Metadata, citation and similar papers at core.ac.uk

Provided by Kyoto University Research Information Repository

Bl =
oo o e/,
&
Kyoto University Research Information Repository > KYOTO UNIVERSITY

Expansions of relative operator entropies and operator valued
Title $alpha$-divergence (Theory of operator means and related
topics)

gd,od,go,go;ob,gd,bo,gobo,boo,n

Author(s) 0

Citation O0000DO0O0D0O0 (2015), 1935: 143-155

Issue Date | 2015-04

URL http://hdl.handle.net/2433/223678

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University


https://core.ac.uk/display/81260553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

B RAT IR SC AT R ZE 6k
51935 % 2015 4E 143-155 143

Expansions of relative operator entropies
and operator valued a-divergence

#1118 (Hiroaki TOHYAMA®), H£#5 (Hiroshi ISA)®), f#/A%E (Masatoshi ITO)®),
BHRZHE (Eizaburo KAMED)®) | #3852 (Masayuki WATANABE)®)
(1), (2), (3), (5): HIG LRI KZF (Maebashi Institute of Technology)

1. Introduction
Throughout this paper, an operator means a bounded linear operator on a Hilbert
space H. An operator T on H is said to be positive (denoted by T > 0) if (Tz,z) >0
for all z € H, and an operator T is said to be strictly positive (denoted by T > 0) if
T is invertible and positive.

For strictly positive operators A and B, and for z € R, a path passing through A
and B is defined as follows ([4], [5], [11] etc.):

Al B= A (A‘%BA‘%YA%.

If z € [0,1], then the path becomes weighted geometric operator mean denoted by
A iz B. Weighted arithmetic operator mean is defined as A V, B = (1 —z)A + zB
for z € [0, 1).

Fujii and Kamei [3] defined relative operator entropy as follows:

S(A|B) = A (logA-%BA-%) Al

Furuta [8] gave a generalized form of relative operator entropy. Furuta’s one is called
generalized relative operator entropy and is defined as follows:

S/(A|B) = A} (A‘%BA”%)t (logABA™3) A%, teR

We remark that Sy(A|B) = S(A|B) holds.
Yanagi, Kuriyama and Furuichi [13] defined Tsallis relative operator entropy as

follows:
Ay B—A
t

T,(A|B) = L te(0,1).

By replacing A #; B with A f; B, Tsallis relative operator entropy can be extended
as the notion for ¢ € R. Since 1in& %——1 = loga holds for a > 0, we have Ty(A|B) =
.—)
lim T,(A|B) = S(A|B).
For these relative operator entropies, we can give geometrical interpretations. By

the derivative of the path with respect to z at ¢, we can get generalized relative operator
entropy, that is, the following holds:

%A he B = A2 (A_%BA‘%)t (logA_%BA_%> A3 = Si(A|B).

T=t

Therefore, we can regard S;(A|B) as the slope of the tangent line at z = t of the path.
From this interpretation, we can regard S(A|B) as the slope of the tangent line at
z = 0 of the path. Tsallis relative operator entropy can be regarded as the slope of the
line passing through points A and A f; B on the path.
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Amari [1] defined a-divergence as a notion to measure the difference between two
probability distributions. Based on this notion, Fujii [2] defined operator valued a-
divergence as follows: For strictly positive operators A and B, and for a € (0,1),

AV,B-Af, B
a(l - a) '
Petz [12] introduced the operator divergence Dpg(A|B) = B — A — S(A|B). Fyjii

et al. [6, 7] showed the following relation between Drg(A|B) and operator valued
a-divergences at end points for interval (0,1).

Do(A|B) =

Dy(A|B) = linD,(A|B)=B - A~ S(A|B),
Di(A|B) = limD,(A|B)=A— B+ $1(A|B).

For the quantity Dy(A|B), we give a geometrical interpretation shown in Figure 1.

a

path
Ab: B

Dy(A|B)

\

Figure 1: An interpretation for Dy(A|B) = B — A — S(A|B).

In [11], Kamei showed that relative operator entropy has some kind of additivity
as follows: For strictly positive operators A and B, and for s € R,

() S(A|A ks B) = sS(A|B).



