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A new exchange method with a refined subproblem for
solving convex semi-infinite programs

Kensuke Gomoto* Nobuo Yamashita1 Takayuki Okuno\ddagger Shunsuke Hayashi\S

Abstract

The semi-infinite programming problem (SIP) is an optimization problem with an infinite num-
ber of constraints in a finite dimensional space. The SIP has been studied extensively so far, since
a lot of practical problems in various fields such as physics, economics, and engineering can be
formulated as the SIPs. The exchange method is one of the most useful algorithms for solving the
SIP, and it has been developed by many researchers. In this paper, we focus on the convex SIPs and
propose a new exchange method for solving them. While the traditional exchange method solves a
sequence of the relaxed problems with finitely many constraints that are selected from the original
constraints, our method solves a sequence of semi-infinite programs relaxing the original SIP. These
relaxed problems can be solved efficiently by transforming them into certain optimization problems
with finitely many constraints. Moreover, under some mild assumptions, they approximate the
original SIP more precisely than the finite relaxed problems in the traditional exchange method.
We also establish global convergence of the proposed method under strict convexity assumption on
the objective function, and examine its efficiency through some numerical experiences.

1 Introduction

The semi-infinite programming problem (SIP) is an optimization problem with a finite dimensional
variable $x\in \mathbb{R}^{n}$ and an infinite number of inequality constraints. The SIP has been studied exten-
sively so far since there are a lot of applications such as Chebyshev approximation in mathematics,
optimal control and trajectory control in engineerings, air/water pollution control problem, and
production planning, etc. Also, from the $1960s$ , there have been many theoretical studies such as
the optimality condition and duality theorem [12].

In this paper, we focus on the following convex SIP:

CSIP: $minimizex\in X$
$f(x)$

subject to $g(x, t)\leq 0$ $\forall t\in T$, (1.1)

$wh_{\backslash }ereX\subseteq \mathbb{R}^{n}$ is a given convex set, $T\subseteq \mathbb{R}^{m}$ is a nonempty compact set of the form $T=\{t\in$

$\mathbb{R}^{m}|At\leq b\}$ with $A\in \mathbb{R}^{l\cross m}$ and $b\in \mathbb{R}^{l},$ $f$ : $\mathbb{R}^{n}arrow \mathbb{R}$ is a function differentiable and convex over
$X$ , and $g:\mathbb{R}^{n}\cross Tarrow \mathbb{R}$ is a function continuously differentiable for any $(x, t)\in X\cross T$ and convex
with respect to $x$ . Since $t$ plays a role of index in a finitely constrained optimization problem, $t$

and $T$ are called index and index set, respectively.
Many algorithms for solving SIP have been studied so far [6, 8]. Among them, the discretization

method and the exchange methods are well known. Let

$E$ $:=\{\overline{t}_{1}, \overline{t}_{2}, . . . , \overline{t}_{p}\}\subseteq T$ (1.2)
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be an arbitrary finite subset of $T$ , and let $SP_{ex}(E)$ be the finite approximation of CSIP (1.1) with
respect to $E$ , that is,

$minimizex\in X f(x)$

$SP_{ex}(E)$ : subject to $g(x,\overline{t}_{1})\leq 0$ , (1.3)

$9(x,\overline{t}_{p})\leq 0.$

The discretization method [10, 13, 14] generates a sequence of index sets $\{T_{k}\}\subseteq T$ satisfying (i)
$|T_{k}|<\infty$ , (ii) $T_{0}\subset T_{1}\subset T_{2}\subset\cdots\subset T$ and (iii) $\lim_{karrow\infty}$ dist $(T_{k},T)=0^{1}$ , so that the optimum
$x^{k}$ of $SP_{ex}(T_{k})$ converges to the original SIP optimum as $k$ goes infinity. On the other hand, the
exchange method [2, 5, 7, 9] generates the sequence converging to the SIP optimum by exchanging
an index belonging to $T_{k}$ by another index belonging to $T\backslash T_{k}$ . Unlike the discretization method,
the computational cost for each subproblem does not become very large, since $|T_{k}|$ is bounded even
when $karrow\infty.$

