) }€L'um) and ;€ L'(uy);

29
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(i4i) (;330 “%”L‘(MM)) p < &, where £ is the Berger measure of shift (ago, @10, ).

4
Wﬁ OXT
0,1 /)
Boo
(0,0 £ -

Wa

FIGURE 5. 2-variable weighted shift W(, ) in Theorem 3.3
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