In [9], we gave a viewpoint of operator valued distance for S(A|B). Here, we give the
following geometrical interpretation for this relation: The second component A fj, B of
the left hand side is an arbitrary point on the path. So, we can regard the relation ()
as relative operator entropy for a fixed point A and any point on the path.

For strictly positive operators A and B, and for ¢ € [0, 1] and r € [—1, 1], operator
power mean is defined as follows:

Af,, B = A} {(1 — )+t (A-%BA-%)' " Ak = A 1 {AV: (A, B)}.

To preserve (1 — t)I + ¢ (A‘% A‘%)T > 0, we have to impose t in [0,1]. Operator
power mean compounds the arithmetic, geometric and harmonic means, that is, the
following holds.

( N\
arithmetic operator mean

AV,B=(1-t)A+tB

Tr:l
geometric operator mean
t
Abr B 20 44, B= 4b (A*%BA“%) A}
~Lr=—-1

harmonic operator mean
AA, B=(A1vV, B!
o J

We treat this operator power mean as an expanded path which links point A with
point B. As the corresponding notions to relative operator entropies and operator
valued a-divergence, we introduce expanded relative operator entropy, expanded Tsallis
relative operator entropy and expanded operator valued a-divergence.

In this report, we aim at getting results on these expanded notions. In section 2,
we show some results on relative operator entropies for two points on the path A b, B.
In section 3, we show results on expanded relative operator entropies, and in section
4, we show results on expanded operator valued a-divergence.

2. Relative operator entropies

Based on the relation (x), we show some basic results on relative operator entropies for
two points on the path A i, B.
To show the results in this section, we prepare the following properties of the path.

Lemma 2.1. Let A and B be strictly positive operators. Then,

(1) Al (Al B) = A B,
(2) (Al B)bs A = Alg-se B

hold for s, t € R.
Lemma 2.2. (Lemma 3.6 in [10]) Let A and B be strictly positive operators. Then,

(A hu B) hw (A hu-H) B) =A hu-&-vw B

holds for u, v, w € R.

145
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For generalized relative operator entropy and Tsallis relative operator entropy, we
have the following result corresponding to the relation (x).

Theorem 2.3. Let A and B be strictly positive operators. Then,
(1) Si(A|A fs B) = sS.(A|B),

(2) Ti(AlA G, B) = sTu(A|B)

hold for s, t € R.

Proof. (1) If s = 0, then it is obvious that the both sides equal zero, and if ¢ = 0, then
this equality becomes the relation (x). Otherwise, we get

S(A|A Y, B)
= Ab{AiANATIBAT AR A ) log { AR Ab (4TI BAT Y AbATE) A
= AI(A"2BA %)%log(A"BA"1)°AT = sS,(A|B).
(2) By (1) in Lemma 2.1, we have

Aht(AhsB)—A _ sAhstB—A
t st

T.(A|lA b, B) = = sT,(A|B).

a

For the relation (1) in Theorem 2.3, we can give a geometrical interpretation shown
in Figure 2. We remark that two tangent lines drawn in this figure intersect on the
axis of the vertical direction.

In [10], we showed the following result on translation of generalized relative operator
entropy.

Proposition 2.4. (Proposition 3.1 in [10]) Let A and B be strictly positive operators.
Then,
Su+v(A|B) = (A hu+v B)(A hu B)—ISU(ALB)

holds for u, v € R.

When we regard S,(A|B) and S,.,(A|B) as tangent vectors at u and u + v on
the path A B, B, respectively, Proposition 2.4 means that S,,,(A|B) is parallelly
transferring S, (A|B) by v along the path.

Here, we define the following noncommutative ratio on the path A f,, B.

Definition 2.5. For strictly positive operators A and B, and for u, v € R, noncom-
mutative ratio on the path A Y, B is defined as follows:
R(u,v; A, B) = (A butv B)(A b, B)™L.

For the noncommutative ratio, the following property holds.

Proposition 2.6. (Proposition 3.3 in [10]) Let A and B be strictly positive operators.
Then,
(Abuso B)(A by B)™' =(At, B)A™,

that is,
R(u,v; A, B) = R(0,v;A,B) = (A}, B)A™!

holds for u, v € R.
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Ab, B

Sst (AlB) \\

Aty (Al B) - - - - sSu(AIB) | | S.(AlA b, B)
=Aha B

1
'
1
1
!
[
!

