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Subnormal Toeplitz operators: A brief survey and open
problems

Woo Young Lee
Department of Mathematics, Seoul National University, Seoul 151-747, Korea

Abstract

In this note we attempt to set forth some of the recent developments that had taken place in subnormal
Toeplitz operator theory. Moreover, we present some unsolved problems for the subnormality of Toeplitz
operators.

1 Halmos’s Problem 5: Subnormal Toeplitz operators

Throughout this note, let $\mathcal{H}$ denote a separable complex Hilbert space and $\mathcal{B}(\mathcal{H})$ denote the set of all bounded
linear operators acting on $\mathcal{H}$ . For an operator $T\in \mathcal{B}(\mathcal{H})$ , $\tau*$ denotes the adjoint of $T$ . An operator $T\in \mathcal{B}(\mathcal{H})$

is said to be normal if $T^{*}T=TT^{*}$ , hyponormal if its self-commutator $[T^{*}, T]\equiv T^{*}T-TT^{*}$ is positive semi-
definite. An operator $T\in \mathcal{B}(\mathcal{H})$ is said to be pure if it has no nonzero reducing subspace on which it is normal.
An operator $T\in \mathcal{B}(\mathcal{H})$ is said to be subnormal if there exists a Hilbert space $\mathcal{K}$ containing $\mathcal{H}$ and a normal
operator $N$ on $\mathcal{K}$ such that $N\mathcal{H}\subseteq \mathcal{H}$ and $T=N|_{\mathcal{H}}$ . In this case, $N$ is called a normal extension of $T$ . In
general, it is quite difficult to examine whether such a normal extension exists for an operator. Of course, there
are a couple of constructive methods for determining subnormality; one of them is the Bram-Halmos criterion of
subnormality ([2], [4]), which states that an operator $T\in \mathcal{B}(\mathcal{H})$ is subnormal if and only if $\sum_{i,j}(T^{i}x_{j}, T^{j}x_{i})\geq 0$

for all finite collections $x_{0},$ $x_{1},$ $\cdots,$
$x_{k}\in \mathcal{H}$ . It is easy to see that this is equivalent to the following positivity

test:

$(\begin{array}{llll}I \tau* \cdots T^{*k}T T^{*}T \cdots T^{*k}T\vdots \vdots \vdots T^{k} T^{*}T^{k} \cdots T^{*k}T^{k}\end{array})\geq 0$ $($all $k\geq 1)$ . (1)

Thus the Bram-Halmos criterion can be stated as follows: $T$ is subnormal if and only if the positivity condition
(1) holds for all $k\geq 1$ . The positivity condition (1) provides a measure of the gap between hyponormality
and subnormality. In fact, condition (1) for $k=1$ is equivalent to the hyponormality of $T$ , while subnormality
requires the validity of (1) for all $k\geq 1$ . Recall ([cf. [11]) that for $k\geq 1$ , an operator $T\in \mathcal{B}(\mathcal{H})$ is said to be
$k$ -hyponormal if $T$ satisfies the positivity condition (1) for a fixed $k$ . Thus the Bram-Halmos criterion can be
stated as: $T$ is subnormal if and only if $T$ is $k$-hyponormal for all $k\geq 1.$

The present note concerns the question: Which Toeplitz operators are subnormal 9 A Toeplitz operator
$T_{\varphi}$ (with symbol $\varphi\in L^{\infty}\equiv L^{\infty}(T)$ ) is defined by the expression $T_{\varphi}f$ $:=P(\varphi f)$ for each $f\in H^{2}\equiv H^{2}(\mathbb{T})$ ,
where $P$ is the orthogonal projection from $L^{2}\equiv L^{2}(\mathbb{T})$ onto $H^{2}$ . A Toeplitz operator $T_{\varphi}$ is called analytic
if $\varphi\in H^{\infty}\equiv L^{\infty}\cap H^{2}$ . Any analytic Toeplitz operator is easily seen to be subnormal: indeed, $M_{\varphi}$ is a
normal extension of $T_{\varphi}$ , where $M_{\varphi}$ is the normal operator of multiplication by $\varphi$ on $L^{2}$ P.R. Halmos raised
the following problem, so-called the Halmos’s Problem 5 in his 1970 lectures “Ten Problems in Hilbert Space”
[15], [16]:

Is every subnormal Toeplitz operator either normal or analytic?