In this paper, we propose an exchange algorithm in which each subproblem is generated by
means of the quadratic approximation with respect to $t$ . In the existing exchange algorithms, the
iterative point $x^{k}$ is obtained by solving the finitely approximated subproblem of the form $SP_{ex}(E)$ .
On the other hand, the subproblems of our exchange method is of the form:

$minimizex\in X f(x)$

$SP_{new}(E)$ subject to $g(x, \overline{t}_{1})+\nabla_{t}g(x,\overline{t}_{1})^{T}(t-\overline{t}_{1})-\frac{L}{2}\Vert t-\overline{t}_{1}\Vert^{2}\leq 0$ $\forall t\in T$, (1.4)

$g(x, \overline{t}_{p})+\nabla_{t}g(x,\overline{t}_{p})^{T}(t-\overline{t}_{p})-\frac{L}{2}\Vert t-\overline{t}_{p}\Vert^{2}\leq 0 \forall t\in T,$

where $L\in \mathbb{R}$ is a positive constant. Although $SP_{new}(E)$ is still an SIP, it can be transformed
into the problems with a finite number of constraints equivalently. Furthermore, if $L$ is a Lipschiz
constant of $\nabla_{t}g(x, \cdot)$ for any feasible point $x$ of CSIP (1.1), then $SP_{new}(E)$ approximates CSIP (1.1)
more precisely than $SP_{ex}(E)$ . For more details, see Proposition 2.4 in Section 2. Consequently, we
can expect that our method finds the optimal solution in a lower number of iterations.

This paper is organized as follows. In Section 2, we give some properties of subproblem $SP_{new}(E)$

that will be useful in the subsequent analyses. In Section 3, we propose an algorithm and mention
some properties. Moreover, we show the global convergence of the algorithm under some assump-
tions. In Section 4, we provide some techniques how to solve each subproblem and how to treat
the constant necessary for the numerical experiments. In Section 5, we give some numerical results
relevant to Chebyshev approximation problem. Finally in Section 6, we conclude the paper with
some remarks.

2 Some properties of $SP_{new}(E)$

In this section, we study some important properties of subproblem $SP_{new}(E)$ . We first give the
following proposition, which shows that the property of a function whose gradient is Lipschitz
continuous.
$Pr^{\backslash }$oposition 2 $.1$ Let $T\subseteq \mathbb{R}^{n}$ be a nonempty compact set and $c:Tarrow \mathbb{R}$ be a differentiable
function. Suppose that $\nabla c$ is Lipschitz continuous over $T$ with the constant $L_{0}\in \mathbb{R}$ , i. e.,

$\Vert\nabla c(t’)-\nabla c(t")\Vert\leq L_{0}\Vert t’-t"\Vert \forall(t’, t \inT\cross T.$ (2.1)

Then, for any $(t,\overline{t})\in T\cross T$ , we have

$c( \overline{t})+\nabla c(\overline{t})^{T}(t-\overline{t})-\frac{L_{0}}{2}\Vert t-\overline{t}\Vert^{2}\leq c(t)$ .

lFor two sets $S$ and $T$ with $S\subset T$ , the distance from $S$ to $T$ is defined as dist $(S, T)= \sup_{t\in T}\inf_{s\in}s\Vert s-t\Vert.$
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Proof Fix $(t,\overline{t})\in T\cross T$ arbitrarily. Then we have

$c(\overline{t})+\nabla c(\overline{t})^{T}(t-\overline{t})-c(t)$

$= \nabla c(\overline{t})^{T}(t-\overline{t})-\int_{0}^{1}\nabla c(\overline{t}+\lambda(t-\overline{t}))^{T}(t-\overline{t})d\lambda$

$=- \int_{0}^{1}(\nabla c(\overline{t}+\lambda(t-\overline{t}))-\nabla c(x,\overline{t}))^{T}(t-\overline{t})d\lambda$

$\leq\int_{0}^{1}\Vert\nabla c(\overline{t}+\lambda(t-\overline{t}))-\nabla c(\overline{t})\Vert\Vert t-\overline{t}\Vert d\lambda$

$\leq\int_{0}^{1}L_{0}\lambda\Vert t-\overline{t}\Vert^{2}d\lambda$

$=L_{0} \Vert t-\overline{t}\Vert^{2}\int_{0}^{1}\lambda d\lambda=\frac{L_{0}}{2}\Vert t-\overline{t}\Vert^{2},$

where the first inequality is due to Cauchy-Schwarz inequality, and the second inequality follows
from (2.1) with $t’$ $:=\overline{t}+\lambda(t-\overline{t})$ and $t”:=\overline{t}$ . This completes the proof. $\blacksquare$

In what follows, we suppose that the following assumption holds for CSIP (1.1).

