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Regular operator mappings
and

multivariate geometric means

Frank Hansen

Abstract

We introduce the notion of regular operator mappings of several
variables generalising the notion of spectral function. This setting is

convenient for studying maps more general than what can be obtained
from the functional calculus, and it allows for Jensen type inequalities

and multivariate non-commutative perspectives.
As a main application of the theory we consider geometric means

of $k$ operator variables extending the geometric mean of $k$ commut-
ing operators and the geometric mean of two arbitrary positive definite
matrices. We propose different types of updating conditions that seems
natural in many applications and prove that each of these conditions,

together with a few other natural axioms, uniquely defines the geo-

metric mean for any number of operator variables. The means defined
in this way are given by explicit formulas and are computationally

tractable. 1

MSC2010 classification: $26B25;47A64$

Key words and phrases: regular operator mapping; perspective;
multivariate geometric mean.

1 Introduction

The geometric mean of two positive definite operators was introduced by Pusz
and Woronowicz [13], and their definition was soon put into the context of

1An earlier version of this paper was posted in the ArXiv on March 15, 2014 with the

title Geometric means of several variables.
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the axiomatic approach to operator means developed by Kubo and Ando [9].
Subsequently a number of authors [8, 1, 12, 2, 11, 10] have suggested several
ways of defining means of operators for several variables as extensions of the
geometric mean of two operators.

There is no satisfactory definition of a geometric mean of several operator
variables that is both computationally tractable and satisfies a number of
natural conditions put forward in the influential paper by Ando, Li, and
Mathias [1]. We put the emphasis on methods to extend a geometric mean
of $k$ variables to a mean of $k+1$ variables, and in the process we challenge
one of the requirements to a geometric mean put forward by Ando, Li, and
Mathias.

The symmetry condition of a geometric mean is mathematically very ap-
pealing, but the condition makes no sense in a number of applications. If
for example positive definite matrices $A_{1},$ $A_{2}$ , . . . , $A_{k}$ correspond to measure-
ments made at times $t_{1}<t_{2}<\cdots<t_{k}$ then there is no way of permuting
the matrices since time only goes forward. It makes more sense to impose an
updating condition

(1) $G_{k+1}(A_{1}, \ldots, A_{k}, 1)=G_{k}(A_{1}, \ldots, A_{k})^{k/(k+1)}$

when moving from a mean $G_{k}$ of $k$ variables to a mean $G_{k+1}$ of $k+1$ vari-
ables. The condition corresponds to taking the geometric mean of $k$ copies of
$G_{k}(A_{1}, \ldots, A_{k})$ and one copy of the unit matrix. A variant condition would
be to impose the equality

(2) $G_{k+1}(A_{1}, \ldots, A_{k}, 1)=G_{k}(A_{1}^{k/(k+1)}, \ldots, A_{k}^{k/(k+1)})$

when updating from $k$ to $k+1$ variables. It is an easy exercise to realise that
if we set $G_{1}(A)=A$ , then either of the conditions (1) or (2) together with
homogeneity uniquely defines the geometric mean of $k$ commuting operators.

We furthermore prove that by setting $G_{1}(A)=A$ and by demanding ho-
mogeneity and a few more natural conditions, then either of the updating
conditions (1) or (2) leads to unique but different solutions to the problem
of defining a geometric mean of $k$ operators. The means defined in this way
are given by explicit formulas, and they are computationally tractable. They
possess all of the attractive properties associated with geometric operator
means discussed in [1] with the notable exception of symmetry. If one em-
phasises either of the updating conditions (1) or (2) we are thus forced to
abandon symmetry.
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Efficient averaging techniques of positive definite matrices are important
in many practical applications; for example in radar imaging, medical imag-
ing, and the analysis of financial data.

2 Regular operator mappings

2.1 Spectral functions

Let $B(\mathcal{H})$ denote the set of bounded linear operators on a Hilbert space
$\mathcal{H}$ . A function $F:\mathcal{D}arrow B(\mathcal{H})$ defined in a convex domain $\mathcal{D}$ of self-adjoint
operators in $B(\mathcal{H})$ is called a spectral function, if it can be written on the
form $F(x)=f(x)$ for some function $f$ defined in a real interval $I$ , where $f(x)$

is obtained by applying the functional calculus.
The definition contains some hidden assumptions. The domain $\mathcal{D}$ should

be invariant under unitary transformations and

(3) $F(u^{*}xu)=u^{*}F(x)u x\in \mathcal{D}$

for every unitary transformation $u$ on $\mathcal{H}$ . Furthermore, to pairs of mutually
orthogonal projections $p$ and $q$ acting on $\mathcal{H}$ , the element $pxp+qxq$ should
be in $\mathcal{D}$ and the equality

(4) $F(pxp+qxq)=pF(pxp)p+qF(qxq)q$

should hold for any $x\in B(\mathcal{H})$ such that $pxp$ and $qxq$ are in $\mathcal{D}$ . An operator
function is a spectral function if and only if (3) and (4) are satisfied, cf. [3, 7].

The notion of spectral function is not immediately extendable to functions
of several variables. However, we may consider the two properties of spectral
functions noticed by C. Davis as a kind of regularity conditions, and they
are readily extendable to functions of more than one variable.

The notion of a regular map of two operator variables were studied by
Effros and the author in [4], cf. also [6].