The question is natural because the two classes, the normal and analytic Toeplitz operators, are fairly well
understood and are obviously subnormal. We begin with a brief survey of research related to P.R. Halmos’s
Problem 5.
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In 1988, the hyponormality of Toeplitz operators $T_{\varphi}$ was completely characterized in terms of their symbols
$\varphi$ via an elegant theorem of C. Cowen [6]. Cowen’s method is to recast the operator-theoretic problem of
hyponormality for Toeplitz operators into the problem of finding a solution with specified properties to a
certain functional equation involving the symbol $\varphi$ . Today, this theorem is referred as Cowen’s Theorem.

Cowen’s Theorem ([6], [17]). For $\varphi\in L^{\infty}$ , write

$\mathcal{E}(\varphi):=\{k\in H^{\infty}$ : $||k||_{\infty}\leq 1$ and $\varphi-k\overline{\varphi}\in H^{\infty}\}.$

Then $T_{\varphi}$ is hyponormal if and only if $\mathcal{E}(\varphi)$ is nonempty.

A function $\varphi\in L^{\infty}$ is said to be of bounded type if there are bounded analytic functions $\psi_{1},$ $\psi_{2}\in H^{\infty}$ such
that $\varphi(z)=*_{\psi_{2}}:_{z}^{z}$ for almost all $z\in$ T. Evidently, rational functions are of bounded type. In 1976, M.B.
Abrahamse showed that the answer is affirmative for Toeplitz operators with bounded type symbols ([1]):

Theorem 1.1 (Abrahamse’s Theorem). If

(i) $T_{\varphi}$ is hyponormal;

(ii) $\varphi$ or $\overline{\varphi}$ is of bounded type;

(iii) $ker[T_{\varphi}^{*}, T_{\varphi}]$ is invariant for $T_{\varphi},$

then $T_{\varphi}$ is normal or analytic.

Proof. See (Ab]. $\square$

On the other hand, observe that if $S$ is a subnormal operator on $\mathcal{H}$ and if $N$ is the minimal normal extension
of $S$ then

$ker[S^{*}, S]=\{f:<f, [S^{*}, S]f>=0\}=\{f:||S^{*}f||=||Sf||\}=\{f:N^{*}f\in \mathcal{H}\}.$

Therefore, $S(ker[S^{*}\rangle S])\subseteq ker[S^{*}, S].$

By Theorem 1.1 and the preceding remark we get:

Corollary 1.2. If $T_{\varphi}$ is subnormal and if $\varphi$ or $\overline{\varphi}$ is of bounded type, then $T_{\varphi}$ is normal or analytic.

The following lemma gives a criterion for a function to be of bounded type.

Lemma 1.3. [1] A function $\varphi$ is of bounded type if and only if $kerH_{\varphi}\neq\{0\}.$

From Theorem 1.1 we can see that

$\varphi=\frac{\psi}{\theta}$ $(\theta, \psi$ inner) , $T_{\varphi}$ subnormal $\Rightarrow T_{\varphi}$ normal or analytic (2)

The following proposition strengthen the conclusion of (2), whereas weakens the hypothesis of (2).

Proposition 1.4. [1] If $\varphi=4\theta$ $(\theta, \psi$ inner) and if $T_{\varphi}$ is hyponormal, then $T_{\varphi}$ is analytic.