Assumption $A$

(i) The optimum set of CSIP (1.1) is nonempty and compact.

(ii) There exists an $x_{0}\in X$ such that $g(x0,t)<0$ for any $t\in T$ . and $\nabla_{t}g(x_{0}, \cdot)$ is locally Lips-
chitzian. That is, there exists an $L>0$ such that

$\Vert\nabla_{t}g(x_{0}, t’)-\nabla_{t}g(x_{0}, t \Vert\leq L\Vert t’-t"\Vert$ (2.2)

for any $(t’,$ $t$ $\in T\cross T.$

Needless to say, Assumption $A(i)$ holds if CSIP (1.1) has a unique optimum. Moreover, as is shown
by the following, it implies that $X$ can be assumed to be compact essentially.

Proposition 2.2 [1, Lemma 3.1] Suppose that Assumption $A(i)$ holds. Then, there exists a finite
index set $E_{org}\subset T$ such that $|E_{org}|<\infty$ and

$\overline{X} :=X\cap\{x\in \mathbb{R}^{n}|g(x,\overline{t})\leq 0(\overline{t}\in E_{org})\}\cap\{x\in \mathbb{R}^{n}|f(x)\leq\alpha\}$ (2.3)

is nonempty and compact, where $\alpha\in \mathbb{R}^{n}$ is an arbitraw number with $\alpha\geq f(x^{*})$ .

Due to this proposition, if we can find $E_{org}$ such that the solution set of $SP_{ex}(E_{org})$ is nonempty and
bounded, then we can redefine $X$ as $X$ $:=\overline{X}$ without changing the optimum set. Assumption A(ii)
holds if $\nabla_{t}g$ ) is locally Lipschitzian. Assumption A(ii) is the Slater constraint qualification
(SCQ) for CSIP (1.1). Moreover, by letting $c(t)$ $:=g(x0, t)$ in Proposition 2.1, it yields

$9(x0, \overline{t})+\nabla_{t}g(x_{0},\overline{t})^{T}(\overline{t}-t)-\frac{L}{2}\Vert\overline{t}-t\Vert^{2}\leq g(x_{0}, t)<0$ (2.4)

for any $(\overline{t}, t)\in T\cross T$ . This represents that $x_{0}$ is strictly feasible to $SP_{new}(E)$ for any $E\subset T.$

Now, let $L>0$ be the Lipschitz constant satisfying (2.2). Moreover, for an arbitrarily fixed
$\overline{t}\in T$ , let $\hat{g}$

$\overline{t}$) $:\mathbb{R}^{n}arrow \mathbb{R}$ be defined by

$\hat{g}(x,\overline{t}) :=\max_{t\in T}\{g(x,\overline{t})+\nabla_{t}g(x,\overline{t})^{T}(t-\overline{t})-\frac{L}{2}\Vert t-\overline{t}\Vert^{2}\}$ . (2.5)

Then, $SP_{new}(E)$ can be rewritten equivalently as

minimize $f(x)$
$x\in X$

$SP_{new}’(E)$ subject to $\hat{g}(x,\overline{t}_{1})\leq 0,$

$\hat{g}(x,\overline{t}_{p})\leq 0.$

We next give the differentiability property of $g$
$\overline{t}$).
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Proposition 2.3 Fix $\overline{t}\in T$ arbitrarily. Then the function $g$
$\overline{t}$) : $\mathbb{R}^{n}arrow \mathbb{R}$ defined by (2.5) is

differentiable.
Proof Let $d:\mathbb{R}^{n}\cross Tarrow \mathbb{R}$ be defined by $d(x, t):=g(x, \overline{t})+\nabla_{t}g(x, \overline{t})^{T}(t-\overline{t})-\frac{L}{2}\Vert t-\overline{t}\Vert^{2}$ . Then,

we have $\hat{g}(x, \overline{t})=\max_{t\in T}d(x, t)$ for any $x.$

Now, notice that, for any fixed $x\in \mathbb{R}^{n},$ $\arg\max_{t\in T}d(x, t)$ is a singleton since $d$ is strongly
concave with respect to $t$ . Moreover, for any fixed $t\in T,$ $d$ t) is continuously differentiable with
respect to $x$ . Therefore, by [4, Theorem 10.2.1], $g$