Definition 2.1. Let $F:\mathcal{D}arrow B(\mathcal{H})$ be a mapping of $k$ variables defined in
a convex domain $\mathcal{D}\subseteq B(\mathcal{H})\cross\cdots\cross B(\mathcal{H})$ . We say that $F$ is regular if
(i) The domain $\mathcal{D}$ is invariant under unitary transformations of $\mathcal{H}$ and

$F(u^{*}x_{1}u, \ldots, u^{*}x_{k}u)=u^{*}F(x_{1}, \ldots, x_{k})u$

for every $x=(x_{1}, \ldots, x_{k})\in \mathcal{D}$ and every unitary $u$ on $\mathcal{H}.$
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(ii) Let $p$ and $q$ be mutually orthogonal projections acting on $\mathcal{H}$ and take
arbitrary $k$ -tuples $(x_{1}, \ldots,x_{k})$ and $(y_{1}, \ldots, y_{k})$ of operators in $B(\mathcal{H})$

such that the compressed tuples

$(px_{1}p, \ldots,px_{k}p)$ and $(qy_{1}q, \ldots, qy_{k}q)$

are in the domain $\mathcal{D}$ . Then the $k$ -tuple of diagonal block matrices

$(px_{1}p+qy_{1}q, \ldots,px_{k}p+qy_{k}q)$

is also in the domain $\mathcal{D}$ and

$F(px_{1}p+qy_{1}q, \ldots,px_{k}p+qy_{k}q)$

$=pF(px_{1}p, \ldots,px_{k}p)p+qF(qy_{1}q, . . . , qy_{k}q)q.$

By choosing $q$ as the zero projection in the second condition in the above
definition we obtain

$F(px_{1}p, \ldots,px_{k}p)=pF(px_{1}p, . . . , px_{k}p)p,$

which shows that $F$ for any orthogonal projection $p$ on $\mathcal{H}$ may be considered
as a regular operator mapping

$F:\mathcal{D}_{p}arrow B(p\mathcal{H})$ ,

where the compressed domain

$\mathcal{D}_{p}=\{(x_{1}, \ldots, x_{k})\in\bigoplus_{m=1}^{k}B(p\mathcal{H})|(x_{1}\oplus 0(1-p), \ldots, x_{k}\oplus 0(1-p))\in \mathcal{D}\}.$

With this interpretation we may unambiguously calculate block matrices by
the formula

$F((\begin{array}{ll}x_{1} 00 y_{1}\end{array}), \ldots, (\begin{array}{ll}x_{k} 00 y_{k}\end{array}))=(F(x_{l} 0\cdots x_{k}) F(y_{1} 0\cdots y_{k}))$

which is well-known from mappings generated by the functional calculus.
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2.2 Jensen’s inequality for regular operator mappings

We consider throughout this paper the domain

$\mathcal{D}^{k}=\{(A_{1}, \ldots, A_{k})|A_{1}, . . . , A_{k}\geq 0\}$

of $k$-tuples of positive semi-definite operators acting on an infinite dimen-
sional Hilbert space $\mathcal{H}$ . It is convenient to consider an infinite dimensional
Hilbert space since in this case $\mathcal{H}$ is isomorphic to $\mathcal{H}\oplus \mathcal{H}$ which allows us to
use block matrix techniques without imposing dimension conditions.

Theorem 2.2. Consider a convex regular mapping

$F:\mathcal{D}^{k}arrow B(\mathcal{H})_{sa}$

of $\mathcal{D}^{k}$ into self-adjoint operators acting on $\mathcal{H}.$

(i) Let $C$ be a contraction on $\mathcal{H}$ . If $F(O, \ldots, 0)\leq 0$ then the inequality

$F(C^{*}A_{1}C, \ldots, C^{*}A_{k}C)\leq C^{*}F(A_{1}, \ldots, A_{k})C$

holds for $k$ -tuples $(A_{1}, \ldots, A_{k})$ in $\mathcal{D}^{k}.$

(ii) Let $X$ and $Y$ be operators acting on $\mathcal{H}$ with $X^{*}X+Y^{*}Y=1$ . Then the
inequality

$F(X^{*}A_{1}X+Y^{*}B_{1}Y, \ldots, X^{*}A_{k}X+Y^{*}B_{k}Y)$

$\leq X^{*}F(A_{1}, \ldots, A_{k})X+Y^{*}F(B_{1}, \ldots, B_{k})Y$

holds for $k$ -tuples $(A_{1}, \ldots, A_{k})$ and $(B_{1}, \ldots, B_{k})$ in $\mathcal{D}^{k}.$

Proof By setting $T=(1-C^{*}C)^{1/2}$ and $S=(1-CC^{*})^{1/2}$ we obtain that
the block matrices

$U=(\begin{array}{ll}C ST -C^{*}\end{array})$ and $V=(\begin{array}{ll}C -S-T -C^{*}\end{array})$

are unitary operators on $\mathcal{H}\oplus \mathcal{H}$ . Furthermore,

$\frac{1}{2}U^{*}(\begin{array}{ll}A 00 0\end{array})U+ \frac{1}{2}V^{*}(\begin{array}{ll}A 00 0\end{array})V= (\begin{array}{ll}C^{*}AC 00 SAS\end{array})$
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for any operator $A\in B(\mathcal{H})$ . By using that $F$ is a convex regular map we
obtain

$(F(C^{*}A_{1}C 0\cdots C^{*}A_{k}C) F(SA_{1}S 0\cdots SA_{k}S))$

$=F((\begin{array}{ll}C^{*}A_{1}C 00 SA_{1}S\end{array}), \ldots, (\begin{array}{ll}C^{*}A_{k}C 00 SA_{k}S\end{array}))$

$=F( \frac{1}{2}U^{*}(\begin{array}{ll}A_{1} 00 0\end{array})U+ \frac{1}{2}V^{*}(\begin{array}{ll}A_{l} 00 0\end{array})V, \ldots, \frac{1}{2}U^{*}(\begin{array}{ll}A_{k} 00 0\end{array})U+ \frac{1}{2}V^{*}(\begin{array}{ll}A_{k} 00 0\end{array})V)$

$\leq\frac{1}{2}F(U^{*}(\begin{array}{ll}A_{l} 00 0\end{array})U, \ldots, U^{*}(\begin{array}{ll}A_{k} 00 0\end{array})U)+ \frac{1}{2}F(V^{*}(\begin{array}{ll}A_{1} 00 0\end{array})V, . .. , V^{*} (\begin{array}{ll}A_{k} 00 0\end{array})V)$