Thus we have:

Proposition 1.5. [1] If $A$ is a weighted shift with weights $a_{0},$ $a_{1},$ $a_{2},$ $\cdots$ such that

$0\leq a_{0}\leq a_{1}\leq\cdots<a_{N}=a_{N+1}=\cdots=1,$

then $A$ is not unitarily equivalent to any Toeplitz operator.
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Proof. Note that $A$ is hyponormal, $||A||=1$ and $A$ attains its norm. If $A$ is unitarily equivalent to $T_{\varphi}$ then by
a result of Brown and Douglas [3], $T_{\varphi}$ is hyponormal and $\varphi=4\theta$ $(\theta, \psi$ inner) . By Proposition 1.4, $T_{\varphi}\equiv T_{\psi}$ is
an isometry, so $a_{0}=1$ , a contradiction. $\square$

Recall that the Bergman shift (whose weights are given by $\sqrt{\frac{n+1}{n+2}}$ ) is subnormal. The following question

arises naturally:
Is the Bergman shift unitarily equivalent to a Toeplitz operator? (3)

An affirmative answer to the question (3) gives a negative answer to Halmos’s Problem 5. To see this,
assume that the Bergman shift $S$ is unitarily equivalent to $T_{\varphi}$ , then

$\mathfrak{R}(\varphi)\subseteq\sigma_{e}(T_{\varphi})=\sigma_{e}(S)=the$ unit circle $\mathbb{T}$

(where $\mathfrak{R}$ denotes the essential range and $\sigma_{e}$ denotes the essential spectrum). Thus $\varphi$ is unimodular. Since
$S$ is not an isometry it follows that $\varphi$ is not inner. Therefore $T_{\varphi}$ is not an analytic Toeplitz operator.

Theorem 1.6 (Sun’s Theorem). [18] Let $T$ be a weighted shift with a strictly increasing weight sequence
$\{a_{n}\}_{n=0}^{\infty}$ . If $T$ is unitarily equivalent to $T_{\varphi}$ then

$a_{n}=\sqrt{1-\alpha^{2n+2}}||T_{\varphi}|| (0<\alpha<1)$ .

Corollary 1.7. [18] The Bergman shift is not unitarily equivalent to any Toeplitz operator.

Proof. $\frac{n+1}{n+2}\neq 1-\alpha^{2n+2}$ for any $\alpha>0.$ $\square$

Lemma 1.8. [7] The weighted shift $T\equiv W_{\alpha}$ with weights $\alpha_{n}\equiv(1-\alpha^{2n+2})^{1}z(0<\alpha<1)$ is subnormal.

Proof. Write $r_{n}$
$:=\alpha_{0}^{2}\alpha_{1}^{2}\cdots\alpha_{n-1}^{2}$ for the moment of $W$ . Define a discrete measure $\mu$ on $[0$ , 1$]$ by

$\mu(z)=\{$ $\Pi_{j=1}^{\infty}\Pi_{j=1}^{\infty}(1-\alpha^{2j})\frac{\alpha^{2k}}{(1-\alpha^{2})\cdots(1-\alpha^{2k})}(1-\alpha^{2j})(z=\alpha^{k};k=1,2, \cdots)$

.

$(z=0)$

Then $r_{n}= \int_{0}^{1}t^{n}d\mu$ . By Berger’s theorem, $T$ is subnormal. $\square$

By Theorem 1.6 and Lemma 1.8, we have:

Corollary 1.9. If $T_{\varphi}$ is unitarily equivalent to a weighted shift, then $T_{\varphi}$ is subnormal.

Remark 1.10. [7] If $T_{\varphi}$ is unitarily equivalent to a weighted shift, what is the form of $\varphi$ ? A careful analysis
of the proof of Theorem 1.6 shows that

$\psi=\varphi-\alpha\overline{\varphi}\in H^{\infty}$

But

$T_{\psi}=T_{\varphi}-\alpha T_{\varphi}^{*}=(\begin{array}{lllll}0 -\alpha a_{0} a_{0} 0 -\alpha a_{l} a_{l} 0 -\alpha a_{2} a_{2} 0 \end{array})$

$=(\begin{array}{lllll}0 -\alpha 1 0 -\alpha 1 0 -\alpha 1 0 \end{array})+K$ ( $K$ compact)