$\overline{t}$) is differentiable. $\blacksquare$

Let

$\mathcal{F}(P)$ $:=$ {feasible points of problem $P$ }. (2.6)

The following proposition provides the inclusion of the feasible sets of CSIP (1.1) and its finitely
relaxed subproblems.

Proposition 2.4 Let $E\subseteq T$ be an arbitrary finite set expressed as (1.2). Then, we have

$\mathcal{F}($CSIP) $\subseteq \mathcal{F}(SP_{ex}(E))$ , $\mathcal{F}(SP_{new}(E))\subseteq \mathcal{F}(SP_{ex}(E))$ .

Moreover, suppose that $L>0$ is the Lipschitz constant of $\nabla_{t}g$ over not only $\{x_{0}\}\cross T$ but also
$X\cross T$ . Then we have

$\mathcal{F}($CSIP) $\subseteq \mathcal{F}(SP_{new}(E))\subseteq \mathcal{F}(SP_{ex}(E))$ . (2.7)

Proof We obviously have $\mathcal{F}($CSIP) $\subseteq \mathcal{F}(SP_{ex}(E))$ since $E\subseteq T$ . Also we have $\mathcal{F}(SP_{new}(E))\subseteq$

$\mathcal{F}(SP_{ex}(E))$ since

$g(x, \overline{t})=g(x,\overline{t})+\nabla_{t}g(x,\overline{t})^{T}(\overline{t}-\overline{t})-\frac{L}{2}\Vert\overline{t}-\overline{t}\Vert^{2}\leq 0$

for any $x\in \mathcal{F}(SP_{new}(E))$ and $\overline{t}\in T.$

Moreover, suppose that $L$ is the Lipschitz constant of $\nabla_{t}g$ over $X\cross T$ . Let $\overline{t}\in T$ be fixed
arbitrarily. Then, Proposition 2.1 with $c(t)$ $:=g(x, t)$ yields that

$g(x, \overline{t})+\nabla_{t}g(x,\overline{t})^{T}(t-\overline{t})-\frac{L}{2}\Vert t-\overline{t}\Vert^{2}\leq g(x, t)$

for any $(x, t)\in X\cross T$ . Hence we have $\mathcal{F}($CSIP) $\subseteq \mathcal{F}(SP_{new}(E))$ . This completes the proof. $\blacksquare$

This proposition implies that $SP_{new}(E)$ approximates the original CSIP more precisely than existing
exchange methods, and therefore we can expect that our method finds the original CSIP optimum
more rapidly than existing exchange methods. As will be stated in the next section, we can
redefine $X$ $:=\overline{X}$ by Proposition 2.2 without changing the optimum set of CSIP (1.1). In such a
case, Assumption A(iv) guarantees that there exists a sufficiently large $L>0$ satisfying (2.7).

One may think that $SP_{new}(E)$ is as difficult as (1.1) since $SP_{new}(E)$ still has an infinite number of
inequality constraints. However, $SP_{new}(E)$ can be transformed into an optimization problem with
a finite number of constraints equivalently by using the duality theory for the quadratic programs.
We provide the transformation techniques in Section 4.

3 Algorithm

In this section, we propose a new exchange algorithm, and show its convergence property. In what
follows, we assume the following.

Assumption $B$ Function $\hat{9}$ defined by (2.5) is convex with respect to $x.$

This assumption requires that each subproblem $SP_{new}(E)$ is a convex optimization problem. Notice
that it automatically holds when $g$ is affine with respect to $x.$
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3.1 Approximated algorithm under strict convexity assumption

We first give an approximation algorithm, in which the objective function $f$ is assumed to be strictly
convex.