$= \frac{1}{2}U^{*}F((\begin{array}{ll}A_{1} 00 0\end{array}), \ldots, (\begin{array}{ll}A_{k} 00 0\end{array}))U+ \frac{1}{2}V^{*}F((\begin{array}{ll}A_{1} 00 0\end{array}), \ldots, (\begin{array}{ll}A_{k} 00 0\end{array}))V$

$= \frac{1}{2}U^{*}(F(A_{1} 0\cdots A_{k}) F(0 0\cdots 0))U+ \frac{1}{2}V^{*}(F(A_{1} 0\cdots A_{k}) F(0 0\cdots 0))V$

$\leq\frac{1}{2}U^{*}$ $(^{F(A_{1},..,A_{k})}0^{\cdot}$ $00)U+ \frac{1}{2}V^{*}(^{F(A_{1},..,A_{k})}0^{\cdot}$ $00)V$

$=(C^{*}F(A_{1} 0\cdots A_{k})C SF(A_{1} 0\cdots A_{k})S),$

where we used convexity in the first inequality, and in the second inequality
used $F(O, \ldots, 0)\leq 0$ . The first statement now follows.

In order to prove (ii) we define the map

$G(A_{1}, \ldots, A_{k})=F(A_{1}, \ldots, A_{k})-F(O, \ldots, 0)$ $(A_{1}, \ldots, A_{k})\in \mathcal{D}^{k}.$

Unitary invariance of $F$ implies that $F(O, \ldots, 0)$ is a multiple of the unit
operator and thus commutes with all projections. Therefore $G$ is regular and
convex with $G(O, \ldots, 0)=0$ . We then define block matrices

$C=(\begin{array}{ll}X 0Y 0\end{array})$ and $Z_{m}=(\begin{array}{ll}A_{m} 00 B_{m}\end{array}),$ $m=1$ , . . . , $k$

and notice that

$C^{*}Z_{m}C=(\begin{array}{ll}X^{*}A_{m}X+Y^{*}B_{m}Y 00 0\end{array})$
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for $m=1$ , . . . , $k$ . Finally we use (i) to obtain

$(^{G(X^{*}A_{1}X+Y^{*}B_{1}Y,\ldots,X^{*}A_{k}X+Y^{*}B_{k}Y)}0 00)$

$=(^{G(X^{*}A_{1}X+Y^{*}B_{1}Y,\ldots,X^{*}A_{k}X+Y^{*}B_{k}Y)}0 G(0,.., 0)0.)$

$=G(C^{*}Z_{1}C, \ldots, C^{*}Z_{k}C)$

$\leq C^{*}G(Z_{1}, \ldots, Z_{k})C=C^{*}(G(A_{1} 0\cdots A_{k}) G(B_{1} 0\cdots B_{k}))C$

$=(X^{*}G(A_{1} \cdots 0 A_{k})X+Y^{*}G(B_{1} \cdots B_{k})Y 00)$

from which we deduce that

$F(X^{*}A_{1}X+Y^{*}B_{1}Y, \ldots, X^{*}A_{k}X+Y^{*}B_{k}Y)$

$=G(X^{*}A_{1}X+Y^{*}B_{1}Y, \ldots, X^{*}A_{k}X+Y^{*}B_{k}Y)+F(O, \ldots, 0)$

$\leq X^{*}G(A_{1}, \ldots, A_{k})X+Y^{*}G(B_{1}, \ldots, B_{k})Y+F(0, \ldots, 0)$

$=X^{*}F(A_{1}, \ldots, A_{k})X+Y^{*}F(B_{1}, \ldots, B_{k})Y$

$-X^{*}F(O, \ldots, 0)X-Y^{*}F(O, \ldots, 0)Y+F(0, \ldots, 0)$ .

Since as above $F(O, \ldots, 0)=c\cdot 1$ for some real constant $c$ we obtain

$-X^{*}F(O, \ldots, 0)X-Y^{*}F(O, \ldots, 0)Y+F(0, \ldots, 0)$

$=-c(X^{*}X+Y^{*}Y)+c\cdot 1=0,$

and the statement of the theorem follows. QED

We shall for $k=1$ , 2, . . . consider the convex domain

$\mathcal{D}_{+}^{k}=\{(A_{1}, \ldots, A_{k})|A_{1}, . . . , A_{k}>0\}$

of positive definite and invertible operators acting on the Hilbert space $\mathcal{H}.$
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Proposition 2.3. Let $F$ be a regular map of $\mathcal{D}_{+}^{k}$ into self-adjoint operators
acting on $\mathcal{H}$ . We assume that

(i) $F$ is convex

(ii) $F(tA_{1}, \ldots, tA_{k})=tF(A_{1}, \ldots, A_{k})$ $t>0,$ $(A_{1}, \ldots, A_{k})\in \mathcal{D}_{+}^{k}.$

Then
$F(C^{*}A_{1}C, \ldots, C^{*}A_{k}C)=C^{*}F(A_{1}, \ldots, A_{k})C$

for any invertible operator $C$ on $\mathcal{H}$ and $(A_{1}, \ldots, A_{k})\in \mathcal{D}_{+}^{k}.$

Proof. Assume first that $C$ is an invertible contraction on $\mathcal{H}$ . Jensen’s sub-
homogeneous inequality is only available for regular mappings defined in $\mathcal{D}^{k}.$

To $\epsilon>0$ we therefore consider the mapping $F_{\epsilon}:\mathcal{D}^{k}arrow B(\mathcal{H})$ by setting

$F_{\epsilon}(A_{1}, \ldots, A_{k})=F(\epsilon+A_{1}, \ldots, \epsilon+A_{k})-F(\epsilon, \ldots, \epsilon)$ .