$\cong T_{z-\alpha\overline{z}}+K$ (where $\cong$ denotes the unitary equivalence).
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Thus ran $(\psi)=\sigma_{e}(T_{\psi})=\sigma_{e}(T_{z-\alpha\overline{z}})=ran(z-\alpha\overline{z})$ . Thus $\psi$ is a conformal mapping of $\mathbb{D}$ onto the interior
of the ellipse with vertices $\pm i(1+\alpha)$ and passing through $\pm(1-\alpha)$ . On the other hand, $\psi=\varphi-\alpha\overline{\varphi}$ . So
$\alpha\overline{\psi}=\alpha\overline{\varphi}-\alpha^{2}\varphi$ , which implies

$\varphi=\frac{1}{1-\alpha^{2}}(\psi+\alpha\overline{\psi})$ .

We now have:

Theorem 1.11 (Cowen and Long Theorem). [7] For $0<\alpha<1$ , let $\psi$ be a conformal map of $\mathbb{D}$ onto the interior
of the ellipse with vertices $\pm i(1-\alpha)^{-1}$ and passing through $\pm(1+\alpha)^{-1}$ Then $T_{\psi+\alpha\overline{\psi}}$ is a subnormal weighted
shift that is neither analytic nor normal.

Corollary 1.12. [7] If $\varphi=\psi+\alpha\overline{\psi}$ is as in Theorem 1.11, then neither $\varphi$ nor $\overline{\varphi}$ is of bounded type.

Proof. From Abrahamse’s theorem and Theorem 1.11. $\square$

Problem 1.

(1) For which $f\in H^{\infty}$ , is there $\lambda(0<\lambda<1)$ with $T_{f+\lambda\overline{\int}}$ subnormal?

(2) If $\psi$ is a Riemann map between simply connected domains, does it follow that $T_{\psi+\alpha\overline{\psi}}$ is subnormal for
some a with $0<\alpha<1$ ?

(3) Conversely, if $T_{\psi+a\overline{\psi}}$ is subnormal for some $\alpha$ with $0<\alpha<1$ , does it follow that $\psi$ is a Riemann map
between simply connected domains?

Problem 2. Suppose $\psi$ is as in Theorem 1.11. Are there $g\in H^{\infty},$ $g\neq\lambda\psi+c$ , such that $T_{\psi+\overline{g}}$ is subnormal?

We conjecture that if $T_{\varphi}$ is non-normal subnormal then $\mathcal{E}(\varphi)=\{\lambda\}$ with $|\lambda|<1$ . However we were unable
to decide whether or not it is true. By comparison, if $T_{\varphi}$ is normal then $\mathcal{E}(\varphi)=\{e^{i\theta}\}.$

Problem 3. If $T_{\varphi}$ is non-normal subnormal, does it follow that $\mathcal{E}(\varphi)=\{\lambda\}$ with $|\lambda|<1$ ?

If the answer to Problem 4 is affirmative, i.e., the Cowen’s remark is true then for $\varphi=\overline{g}+f,$

$T_{\varphi}$ is subnormal $\Rightarrow\overline{g}-\lambda\overline{f}\in H^{2}$ with $|\lambda|<1\Rightarrow g=\overline{\lambda}f+c$ ( $c$ a constant),

which says that the answer to Problem 3 is negative.

When $\psi$ is as in Theorem 1.11, we examine the question: For which $\lambda$ , is $T_{\psi+\lambda\psi}$ subnormal? We then have:

Theorem 1.13. [5] Let $\lambda\in \mathbb{C}$ and $0<\alpha<1$ . Let $\psi$ be the conformal map of the disk onto the interior of
the ellipse with vertices $\pm(1+\alpha)i$ passing through $\pm(1-\alpha)$ . For $\varphi=\psi+\lambda\overline{\psi},$

$T_{\varphi}$ is subnormal if and only if
$\lambda=\alpha$ or $\lambda=\frac{\alpha^{k}e^{:a}+\alpha}{1+\alpha^{k+1}e^{:a}}(-\pi<\theta\leq\pi)$ .