Assumption $C$

(i) Function $f$ is strictly convex.
(ii) There exists an optimum $x^{*}$ of CSIP (1.1) such that $\nabla_{t}g(x^{*}, \cdot)$ is locally Lipschitzian with the

constant $L$ , i. e.,

$\Vert\nabla_{t}g(x^{*}, t’)-\nabla_{t}g(x^{*}, t \Vert\leq L\Vert t’-t"\Vert$ (3.1)

for any $(t’,$ $t$ $\in T\cross T.$

(iii) The set $X$ is bounded. $($ Otherwise, $we can$ redefine $X:=\overline{X} by$ Proposition $2.2.)$

Assumption C(iii) is necessary to guarantee the boundedness of the sequence generated by the
algorithm. Even when the original $X$ is unbounded, Proposition 2.2 and Assumption $A(i)$ guarantee
that $X$ can be redefined as a bounded set without changing the optimum set.

Then the details of the algorithm are as follows.

Algorithm 1

Step $0$ : Choose a small number $\gamma>0$ and a finite subset $E_{0}\subset T$ . Let $L>0$ be sufficiently large
so that (2.2) and (3.1) hold. Solve $SP_{new}(E_{0})$ to obtain the optimum $v^{0}$ . Set $r:=0.$

Step 1: Find a $t_{new}^{f}$ such that $g(v^{r}, t_{new}^{r})>\gamma$ . If such a $t_{new}^{r}$ does not exist, i. e., $g(v^{r}, t)\leq\gamma$ for
any $t\in T$ , then output $v^{*}(\gamma)$ $:=v^{r}$ and $E_{1ast}$ $:=E_{r}$ . Otherwise, let $\overline{E}_{r+1}$ $:=E_{r}\cup\{P_{T}(t+$

$\frac{1}{L}\nabla_{t}g(v^{r}, t))|t\in E_{f}\}\cup\{t_{new}^{r}\}$ and go to Step 2.

Step 2: Solve $SP_{new}(\overline{E}_{r+1})$ to obtain its optimum $v^{r+1}$ and the corresponding Lagrange multiplier
$\lambda^{r+1}:=\{\lambda^{r+1}(\overline{t})|\overline{t}\in\overline{E}_{r+1}\}.$

Step 3: Let $E_{r+1}$ $:=\{\overline{t}\in\overline{E}_{r+1}|\lambda^{r+1}(\overline{t})\neq 0\}$ . Set $r:=r+1$ and return to Step 1.

In Step 1, $P_{T}$ denotes the projection onto the index set $T$ , i.e.,

$P_{T}(s):= \arg\min_{t\in T}\Vert s-t\Vert.$

Notice that we add not only $t_{new}^{r}$ but also $\{P_{T}(t+\frac{1}{L}\nabla_{t}g(v^{r}, t))|t\in E_{r}\}$ to $E_{r}$ . This is because
$P_{T}(t+ \frac{1}{L}\nabla_{t}g(v^{r},t))$ is more desirable than $t$ in the sense that $P_{T}(t+ \frac{1}{L}\nabla_{t}g(v^{r},t))$ is obtained by
means of the steepest ascent method with respect to $t$ for a fixed $v^{r}$ . In Step 3, $\lambda^{r+1}(\overline{t})$ denotes the
Lagrange multiplier corresponding to the constraint of the index $\overline{t}$ . Here, we remove the inactive
indices whose Lagrange multipliers are zero. In the subsequent convergence analysis, we omit the
termination condition in Step 2, so that the algorithm may generate an infinite sequence.

The following proposition states that the distance between $v^{r}$ and $v^{r+1}$ does not tend to zero.
Proposition 3.1 Suppose that Assumption C(iii) holds. Then, there exists a $\delta>0$ such that

$\Vert v^{r+1}-v^{r}\Vert\geq\delta$ (3.2)

for all $r\geq 0.$

Proof Note that the function 9 is locally Lipschitzian since $g$ is continuously differentiable. Also,
$T$ is compact and $v^{r}(r\geq 0)$ is contained by the compact set $X$ . Then, for any $t\in T$ and $r\geq 0$

there exists some positive number $M>0$ such that

$\Vert g(v^{r+1}, t)-g(v^{r}, t)\Vert\leq M\Vert(v^{r+1}, t)-(v^{r}, t)\Vert=M\Vert(v^{r+1}-v^{r}\Vert$ (3.3)