By unitary invariance of $F$ we realise that $F(\epsilon, \ldots, \epsilon)$ is a multiple of the
unity. Therefore, $F_{\epsilon}$ is regular and convex with $F_{\epsilon}(O, \ldots, 0)=0.$

We may thus use Jensen’s sub-homogeneous inequality for regular map-
pings and obtain

$F_{\epsilon}(C^{*}A_{1}C, \ldots, C^{*}A_{k}C)\leq C^{*}F_{\epsilon}(A_{1}, \ldots, A_{k})C,$

where we now restrict $(A_{1}, \ldots, A_{k})$ to the domain $\mathcal{D}_{+}^{k}$ and rearrange the
inequality to

$F(\epsilon+C^{*}A_{1}C, \ldots, \epsilon+C^{*}A_{k}C)$

$\leq C^{*}F(A_{1}+\epsilon, \ldots, A_{k}+\epsilon)C+F(\epsilon, \ldots, \epsilon)-C^{*}F(\epsilon, \ldots, \epsilon)C.$

Since $F$ is positively homogeneous the term $F(\epsilon, \ldots, \epsilon)=\epsilon F(1, \ldots, 1)$ is
vanishing for $\epsilonarrow 0$ and we obtain

(5) $F(C^{*}A_{1}C, \ldots, C^{*}A_{k}C)\leq C^{*}F(A_{1}, \ldots, A_{k})C$

for invertible $C$. Again using homogeneousness we obtain inequality (5) also
for arbitrary invertible $C$. Then by repeated application of (5) we obtain

$F(A_{1}, \ldots, A_{k})\leq C^{*-1}F(C^{*}A_{1}C, \ldots, C^{*}A_{k}C)C^{-1}\leq F(A_{1}, \ldots, A_{k})$

and the statement follows. QED
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3 The perspective of a regular map

Definition 3.1. Let $F:\mathcal{D}_{+}^{k}arrow B(\mathcal{H})$ be a regular mapping. The perspective
map $\mathcal{P}_{F}$ is the mapping defined in the domain $\mathcal{D}_{+}^{k+1}$ by setting

$\mathcal{P}_{F}(A_{1}, \ldots, A_{k}, B)=B^{1/2}F(B^{-1/2}A_{1}B^{-1/2}, . . . , B^{-1/2}A_{k}B^{-1/2})B^{1/2}$

for positive invertible operators $A_{1}$ , . . . , $A_{k}$ and $B$ acting on $\mathcal{H}.$

It is a small exercise to prove that the perspective $\mathcal{P}_{F}$ is a regular mapping
which is positively homogeneous in the sense that

$\mathcal{P}_{F}(tA_{1}, \ldots, tA_{k}, tB)=t\mathcal{P}_{F}(A_{1}, \ldots, A_{k}, B)$

for arbitrary $(A_{1}, \ldots, A_{k}, B)\in \mathcal{D}_{+}^{k+1}$ and real numbers $t>0$ . The following
theorem generalises a result of Effros [5, Theorem 2.2] for functions of one
variable.

Theorem 3.2. The perspective $\mathcal{P}_{F}$ of a convex regular map $F:\mathcal{D}_{k}^{+}arrow B(\mathcal{H})$

is convex.

Proof. Consider tuples $(A_{1}, \ldots, A_{k+1})$ and $(B_{1}, \ldots, B_{k+1})$ in $\mathcal{D}_{+}^{k+1}$ and take
$\lambda\in[0$ , 1 $]$ . We define the operators

$C =\lambda A_{k+1}+(1-\lambda)B_{k+1}$

$X =\lambda^{1/2}A_{k+1}^{1/2}C^{-1/2}$

$Y =(1-\lambda)^{1/2}B_{k+1}^{1/2}C^{-1/2}$

and calculate that

$X^{*}X+Y^{*}Y=C^{-1/2}\lambda A_{k+1}C^{-1/2}+C^{-1/2}(1-\lambda)B_{k+1}C^{-1/2}=1$

and

$X^{*}A_{k+1}^{-1/2}A_{i}A_{k+1}^{-1/2}X+Y^{*}B_{k+1}^{-1/2}B_{i}B_{k+1}^{-1/2}Y$

$=c^{-1/2}\lambda^{1/2}A_{k+1}^{1}A_{k+1^{2}}A_{i}A_{k+1^{2}}^{-1}\lambda^{1}/A_{k+1}^{1/2}C^{-1/2}$

$+C^{-1/2}(1-\lambda)^{1/2}B_{k+1}^{1/2}B_{k+1}^{-1/2}B_{i}B_{k+1}^{-1/2}(1-\lambda)^{1/2}B_{k+1}^{1/2}C^{-1/2}$

$=c^{-1/2}(\lambda A_{i}+(1-\lambda)B_{i})C^{-1/2}$
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for $i=1$ , . . . , $k$ . We thus obtain

$\mathcal{P}_{F}(\lambda A_{1}+(1-\lambda)B_{1}, \ldots, \lambda A_{k+1}+(1-\lambda)B_{k+1})$

$=C^{1/2}F(C^{-1/2}(\lambda A_{1}+(1-\lambda)B_{1})C^{-1/2},$
$\ldots,$

$c^{-1/2}(\lambda A_{k}+(1-\lambda)B_{k})C^{-1/2})C^{1/2}$

$=C^{1/2}F(X^{*}A_{k+1}^{-1/2}A_{1}A_{k+1}^{-1/2}X+Y^{*}B_{k+1}^{-1/2}B_{1}B_{k+1}^{-1/2}Y,$
$\ldots,$

$X^{*}A_{k+1}^{-1/2}A_{k}A_{k+1}^{-1/2}X+Y^{*}B_{k+1}^{-1/2}B_{k}B_{k+1}^{-1/2}Y)C^{1/2}$

$\leq C^{1/2}(X^{*}F(A_{k+1}^{-1/2}A_{1}A_{k+1}^{-1/2}, \ldots,A_{k+1}^{-1/2}A_{k}A_{k+1}^{-1/2})X$

$+Y^{*}F(B_{k+1}^{-1/2}B_{1}B_{k+1}^{-1/2}, \ldots, B_{k+1}^{-1/2}B_{k}B_{k+1}^{-1/2})Y)C^{1/2}$