Figure 2: An interpretation for S;(A|A {; B) = sSs(A|B).

By Proposition 2.6, R(u, v; A, B) does not depend on u. So, we denote R(u,v; A, B)
by R(v) in the rest of this report simply. We call multiplying by R(v) from the left
side noncommutative ratio translation.

From Proposition 2.4 and Definition 2.5, we get the following immediately.

Corollary 2.7. (Corollary 3.4 in [10]) Let A and B be strictly positive operators.
Then,

Sutv(A|B) = R(v)S.(A|B)
holds for u, v € R.

Remark 1. By putting u = 0 in Corollary 2.7, we have S,(A|B) = R(v)S(A|B).

The following is an extension of the relation (x). This is a result of generalized
relative operator entropy for any two points on the path.

Proposition 2.8. (Proposition 3.7 in [10]) Let A and B be strictly positive operators.
Then,

Si(A ly BlA buts B) = $Su+st(A|B)
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hold for s, t, v € R.

By using noncommutative ratio, we can represent the results of relative operator
entropies for any two points on the path as follows:

Theorem 2.9. (Theorem 3.11 in [10]) Let A and B be strictly positive operators.
Then,

(1) St(A hv BIA hv+3 B) = SR(U)Sst(AIB)’
() T.(A b B|A Bo4s B) = sR(v)T(A|B),
(3) S(A ty B|A fu4s B) = SR(U)S(AlB)

hold for s, t, v € R.

Proof. (1) By Proposition 2.8 and Corollary 2.7, we have

Si(A by B|lA toss B) = $Surst(A|B) = sR(v)Sw(A|B).

(2) By Lemma 2.2 and Proposition 2.6, we get

Tt(A hv BlA t1‘11-%-3 B) (A nv B) ht (A h”+3 B) - A hv B

t
_AbwaB-AWB _ (A4 BJA(Ab B) - (Ab B)A'A
t st -

= s(A t, B)A'Ty(A|B) = sR(v)Tw(A|B).

(3) This equality can be obtained by putting ¢ = 0 for (1).
o

Remark 2. We can get Theorem 2.3 by putting v = 0 for the relations (1) and (2) in
Theorem 2.9.

3. Expanded relative operator entropies

In this section, we show the results of expanded relative operator entropies for two
points on the expanded path A #;, B. Similarly to S;(A|B), in [9], expanded relative
operator entropy S;,(A|B) is defined by the derivative of expanded path with respect
to z at ¢ as follows: For strictly positive operators A and B, and for ¢t € [0,1] and
re[-1,1],

d
Sir(AIB) = — Ats, B

=t

= A [{(l—t)1+t(A~éBA—%)f}%—l (

= [Abi, {AV. (44 B} AT, (4]B).

We remark that expanded relative operator entropy has the following relations [9]:



B-A
T'rzl

J/r—)O

S:(A|B)

. J

By replacing weighted geometric operator mean with operator power mean, we
obtain the definition of expanded Tsallis relative operator entropy [9]: For strictly
positive operators A and B, and for t € (0,1] and r € [-1, 1],

Aﬁt,'r B-A

Ti,(A|B) = ;

We remark that expanded Tsallis relative operator entropy also has the following rela-
tions:

( N

B-A

T'r=1

*Lr—)O

T(A|B)

N J
For expanded relative operator entropy, we can show the following result corre-
sponding to (1) in Theorem 2.3.

Theorem 3.1. Let A and B be strictly positive operators. Then,
Str(AlA far B) = 5(A Bty B){A Vs (Al B)} ' T.(A|B) = 5S.,.(A|B)

holds for t, s € [0,1] and r € [-1,1].
In cases of t € {0, 1}, we get the following relations.
Corollary 3.2. Let A and B be strictly positive operators. Then,
(1) Sor(AlA s, B) = T.(AlAf,r B) = sT.(A|B),
(2) Si+(AlA Y, B) = —T.(Ad4,, B|A)
= s(Af#sr B){AV, (Ah. B)} ' T:(A|B)
hold for s € [0,1] and r € [~1,1].