Moreover, we have
$\Vert g(v^{r+1}, t_{new}^{r})-g(v^{r}, t_{new}^{r})\Vert\geq\gamma$ (3.4)

since $g(v^{r}, t_{new}^{r})>\gamma$ and $g(v^{r+1}, t_{new}^{r})\leq 0$ . Thus, (3.3) and (3.4) yield

$\gamma\leq\Vert g(v^{r+1}, t_{new}^{r})-g(v^{r}, t_{new}^{r})\Vert\leq M\Vert v^{r+1}-v^{r}\Vert.$

Hence we have (3.2) with $\delta$ $:=\gamma/M.$ $\blacksquare$

Next, we show that the finite termination property of Algorithm 1.
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Theorem 3.1 Suppose that Assumptions A-C hold. Let $\gamma>0$ be chosen arbitrarily. Then,
Algorithm 1 terminates finitely with the outputs $v^{*}(\gamma)$ and $E_{1ast}$ . Moreover, we have $f(v^{*}(\gamma))\leq f^{*},$

where $f^{*}$ is the optimal value of CSIP $(1.1)$ .

Proof Note that the Slater constraint qualification holds for $SP_{new}(\overline{E}_{r})$ from (2.4) under Assump-
tions A(ii) and B. Then, since $\hat{g}$

$\overline{t}$) is differentiable by Proposition 2.3 and $v^{r}$ solves $SP_{new}(\overline{E}_{r})$ ,
we have the following KKT conditions:

$\nabla f(v^{r})+\sum_{\overline{t}\in\overline{E}_{r}}\lambda^{r}(\overline{t})\nabla_{x}\hat{g}(v^{r},\overline{t})+w^{r}=0,$

$\lambda^{r}(\overline{t})\geq 0, \hat{g}(v^{r},\overline{t})\leq 0, \lambda^{r}(\overline{t})\hat{g}(v^{r}, \overline{t})=0 (\overline{t}\in\overline{E}_{r})$ , (3.5)

$w^{r}\in \mathcal{N}_{X}(v^{r})$ ,

where $\{\lambda^{r}(\overline{t})\}_{\overline{t}\in\overline{E}_{r}}$ are the Lagrange multipliers and $\mathcal{N}_{X}(v^{r})$ is the normal cone of $X$ at $v^{r}$ . Let
$F_{r}:=f(v^{r+1})-f(v^{r})-\nabla f(v^{r})^{T}(v^{r+1}-v^{r})$ . Then, we have

$f(v^{r+1})-f(v^{r})=F_{r}+\nabla f(v^{r})^{T}(v^{r+1}-v^{r})$

$=F_{r}-( \sum_{\overline{t}\in\overline{E}_{r}}\lambda^{r}(\overline{t})\nabla_{x}\hat{g}(x,\overline{t}))^{T}(v^{r+1}-v^{r})-(w^{r})^{T}(v^{r+1}-v^{r})$

$\geq F_{r}-\sum_{\overline{t}\in\overline{E}_{r}}\{\lambda^{r}(\overline{t})(\hat{g}(v^{r+1}, \overline{t})-\hat{9}(v^{r}, \overline{t}))\}$

$=F_{r}- \sum_{\overline{t}\in\overline{E}_{r}}\lambda^{r}(\overline{t})\hat{g}(v^{r+1}, \overline{t})$

$=F_{r}- \sum_{\overline{t}\in E_{f}}\lambda^{r}(\overline{t})\hat{g}(v^{r+1},\overline{t})-\sum_{\overline{t}\in\overline{E}_{f}\backslash E_{r}}\lambda^{r}(\overline{t})\hat{g}(v^{r+1},\overline{t})$

$\geq F_{r}\geq 0$ , (3.6)

where the first inequality follows from Assumption $B,$ $w^{r}\in \mathcal{N}_{X}(v^{r})$ and $v^{r+1}\in X$ , and the
third equality follows from (3.5). In addition, the second inequality holds since $E_{r}\subseteq\overline{E}_{r+1}$ and
$\lambda^{r}(\overline{t})=0$ for any $\overline{t}\in\overline{E}_{r}\backslash E_{r}$ . Furthermore, for any global optimum $x^{*}$ of CSIP (1.1), we have
$x^{*}\in \mathcal{F}(SP_{new}(E_{r}))$ from Proposition 2.1 and AssumptionC(ii) together with $\overline{t}\in E_{r}$ . We thus have
$f(v^{r})\leq f(x^{*})=f^{*}$ for each $r$ . Consequently, we have