$=\lambda A_{k+1}^{1/2}F(A_{k+1}^{-1/2}A_{1}A_{k+1}^{-1/2}, \ldots, A_{k+1}^{-1/2}A_{k}A_{k+1}^{-1/2})A_{k+1}^{1/2}$

$+(1-\lambda)B_{k+1}^{1/2}F(B_{k+1}^{-1/2}B_{1}B_{k+1}^{-1/2}, \ldots, B_{k+1}^{-1/2}B_{k}B_{k+1}^{-1/2})B_{k+1}^{1/2}$

$=\lambda \mathcal{P}_{F}(A_{1}, \ldots, A_{k+1})+(1-\lambda)\mathcal{P}_{F}(B_{1}, \ldots, B_{k+1})$ ,

where we used Jensen’s inequality for regular mappings. QED

Proposition 3.3. Let $F:\mathcal{D}_{+}^{k+1}arrow B(\mathcal{H})$ be a convex and positively homoge-
neous regular mapping. Then $F$ is the perspective of its restriction $G$ to $\mathcal{D}_{+}^{k}$

given by
$G(A_{1}, \ldots, A_{k})=F(A_{1}, \ldots, A_{k}, 1)$

for positive invertible operators $A_{1}$ , . . . , $A_{k}$ acting on $\mathcal{H}.$

Proof. Since $F$ is a convex and positively homogeneous regular mapping we
may apply Proposition 2.3. Then by setting $C=A_{k+1}^{-1/2}$ we obtain

$A_{k+1}^{-1/2}F(A_{1}, \ldots, A_{k}, A_{k+1})A_{k+1}^{-1/2}$

$=F(A_{k+1}^{-1/2}A_{1}A_{k+1}^{-1/2}, \ldots, A_{k+1}^{-1/2}A_{k}A_{k+1}^{-1/2},1)$ .

By rearranging this equation we obtain

$F(A_{1}, \ldots, A_{k}, A_{k+1})=A_{k+1}^{1/2}G(A_{k+1}^{-1/2}A_{1}A_{k+1}^{-1/2}, \ldots, A_{k+1}^{-1/2}A_{k}A_{k+1}^{-1/2})A_{k+1}^{1/2}$

which is the statement to be proved. QED

The result in the above proposition may be reformulated in the following
way: The perspective $\mathcal{P}_{G}$ of a convex regular mapping $G:\mathcal{D}_{+}^{k}arrow B(\mathcal{H})$ is the
unique extension of $G$ to a positively homogeneous convex regular mapping
$F:\mathcal{D}_{+}^{k+1}arrow B(\mathcal{H})$ .
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4 The construction of geometric means

We construct a sequence of multivariate geometric means $G_{1},$ $G_{2}$ , . . . by the
following general procedure.

(i) We begin by setting $G_{1}(A)=A$ for each positive definite invertible
operator $A.$

(ii) To each geometric mean $G_{k}$ of $k$ variables we associate an auxiliary
mapping $F_{k}:\mathcal{D}_{+}^{k}arrow B(\mathcal{H})$ such that

(a) $F_{k}$ is a regular map,

(b) $F_{k}$ is concave,

(c) $F_{k}(t_{1}, \ldots, t_{k})=(t_{1}\cdots t_{k})^{1/(k+1)}$ for positive numbers $t_{1}$ , . . . , $t_{k}.$

(iii) We define the geometric mean $G_{k+1}:\mathcal{D}_{+}^{k+1}arrow B(\mathcal{H})$ of $k+1$ variables
as the perspective

$G_{k+1}(A_{1}, \ldots, A_{k+1})=\mathcal{P}_{F_{k}}(A_{1}, . . . , A_{k+1})$

of the auxiliary map $F_{k}.$

Geometric means defined by this very general procedure are concave and
positively homogeneous regular mappings by Theorem 3.2 and the preceding
remarks. They also satisfy

(6) $G_{k}(A_{1}, \ldots, A_{k})=(A_{1}\cdots A_{k})^{1/k}$

for commuting operators. Indeed, since $G_{k}$ is the perspective of $F_{k-1}$ and this

map satisfies (c) in condition (ii), we obtain $G_{k}(t_{1}, \ldots, t_{k})=(t_{1}\cdots t_{k})^{1/k}$

for positive numbers. Equality (6) then follows since $G_{k}$ is regular. The
geometric mean of two variables

(7) $G_{2}(A_{1}, A_{2})=A_{2}^{1/2}(A_{2}^{-1/2}A_{1}A_{2}^{-1/2})^{1/2}A_{2}^{1/2}$

coincides with the geometric mean of two variables $A_{1}\# A_{2}$ introduced by
Pusz and Woronowicz. This is so since $G_{2}$ is the perspective of $F_{1}$ and
$F_{1}(A)=A^{1/2}$ . The last statement is obtained since $F_{1}$ is a regular mapping
and satisfies $F_{1}(t)=t^{1/2}$ for positive numbers by (c) in condition (ii).

There are many ways to associate the auxiliary map $F_{k}$ in the above
procedure, so we should not in general expect much similarity between the
geometric means for different number of variables.
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4.1 The inductive geometric mean

We define the auxiliary mapping $F_{k}:\mathcal{D}_{+}^{k}arrow B(\mathcal{H})$ by setting

$F_{k}(A_{1}, \ldots, A_{k})=G_{k}(A_{1}, \ldots, A_{k})^{k/(k+1)}$

for $k=1$ , 2, . . . .

Theorem 4.1. The means $G_{k}$ constructed in section 4 then have the follow-
ing properties:

(i) $G_{k}:\mathcal{D}_{+}^{k}arrow B(\mathcal{H})_{+}$ is a regular map for each $k=1$ , 2, . . . .

(ii) $G_{k}(tA_{1}, \ldots, tA_{k})=tG_{k}(A_{1}, \ldots, A_{k})$ for $t>0,$ $(A_{1}, \ldots, A_{k})\in \mathcal{D}_{+}^{k}$ and
$k=1$ , 2, . . . .