To prove Theorem 1.13, we need an auxiliary lemma:

Proposition 1.14. [6] Let $T$ be the weighted shift with weights

$w_{n}^{2}= \sum_{j=0}^{n}\alpha^{2j}.$

Then $T+\mu T^{*}$ is subnormal if and only if $\mu=0$ or $|\mu|=\alpha^{k}(k=0,1,2, \cdots)$ .

Proof. See $[CoL].$ $O$
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Proof of Theorem 1.13. By Theorem 1.11, $\tau_{\psi+\alpha\overline{\psi}}\underline{\simeq}(1-\alpha^{2})^{\frac{3}{2}}T$ , where $T$ is a weighted shift of Proposition

1.14. Thus $T_{\psi}\cong(1-\alpha^{2})^{\frac{1}{2}}(T-\alpha T^{*})$ , so

$T_{\varphi}=T_{\psi}+ \lambda T_{\psi}^{*}\cong(1-\alpha^{2})^{\frac{1}{2}}(1-\lambda\alpha)(T+\frac{\lambda-\alpha}{1-\lambda\alpha}T^{*})$

Applying Proposition 1.14 with $\frac{\lambda-\alpha}{1-\lambda\alpha}$ in place of $\mu$ gives that for $k=0$ , 1, 2, $\cdots,$

$| \frac{\lambda-\alpha}{1-\lambda\alpha}|=\alpha^{k}\Leftrightarrow\frac{\lambda-\alpha}{1-\lambda\alpha}=\alpha^{k}e^{i\theta}$

$\Leftrightarrow\lambda-\alpha=\alpha^{k}e^{i\theta}-\lambda\alpha^{k+1}e^{i\theta}$

$\Leftrightarrow\lambda(1+\alpha^{k+1}e^{i\theta})=\alpha+\alpha^{k}e^{i\theta}$

$\Leftrightarrow\lambda=\frac{\alpha+\alpha^{k}e^{i\theta}}{1+\alpha^{k+1}e^{i\theta}}(-\pi<\theta\leq\pi)$

$\square$

2 Block Toeplitz operators

We review (block) Toeplitz operators and (block) Hankel operators (cf. [12], [13]). For $\mathcal{X}$ a Hilbert space,
let $L_{\mathcal{X}}^{2}\equiv L_{\mathcal{X}}^{2}(\mathbb{T})$ be the Hilbert space of $\mathcal{X}$-valued norm square-integrable measurable functions on $\mathbb{T}$ , and let
$H_{\mathcal{X}}^{2}\equiv H_{\mathcal{X}}^{2}(\mathbb{T})$ and $H_{\mathcal{X}}^{\infty}\equiv H_{\mathcal{X}}^{\infty}(\mathbb{T})$ be the corresponding Hardy spaces. Let $M_{m\cross n}\equiv M_{m\cross n}(\mathbb{C})$ denote the set
of $m\cross n$ complex matrices and write $M_{n}$ $:=M_{n\cross n}$ . If $\Phi$ is a matrix-valued function in $L_{M_{n}}^{\infty}$ , then the (block))
Toeplitz operator $T_{\Phi}$ and the (block) Hankel operator $H_{\Phi}$ on $H_{\mathbb{C}^{\mathfrak{n}}}^{2}$ are defined by

$T_{\Phi}f:=P(\Phi f)$ and $H_{\Phi}f:=JP^{\perp}(\Phi f)$ $(f\in H_{\mathbb{C}^{\mathfrak{n}}}^{2})$ , (4)

where $P$ and $P^{\perp}$ denote the orthogonal projections that map $L_{\mathbb{C}^{n}}^{2}$ onto $H_{\mathbb{C}^{n}}^{2}$ and $(H_{\mathbb{C}^{\mathfrak{n}}}^{2})^{\perp}$ , respectively, and $J$

denotes the unitary operator from $L_{\mathbb{C}^{n}}^{2}$ to $L_{\mathbb{C}^{n}}^{2}$ given by $(Jg)(z)$ $:=\overline{z}I_{n}g(\overline{z})$ for $g\in L_{\mathbb{C}^{n}}^{2}(I_{n}$ $:=then\cross n$ identity
matrix). For $\Phi\in L_{M_{\gamma r\iota\cross n}}^{\infty}$ , write