$f(v^{1})\leq f(v^{2})\leq\cdots\leq f(v^{r})\leq f(v^{r+1})\leq\cdots\leq f^{*}<\infty$ , (3.7)

which implies

$\lim_{rarrow\infty}(f(v^{r+1})-f(v^{r}))=0$ . (3.8)

Now, suppose for contradiction that the algorithm does not terminate finitely. Since $\{v^{r}\}$ is bounded
by Assumption C(iii), there exist accumulation points $\overline{v}$ and $\overline{v}’$ of $\{v^{r}\}$ such that $v^{r_{j}}arrow\overline{v}$ and
$v^{r_{j}+1}arrow\overline{v}’$ as $jarrow\infty$ . Moreover, we must have $\overline{v}\neq\overline{v}’$ from Proposition 3.1. By (3.6) and (3.8),
we have

$0= \lim_{rarrow\infty}F_{r}=\lim_{jarrow\infty}F_{r_{j}}=f(\overline{v}’)-f(\overline{v})-\nabla f(\overline{v})^{T}(\overline{v}’-\overline{v})$ ,

but this contradicts Assumption $C(i)$ since $\overline{v}\neq\overline{v}’$ Thus, Algorithm 1 must terminate finitely for
each $k$ . The second part of the theorem can be proved immediately by (3.7). $\blacksquare$

The next theorem shows that, if a sufficiently small $\gamma$ is chosen, then $v^{*}(\gamma)$ obtained by Algo-
rithm 1 sufficiently approximates the original CSIP optimum. Here, we omit the proof since it is
quite similar to what is discussed in the next subsection.

Theorem 3.2 $Suppo\mathcal{S}e$ that Assumptions A-C hold. Let $x^{*}$ be the unique optimum of CSIP $(l.l)$ ,

and $v^{*}(\gamma)$ be the output of Algorithm 1. Then, we have

$\lim_{\gammaarrow 0}v^{*}(\gamma)=x^{*}$
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3.2 Globally convergent algorithm with parameter controlling scheme

The output obtained by Algorithm 1 is nothing more than an approximation. In this subsection,
we introduce an algorithm with the parameter controlling scheme in which Algorithm 1 is employed
as a subroutine.

First, we give the following prototype algorithm, and its convergence theorem.

Algorithm 2 (Prototype algorithm)

Step $0$ : Let $\{\gamma_{k}\}$ and $\{\delta_{k}\}$ be nonnegative sequences such that $\lim_{karrow\infty}\gamma_{k}=0$ and $\lim_{karrow\infty}\delta_{k}=0.$

Set $k:=0.$

Step 1: Find an $x^{k+1}\in X$ such that

$g(x^{k+1}, t)\leq\gamma_{k} (\forall t\in T)$ , (3.9)
$f(x^{k+1})\leq f^{*}+\delta_{k}$ , (3.10)

where $f^{*}$ is the optimal value of CSIP(l.l).
Step 2: Terminate if a certain criterion is satisfied. Otherwise, set $k=k+1$ and return to Step 1.

Theorem 3.3 Suppose that Assumption A(ii) holds. Let $\{\gamma_{k}\}$ and $\{\delta_{k}\}$ be arbitrary nonnegative
sequences such that $\lim_{karrow\infty}\gamma_{k}=0$ and $\lim_{karrow\infty}\delta_{k}=$ O. Then, the sequence $\{x^{k}\}$ generated by
$\mathcal{A}$ lgorithm 2 is bounded, and its arbitrary accumulation point is the optimum of CSIP (1.1).