To prove Theorem 3.1, we prepare the following lemmas. We omit their proofs.
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Lemma 3.3. Let A and B be strictly positive operators. Then,

(1) Al (A ﬁt,r B) = AV, (A b B),
(2) A ﬁt,r (A ﬂs,r B) = A ust,r B,
3) Aty B = By, A

hold for t, s € [0,1] and r € [-1,1].
Lemma 3.4. Let A and B be strictly positive operators. Then,
S.-(A|B) = (At B){A V. (A, B)} 'T.(A]|B)
= [Ah {AV. (A5 BY{AV: (A4 B} TH(AB)
holds for t € [0,1] and r € [-1,1].

Proof of Theorem 3.1. By Lemma 3.3 and Lemma 3.4, the following holds:
Sr(AlAter B) = {Aler (Afer B)}A V. {Aly (At B To(AlA fi, B)
= (Afsr B)[AV: {AV, (Aty B)}]” T.(Al|4 far B)

= (A ﬁst,'r B) {A Vst (A hr B)}_l A h" (A u:r B) - A

VAV, (At B)— A

fl

(A dst,r B) {A Vst (A h'r B)}_

r

= (Afar BY{A V. (Al B)}! (1-s)A+ siA h. B) — A

= (A, B){AVy (Al B)} 'T.(A|B) = $S..(A|B).

a
The following (1) in Theorem 3.5 is a corresponding result to (2) in Theorem 2.3.

Theorem 3.5. Let A and B be strictly positive operators. Then,

(1) T.r(AlAfsr B) = sTa.(A|B) (t€(0,1]),
(2) Tor(AlA s B) = sT.(A|B),
(3) Tl,r(AlA ﬁs,r B) = STS,T(AlB)’

, tTur(AlB) — Tu,(AIB)
1-t

(4) Tl—t,'r(A ﬁs,r B|A) = (t € [0> 1))

hold for s € [0,1] and r € [-1,1].
Proof. (1) By (2) in Lemma 3.3, these can be shown as follows:

Ater (Atr B)— A Ay, B— A
T, (AlA L, B) = Sl ”t =4 ”‘St

(2), (3) For (1), by putting ¢ = 0 and ¢t = 1, we can get these relations, respectively.
(4) Since A #;r B= B #i_+r A holds for t € [0,1] and r € [-1,1], we have

Al B ~tr A—Al, B
Tioro(A ey BlA) = Ao ”Hit f

A, (Allsr B)—Alsr B _ Alsr B— Al B
N 1—t - 1—t
(AMJB—A%%AmJB—A)=sﬂ&AAwy4QAmm

1-¢ 1-1¢

= STst,’I‘(AIB)'
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4. Expanded operator valued a-divergence

By Theorem 2.5 in [10] and the results in [6, 7], the following relation between operator
valued a-divergence and Tsallis relative operator entropy was shown.

Theorem 4.1. ([6, 7, 10])Let A and B be strictly positive operators. Then,

Dy(A|B) = —T1-+(B|A) — T:(A|B)

holds for t € [0, 1].
Theorem 4.1 gives a geometrical interpretation for operator valued a-divergence.

Tsallis relative operator entropy T;(A|B) can be regarded as the slope of the line passing
_BMA-B_ BoAWB o can

through points A and A i B. Since —T1_(B|A) = rp = ==
regard this operator value as the slope of the line passing through points A #; B and
B. Therefore, D,(A|B) gives the difference between the slops of these two lines. We

can illustrate the quantity corresponding to D;(A|B) by bold straight line in Figure 3.

‘.“Tl—t(BIA)

i
[}
1
[
i
'
i
1
!
1
i
1
]
)
1
1
]
]
1
t
I
1
[}
1
1
1
]
’I
7

_____________

Jo 7 : ;

Figure 3: An interpretation for D,(A|B) = —T,_4(B|A) — T;(A|B).

Based on Theorem 4.1, we define expanded operator valued o-divergence.
Definition 4.2. For strictly positive operators A and B, and fort € [0,1], r € [-1,1],
expanded operator valued a-divergence is defined as follows:

D+ (A|B) = =T1-44(B|A) — T3 (Al B).
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Remark 3. It is obvious that Dy_;,(B|A) = D,.(A|B) holds for t € (0,1) andr €
[-1,1].

We get the following relations for expanded operator valued a-divergence immedi-
ately.