(iii) $G_{k}:\mathcal{D}_{+}^{k}arrow B(\mathcal{H})$ is concave for each $k=1$ , 2, . . . .

(iv) $G_{k+1}(A_{1}, \ldots, A_{k}, 1)=G_{k}(A_{1}, \ldots, A_{k})^{k/(k+1)}$ for $(A_{1}, \ldots, A_{k})\in \mathcal{D}_{+}^{k}$ and
$k=1$ , 2, . . . .

Any sequence of mappings $\tilde{G}_{k}$ beginning with $\tilde{G}_{1}(A)=A$ and satisfying
the above conditions coincide with the means $G_{k}$ for $k=1$ , 2, . . . .

Proof. Each map $G_{k}$ is for $k=2$ , 3, . . . the perspective of a regular map
and this implies (i) and (ii). The assertion of concavity for $G_{1}$ is immediate.
Suppose now $G_{k}$ is concave for some $k$ . Since the map $tarrow t^{p}$ is both operator
monotone and operator concave for $0\leq p\leq 1$ , we realise that the auxiliary
mapping

$F_{k}(A_{1}, \ldots, A_{k})=G_{k}(A_{1}, \ldots, A_{k})^{k/(k+1)}$

is concave, and since $G_{k+1}$ is the perspective of $F_{k}$ we then obtain by Theorem
3.2 that also $G_{k+1}$ is concave. Since the first map $G_{1}$ is concave we have thus
proved by induction that $G_{k}$ is concave for all $k=12\ldots.$ . The last property
(iv) follows since $G_{k+1}$ is the perspective of $G_{k}^{k/(k+1}$

$\}$

Let finally $\tilde{G}_{k}$ be a sequence of mappings satisfying (i) to (iv). Since each
$\tilde{G}_{k+1}$ is concave and homogeneous it follows by Proposition 3.3 that $\tilde{G}_{k+1}$ is
the perspective of its restriction $\tilde{G}_{k+1}(A_{1}, \ldots, A_{k}, 1)$ . Because of (iv) we then
realise that $\tilde{G}_{k+1}$ is the perspective of the map

$\tilde{F}_{k}(A_{1}, \ldots, A_{k})=\tilde{G}_{k}(A_{1}, \ldots, A_{k})^{k/(k+1)}$
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constructed from $\tilde{G}_{k}$ . The $\tilde{G}_{k}$ mappings are thus constructed by the same
algorithm as the mappings $G_{k}$ for every $k\geq 2$ , and since $\tilde{G}_{1}=G_{1}$ they must
all coincide. QED

In addition to the properties listed in the above theorem the means $G_{k}$

enjoy a number of other properties that we list below.

Theorem 4.2. The means $G_{k}$ constructed in section 4 have the following
additional properties:

(i) The means $G_{k}$ are increasing in each variable for $k=1,$ $2\ldots.$

(ii) The means $G_{k}$ are congruence invariant. For any invertible operator $C$

on $\mathcal{H}$ the identity

$G_{k}(C^{*}A_{1}C, \ldots, C^{*}A_{k}C)=C^{*}G_{k}(A_{1}, \ldots, A_{k})C$

holds for $(A_{1}, \ldots, A_{k})\in \mathcal{D}_{+}^{k}$ and $k=1$ , 2, . . . .

(iii) The means $G_{k}$ are jointly homogeneous in the sense that

$G_{k}(t_{1}A_{1}, \ldots, t_{k}A_{k})=(t_{1}\cdots t_{k})^{1/k}G_{k}(A_{1}, \ldots, A_{k})$

for scalars $t_{1}$ , . . . , $t_{k}>0$ , operators $(A_{1}, \ldots, A_{k})\in \mathcal{D}_{+}^{k}$ and $k=1$ , 2, . .. .

(iv) The means $G_{k}$ are self-dual in the sense that

$G_{k}(A_{1}^{-1}, \ldots, A_{k}^{-1})=G_{k}(A_{1}, \ldots, A_{k})^{-1}$

for $(A_{1}, \ldots, A_{k})\in \mathcal{D}_{+}^{k}$ and $k=1$ , 2, . . . .

(v) When restricted to positive definite matrices the determinant identity

$\det G_{k}(A_{1}, \ldots, A_{k})=(\det A_{1}\cdots\det A_{k})^{1/k}$

holds for $k=1,$ $2\ldots.$

Proof. The first property follows by the following standard argument for
positive concave mappings. Consider positive definite invertible operators
$A_{m}\leq B_{m}$ for $m=1$ , . . . , $k$ . By first assuming that the difference $B_{m}-A_{m}$

is invertible we may take $\lambda\in(0,1)$ and write

$\lambda B_{m}=\lambda A_{m}+(1-\lambda)C_{m}$ $m=1$ , . . . , $k,$
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where $C_{m}=\lambda(1-\lambda)^{-1}(B_{m}-A_{m})$ is positive definite and invertible. By
using concavity we then obtain

$G_{k}(\lambda B_{1}, \ldots, \lambda B_{k}) \geq\lambda G(A_{1}, \ldots, A_{k})+(1-\lambda)G_{k}(C_{1}, \ldots, C_{k})$

$\geq\lambda G(A_{1}, \ldots, A_{k})$ .

Letting $\lambdaarrow 1$ we obtain $G_{k}(B_{1}, \ldots, B_{k})\geq G_{k}(A_{1}, . . . , A_{k})$ by continuity. In
the general case we choose $0<\mu<1$ such that

$\mu A_{m}<A_{m}\leq B_{m}$ $m=1$ , . . . , $k$

and obtain $G_{k}(\mu A_{1}, \ldots, \mu A_{k})\leq G_{k}(B_{1}, \ldots, B_{k})$ . By letting $\muarrow 1$ we then
obtain $G_{k}(A_{1}, \ldots, A_{k})\leq G_{k}(B_{1}, . . . , B_{k})$ which shows (i).