$\tilde{\Phi}(z):=\Phi^{*}(\overline{z})$ . (5)

In 2006, Gu, Hendricks and Rutherford [14] extended Cowen’s Theorem to block Toeplitz operators. Their
characterization for hyponormality of block Toeplitz operators resembles Cowen’s Theorem except for an addi-
tional condition-the normality of the symbol.

Lemma 2.1. (Hyponormality of Block Toeplitz Operators) [14] For each $\Phi\in L_{M_{\mathfrak{n}}}^{\infty}$ , let

$\mathcal{E}(\Phi):=\{K\in H_{M_{n}}^{\infty}:||K||_{\infty}\leq 1$ and $\Phi-K\Phi^{*}\in H_{M_{n}}^{\infty}\}.$

Then $T_{\Phi}$ is hyponormal if and only if $\Phi$ is normal and $\mathcal{E}(\Phi)$ is nonempty.

T. Nakazi and K. Takahashi [17] have shown that if $\varphi\in L^{\infty}$ is such that $T_{\varphi}$ is a hyponormal operator whose
self-commutator $[T_{\varphi}^{*}, T_{\varphi}]$ is of finite rank then there exists a finite Blaschke product $b\in \mathcal{E}(\varphi)$ such that

$\deg(b)=$ rank [$T_{\varphi}^{*}, T_{\varphi}].$

What is the matrix-valued version of Nakazi and Takahashi’s Theorem? A candidate is as follows: If $\Phi\in L_{M_{\iota}}^{\infty},$

is such that $T_{\Phi}$ is a hyponormal operator whose self-commutator $[T_{\Phi}^{*}, T_{\Phi}]$ is of finite rank then there exists a
finite Blaschke-Potapov product $B\in \mathcal{E}(\Phi)$ such that $\deg(B)=$ rank [$T_{\Phi}^{*}, T_{\Phi}]$ . We note that the degree of the
finite Blaschke-Potapov product $B$ is defined by

$\deg(B) :=\deg(\det B)$ . (6)
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Thus we have:

Problem 4. If $\Phi\in L_{M_{\mathfrak{n}}}^{\infty}$ is such that $T_{\Phi}$ is a hyponormal operator whose self-commutator $[T_{\Phi}^{*}, T_{\Phi}]$ is of finite

rank, does there exist a finite Blaschke-Potapov product $B\in \mathcal{E}(\Phi)$ such that rank $[T_{\Phi}^{*}, T_{\Phi}]=\deg(\det B)$ .

On the other hand, in [17], it was shown that if $\varphi\in L^{\infty}$ is such that $T_{\varphi}$ is subnormal and $\varphi=q\overline{\varphi}$ , where $q$

is a finite Blaschke product then $T_{\varphi}$ is normal or analytic. We thus pose its matrix-valued version:

Problem 5. If $\Phi\in L_{M_{n}}^{\infty}$ is such that $T_{\Phi}$ is subnormal and $\Phi=B\Phi^{*}$ , where $B$ is a a finite Blaschke-Potapov
product, does it follow that $T_{\Phi}$ is normal or analytic?