Proposition 4.3. Let A and B be strictly positive operators. Then,

1) Dio(AIB) = Di(A]B),
@) Dia(A1B) = 0,

3) Doo(AlB) = B—A-Ti(AlB),
@) Dy (AlB) = A—B-Ty(B|A)

hold fort € [0,1] and r € [-1,1].

We can illustrate the relations in Proposition 4.3 as follows:

‘ ) )

Tr:l

B-A-Ty(AlB) < Dy (AlB) — A-B-T,(B|4)

~Lr—>0

D,(A|B)
\. J/

We can rewrite D, ,(A|B) as the difference between weighted arithmetic mean and
operator power mean as follows.

Theorem 4.4. Let A and B be strictly positive operators. Then,

AV.B-Al, B
t(1—t)

D:.(A|B) =

holds for t € (0,1) and r € [-1,1].

Proof. We can get this relation as follows:

B, A-B Af, B-A
D;,(A|B) = ~Ti_,(B|A) - T,.(A|B) = — th lt,—t _ i, t

~tAt, B+tB~(1-t)Aty B+(1-t)A AV, B—-Af,, B
t(l1—t) B t(1—1¢) '

O

For expanded operator valued a-divergence, we are trying to obtain similar relations
to Theorem 3.1 and Theorem 3.5. The followings are relations we have obtained until
now.
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Theorem 4.5. Let A and B be strictly positive operators. Then,

o D (AlA L, B) = 5 rAB - TarlB) o g ),
@) Dos(AlA tuy B) = s{T,,(AIB) - T,(AIB)}
B Di(AlA bur B) = 5{S.,(AIB) - T.,(AIB)}

hold for s € (0,1) and r € [-1,1].
Proof. (1) By Theorem 3.5, we have

Dt,r(A|A ﬁs,fr B) = —Tl—t,r(A ﬂs,r BlA) - ,I;E,r(AlA ﬂs,r B)

T, -(A|B) — Ty (Al B
_ 3{1ith,r(A1B)—i%—tht,r(A|B)}——sTst’T(AIB) _ T4l )l_tt,( 1B)

(2) We can get this result by putting ¢ = 0 in (1).
(3) By Theorem 3.1 and Theorem 3.5, we have

Dl,r(A‘A ﬂs,r B) = —Tr(A ﬁs,r B|A) - Tl,r(AlA [js,r B)
= S1,(AlA Y, B) —T1-(AlA ts, B) = sSs,(A|B) — sT,,(A|B)
= 5{Sar(A|B) - T,,(A|B)}.

a

By the similar way to Theorem 4.5, we can obtain the results of operator valued
a-divergence for fixed point A and any point on the path as follows:

Proposition 4.6. Let A and B be strictly positive operators. Then,

T,(A|B) - Tu(A]B)

(1 DiAlA s, B) = s =222 (t e ,1),
© Do(AlA 4, B) = s{T.(A|B) - S(AIB)},
0 Di(AlAk B) = s{S,(A|B) - T.(AIB)}

hold for s € R.

By applying noncommutative ratio translation to the relations in Proposition 4.6,
we can get the results of operator valued a-divergence for any two points on the path
as follows:

Theorem 4.7. Let A and B be strictly positive operators. Then,

1) QMMBmmHB)=smmﬂmwtiMmm

(
(2) DO(A hv BlA Iqv+s B) = SR(U) {TS(AlB) - S(AlB)},
(3) DI(A hv B|A lq’u+s B) = ’SR(U) {Ss(AlB) _TS(A|B)}

(t€[0,1)),

hold for s, v € R.
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Proof. (1) Lemma 2.2, Proposition 4.6, and Theorem 2.9, we have

Dy(A by B|A tvts B) = Di(A by B|(A by B) s (4 ho+1 B))
s Ts(A bv BIA h‘v+l B) _Tst(A hv B|A hv+l B)
1-1¢
T,(A|B) — Tu(A|B)

= sR(v) 1% .

(2) We can get this result by putting t = 0 in (1).
(3) By (1) and (2) in Theorem 2.9,

DI(A hv B|A h-v+3 B) = A hv B-A hv+s B+S1(A n'v BlA hv+s B)
Si(A ty B|A loss B) — Ti(A b, B|A burs B) = sR(v)S,(A|B) — sR(v)T,(A|B)
— sR(v) {S,(AIB) - T.(41B)}.

O
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