Since $G_{k}$ is concave and homogeneous we obtain (ii) from Proposition 2.3.
Property (iii) is immediate for $k=1$ and $k=2$ . Suppose the property is

verified for $k$ , then

$G_{k+1}(t_{1}A_{1}, \ldots, t_{k}A_{k}, t_{k+1}A_{k+1})$

$=t_{k+1}A_{k+1}^{1/2}F_{k}(t_{1}t_{k+1}^{-1}A_{k+1}^{-1/2}A_{1}A_{k+1}^{-1/2}, \ldots, t_{k}t_{k+1}^{-1}A_{k+1}^{-1/2}A_{k}A_{k+1}^{-1/2})A_{k+1}^{1/2}$

$=t_{k+1}A_{k+1}^{1/2}G_{k}(t_{1}t_{k+1}^{-1}A_{k+1}^{-1/2}A_{1}A_{k+1}^{-1/2}, \ldots, t_{k}t_{k+1}^{-1}A_{k+1}^{-1/2}A_{k}A_{k+1}^{-1/2})^{k/(k+1)}A_{k+1}^{1/2}.$

By using the induction assumption we obtain

$G_{k+1}(t_{1}A_{1}, \ldots, t_{k}A_{k}, t_{k+1}A_{k+1})$

$=t_{k+1}(t_{k+1}^{-1}t_{1}^{1/k}\cdots t_{k}^{1/k})^{k/(k+1)}G_{k+1}(A_{1}, \ldots, A_{k}, A_{k+1})$

$=(t_{1}\cdots t_{k}t_{k+1})^{1/(k+1)}G_{k+1}(A_{1}, \ldots, A_{k}, A_{k+1})$

which shows (iii).
Property (iv) is immediate for $k=1$ and $k=2$ . Suppose the property is

verified for $k$ , then

$G_{k+1}(A_{1}^{-1}, \ldots, A_{k}^{-1}, A_{k+1}^{-1})$

$=A_{k+1}^{-1/2}F_{k}(A_{k+1}^{1/2}A_{1}^{-1}A_{k+1}^{1/2}, \ldots, A_{k+1}^{1/2}A_{k}^{-1}A_{k+1}^{1/2})A_{k+1}^{-1/2}$

$=A_{k+1}^{-1/2}G_{k}(A_{k+1}^{1/2}A_{1}^{-1}A_{k+1, \rangle}^{1/2}A_{k+1}^{1/2}A_{k}^{-1}A_{k+1}^{1/2})^{k/(k+1)}A_{k+1}^{-1/2}$
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By using the induction assumption we obtain

$G_{k+1}(A_{1}^{-1}, \ldots, A_{k}^{-1}, A_{k+1}^{-1})$

$=A_{k+1}^{-1/2}G_{k}(A_{k+1}^{-1/2}A_{1}A_{k+1}^{-1/2}, \ldots, A_{k+1}^{-1/2}A_{k}A_{k+1}^{-1/2})^{-k/(k+1)}A_{k+1}^{-1/2}$

$=(A_{k+1}^{1/2}G_{k}(A_{k+1}^{-1/2}A_{1}A_{k+1}^{-1/2}, \ldots, A_{k+1}^{-1/2}A_{k}A_{k+1}^{-1/2})^{k/(k+1)}A_{k+1}^{1/2})^{-1}$

$=G_{k+1}(A_{1}, \ldots, A_{k}, A_{k+1})^{-1}$

which shows (iv).
Notice that since $\det A=\exp(h\log A)$ for positive definite $A$ , we have

$\det A^{p}=(\det A)^{p}$ for all real exponents $p$ . Property (v) is easy to calculate
for $k=1$ and $k=2$ . Suppose the property is verified for $k$ . Since as above

$G_{k+1}(A_{1}, \ldots, A_{k}, A_{k+1})$

$=A_{k+1}^{1/2}G_{k}(A_{k+1}^{-1/2}A_{1}A_{k+1}^{-1/2}, \ldots, A_{k+1}^{-1/2}A_{k}A_{k+1}^{-1/2})^{k/(k+1)}A_{k+1}^{1/2}$

we obtain

$\det G_{k+1}(A_{1}, \ldots, A_{k}, A_{k+1})$

$=\det A_{k+1}(\det A_{k+1}^{-1}\det A_{1}\cdots\det A_{k+1}^{-1}\det A_{k})^{1/(k+1)}$

$=(\det A_{1}\cdots\det A_{k}\cdot\det A_{k+1})^{1/k+1}$

which shows (v). QED

Theorem 4.3. The geometric means $G_{k}$ are for $k=1$ , 2, . . . bounded between
the symmetric harmonic and arithmetic means. That is,

$\frac{k}{A_{1}^{-1}+\cdots+A_{k}^{-1}}\leq G_{k}(A_{1}, \ldots, A_{k})\leq\frac{A_{1}+\cdots+A_{k}}{k}$

for arbitrary $(A_{1}, \ldots, A_{k})\in \mathcal{D}_{+}^{k}$ and $k=1$ , 2, . . . .