We recall (cf. [9]) that for $\Psi\in L_{M}^{\infty},$. such that $\Psi^{*}$ is of bounded type, write $\Psi=\Theta_{2}B^{*}=B^{*}\Theta_{2}$ . Let $\Omega$ be
the greatest common left inner divisor of $B$ and $\Theta_{2}$ . Then $B=\Omega B_{\ell}$ and $\Theta_{2}=\Omega\Omega_{2}$ for some $B_{\ell}\in H_{M_{\mathfrak{n}}}^{2}$ and
some inner matrix $\Omega_{2}$ . Therefore we can write

$\Psi=B_{\ell}^{*}\Omega_{2}$ , where $B_{l}$ and $\Omega_{2}$ are left coprime: (7)

in this case, $B_{\ell}^{*}\Omega_{2}$ is called a left coprime factorization of $\Psi$ . Similarly,

$\Psi=\Delta_{2}B_{r}^{*}$ , where $B_{r}$ and $\Delta_{2}$ are right coprime: (8)

in this case, $\Delta_{2}B_{f}^{*}$ is called a right coprime factorization of $\Psi.$

As a first inquiry in the matrix-valued version of Halmos’s Problem 5 the following question can be raised
(cf. [8], [9], [10]):

Is Abrahamse’s Theorem valid for block Toeplitz operators?

Related this question, the following theorem was proven:

Theorem 2.2. ([9, Theorem 4.5]) Let $\Phi\in L_{M_{\mathfrak{n}}}^{\infty}$ be a matrix-valued rational function. Then we may write

$\Phi_{-}=B^{*}\Theta,$

where $B\in H_{M_{\mathfrak{n}}}^{2}$ and $\Theta$ $:=\theta I_{n}$ with a finite Blaschke product $\theta$ . Suppose $B$ and $\Theta$ are coprime. If both $T_{\Phi}$

and $T_{\Phi}^{2}$ are hyponormal then $T_{\Phi}$ is either normal or analytic.

In Theorem 2.2, the “coprime condition is essential. To see this, let

$T_{\Phi}$ $:=(\begin{array}{ll}T_{b}+T_{b}^{*} 00 T_{b}\end{array})$ ( $b$ is a finite Blaschke product).

Since $T_{b}+\tau_{b}*$ is normal and $T_{b}$ is analytic, it follows that $T_{\Phi}$ and $T_{\Phi}^{2}$ are both hyponormal. Obviously, $T_{\Phi}$ is
neither normal nor analytic. Note that $\Phi_{-}\equiv(_{00}^{b0}$ ) $=(_{00}^{10})^{*}\cdot I_{b}$ , where $(_{00}^{10}$ ) and $I_{b}$ are not coprime. However
we note that the above example is a direct sum of a normal Toeplitz operator and an analytic Toeplitz operator.
Based on this observation, we have:

Problem 6. Let $\Phi\in L_{M_{1}}^{\infty}$, be a matrix-valued rational function. If $T_{\Phi}$ and $T_{\Phi}^{2}$ are hyponormal, but $T_{\Phi}$ is
neither normal nor analytic, does it follow that $T_{\Phi}$ is of the form

$T_{\Phi}=(\begin{array}{ll}T_{A} 00 T_{B}\end{array})$ (where $T_{A}$ is normal and $T_{B}$ is analytic)?

It is well-known that if $T\in \mathcal{B}(\mathcal{H})$ is subnormal then $ker[T^{*}, T]$ is invariant under $T$. Thus we might be
tempted to guess that if the condition $T_{\Phi}$ and $T_{\Phi}^{2}$ are hyponormal”is replaced by $T_{\Phi}$ is hyponormal and
$ker[T_{\Phi}^{*}, T_{\Phi}]$ is invariant under $T_{\Phi}$ then the answer to Problem 7 is affirmative. But this is not the case.
Indeed, consider

$T_{\Phi}=(\begin{array}{ll}2U+U^{*} U^{*}U^{*} 2U+U^{*}\end{array})$

Then a straightforward calculation shows that $T_{\Phi}$ is hyponormal and $ker[T_{\Phi}^{*}, T_{\Phi}]$ is invariant under $T_{\Phi}$ , but $T_{\Phi}$

is never normal (cf. [9, Remark 3.9]). However, if the condition $T_{\Phi}$ and $T_{\Phi}^{2}$ are hyponormal”’ is strengthened
to $uT_{\Phi}$ is subnormal”, what conclusion do you draw?
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