Proof. The upper bound holds with equality for $k=1$ . Suppose that we have
verified the inequality for $k$ . Since by classical analysis

$X^{k/(k+1)} \leq 1+\frac{k}{k+1}(X-1)$
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for positive definite $X$ , we obtain

$F_{k}(A_{1}, \ldots, A_{k})=G_{k}(A_{1}, \ldots, A_{k})^{k/(k+1)}\leq 1+\frac{k}{k+1}(G_{k}(A_{1}, \ldots, A_{k})-1)$

$\leq 1+\frac{k}{k+1}(\frac{A_{1}+\cdots+A_{k}}{k}-1)=\frac{A_{1}+\cdots+A_{k}+1}{k+1}.$

By taking perspectives we now obtain

$G_{k+1}(A_{1}, \ldots, A_{k}, B)=\mathcal{P}_{F_{k}}(A_{1}, \ldots, A_{k}, B)$

$=B^{1/2}F_{k}(B^{-1/2}A_{1}B^{-1/2}, \ldots, B^{-1/2}A_{k}B^{-1/2})B^{1/2}$

$\leq B^{1/2}\frac{B^{-1/2}A_{1}B^{-1/2}+\cdots+B^{-1/2}A_{k}B^{-1/2}+1}{k+1}B^{1/2}=\frac{A_{1}+\cdots A_{k}+B}{k+1}$

which proves the upper bound by induction. We next use the upper bound
to obtain

$G_{k}(A_{1}^{-1}, \ldots, A_{k}^{-1})\leq\frac{A_{1}^{-1}+\cdots+A_{k}^{-1}}{k}.$

By inversion we then obtain

$\frac{k}{A_{1}^{-1}+\cdots+A_{k}^{-1}}\leq G_{k}(A_{1}^{-1}, \ldots, A_{k}^{-1})^{-1}=G_{k}(A_{1}, \ldots, A_{k})$ ,

where we in the last equation used self-duality of the geometric mean, cf.
property (iv) in Theorem 4.2. QED

The means studied in this section are known in the literature as the
inductive means of Sagae and Tanabe [14]. By considering the power mean

$A\#_{t}B=B^{1/2}(A^{-1/2}BA^{-1/2})^{t}B^{1/2} 0\leq t\leq 1$

they established the recursive relation by setting

$G_{k+1}(A_{1}, \ldots, A_{k+1})=G_{k}(A_{1}, \ldots, A_{k})\#_{k/(k+1)}A_{k+1}.$

The authors did not study the general properties of these means but estab-
lished the harmonic-geometric-arithmetic mean inequality of Theorem 4.3.
It is possible to prove the crucial concavity property (iii) in Theorem 4.1
by induction. It can be done without the general theory of perspectives of
regular operator mappings, and it only requires the properties of an operator
mean of two variables as studied by Kubo and Ando [9]. However, this is a
special situation that only applies to the inductive means.
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4.2 Variant geometric means

The inductive geometric means are uniquely specified within the general
framework discussed in this paper by choosing the updating condition (1),
cf. property (iv) in Theorem 4.1. We may instead construct geometric means
satisfying updating condition (2) by choosing the auxiliary map

$F_{k}(A_{1}, \ldots, A_{k})=G_{k}(A_{1}^{k/(k+1)}, . . . , A_{k}^{k/(k+1)})$

for $k=1,$ $2\ldots$ . It is a small exercise to realise that these means satisfy all of
the properties listed in Theorem 4.1, Theorem 4.2, and Theorem 4.3 with the
only exception that condition (iv) in Theorem 4.1 is replaced by updating
condition (2). Concavity of these means cannot be reduced to concavity of
operator means of two variables but relies on the general theory of regular
operator mappings and Theorem 3.2.

4.3 The Karcher means

The Karcher mean $\Lambda_{k}(A_{1}, \ldots, A_{k})$ of $k$ positive definite invertible operator
variables is defined as the unique positive definite solution to the equation

(8) $\sum_{i=1}^{k}\log(X^{1/2}A_{i}X^{1/2})=0,$

and it enjoys all of the attractive properties of an operator mean listed by
Ando, Li, and Mathias, cf. [10]. The defining equation (8) immediately im-
plies that the Karcher mean $\Lambda_{k}:\mathcal{D}_{+}^{k}arrow B(\mathcal{H})$ is a regular operator mapping,
and it may therefore be understood within the general framework discussed
in this paper by choosing the auxiliary map

$F_{k}(A_{1}, \ldots, A_{k})=\Lambda_{k+1}(A_{1}, \ldots, A_{k}, 1)$ .

The problem, however, is that we do not have any explicit expression of $F_{k}$

in terms of $\Lambda_{k}.$

5 Other applications

Consider a regular operator mapping $F:\mathcal{D}+arrow B(H)$ of $k$ variables and let
$f$ be the numerical function such that

$f(t_{1}, \ldots, t_{k})I=F(t_{1}I, \ldots, t_{k}I)$ $t_{1}$ , . . . , $t_{k}>0,$
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where $I$ is the unit operator. Since $F$ is regular, the restriction to products
$\mathcal{A}_{1}\cross\cdots\cross \mathcal{A}_{k}$ of commuting $sub-C^{*}$-algebras $\mathcal{A}_{1}$ , . .. , $\mathcal{A}_{k}$ of $B(H)$ is given by
the functional calculus of $f$, that is

$F(x_{1}, \ldots, x_{k})=f(x_{1}, \ldots, x_{k})$

for tuples $(x_{1}, \ldots, x_{n})$ of positive definite operators in $\mathcal{A}_{1}\cross\cdots\cross \mathcal{A}_{k}$ . Therefore,
if the operator map $F$ is convex then $f$ is an operator convex function of $k$

variables. This observation can be used to construct new operator convex
functions of several variables.

Following this general idea one can prove that the function

$f(t, s)=\{\begin{array}{ll}\frac{t^{p+1}-s^{p+1}}{t-s} t\neq s\frac{1}{p+1}t^{p} t=s\end{array}$

is operator concave in $(0, \infty)\cross(0, \infty)$ for $0\leq p\leq 1$ . Likewise, one can prove
that the function

$f(t_{1}, t_{2}, t_{3})=\{\begin{array}{ll}\frac{t_{1}^{p+1}-t_{2}^{p+1}}{t_{1}-t_{2}}t_{3}^{1-p} t_{1}\neq t_{2}\frac{1}{p+1}t_{1}^{p}t_{3}^{1-p} t_{1}=t_{2}\end{array}$

is operator concave in $(0, \infty)\cross(0, \infty)\cross(0, \infty)$ for $0\leq p\leq 1$ . Notice that by
setting $t_{1}=t_{2}$ we recover Lieb’s concavity theorem, cf. [15] for details and
further examples.
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