Proof Let $\Omega_{g}(\gamma)$ $:= \{x\in \mathbb{R}^{n}|\max_{t\in}\tau g(x, t)\leq\gamma\}$ and $\Omega_{f}(\delta)$ $:=\{x\in \mathbb{R}^{n}|f(x)\leq f^{*}+\delta\}.$

Then, $\Omega_{g}(\gamma)$ and $\Omega_{f}(\delta)$ are closed convex sets for any $\gamma\geq 0$ and $\delta\geq 0$ , and $X\cap\Omega_{g}(0)\cap\Omega_{f}(O)$

coincides with the optimum set of CSIP (1.1). By Assumption A(ii), the set $X\cap\Omega_{g}(0)\cap\Omega_{f}(O)$ is
nonempty and bounded. Thus, $X\cap\Omega_{g}(\gamma)\cap\Omega_{f}(\delta)$ is nonempty and bounded for any $\gamma\geq 0$ and
$\delta\geq 0.$

Let $\overline{\gamma}$ $:= \max_{k}\gamma_{k}$ and $\overline{\delta}$

$:= \max_{k}\delta_{k}$ . Then we have $x^{k}\in X\cap\Omega_{g}(\gamma_{k-1})\cap\Omega_{f}(\delta_{k-1})\subseteq X\cap\Omega_{g}(\overline{\gamma})$

$\cap\Omega_{f}(\overline{\delta})$ for any $k$ . Thus $\{x^{k}\}$ is bounded and any accumulation point solves CSIP (1.1). $\blacksquare$

Notice that Theorem 3.3 requires only the convexity of $f$ and $g$
$t$ ), and Assumption A(ii). In other

words, Algorithm 2 and Theorem 3.3 can be applied to the case where $f$ is non-strictly convex.
This case will be discussed in the next subsection.

Now, combining Algorithms 1 and 2, we propose the following algorithm.

Algorithm 3

Step $0$ : Choose a finite subset $T_{0}\subset T$ . Let $\{\gamma_{k}\}$ be a positive sequence such that $\lim_{karrow\infty}\gamma_{k}=0.$

Let $L>0$ be suficiently large so that (2.2) and (3.1) hold. Set $k:=0.$

Step 1: Carry out Algorithm 1 with $\gamma$ $:=\gamma_{k}$ and $E_{0}$ $:=T_{k}$ , and obtain the outputs $v^{*}(\gamma_{k})$ and
$E_{1ast}$ . Then, let $x^{k+1}$ $:=v^{*}(\gamma_{k})$ and $T_{k+1}$ $:=E_{1ast}.$

Step 2: Terminate if a certain criterion is satisfied. Otherwise, set $k=k+1$ and return to Step 1.

The convergence result can be given easily by using Theorems 3.1 and 3.3.

Theorem 3.4 Suppose that Assumptions A-C hold. Then, the sequence $\{x^{k}\}$ generated by Algo-
rithm 3 converges to the unique optimum of CSIP (1.1).

Proof Let $\delta_{k}\equiv 0$ . Then, by Theorem 3.1, $x^{k+1}$ satisfies (3.9) and (3.10) for all $k$ . Thus, due to
Theorem 3.3, $\{x^{k}\}$ converges to the unique optimum of CSIP (1.1). $\blacksquare$

4 Efficient approach to $SP_{new}(E)$

In this section, we provide an efficient approach for solving $SP_{new}(E)$ . Specifically, we reformulate
the semi-infinite sub-problem $SP_{new}(E)$ as two kinds of equivalent problems with finitely many
constraints. Let $P_{T}$ denote the projection onto the index set $T$ . We first consider the case
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where we have the explicit expression of $P_{T}$ like the case where $T$ is represented by means of box
constraints. Then, for each $i=1$ , 2, . . . , $p$ , we have

$\arg\max_{t\in T}\{g(x, \overline{t}_{i})+\nabla_{t}g(x, \overline{t}_{i})^{T}(t-\overline{t}_{i})-\frac{L}{2}\Vert t-\overline{t}_{i}\Vert^{2}\}=P_{T}(\overline{t}_{i}+\frac{1}{L}\nabla_{t9(x,\overline{t}_{i}))}$

Thus, from (1.4), $SP_{new}(E)$ can be cast as the following optimization problem with a finite number
of constraints:

$minimizex\in X f(x)$

subject to $g(x, \overline{t}_{i})+\nabla_{t}g(x,\overline{t}_{i})^{T}(P_{T}(\overline{t}_{i}+\frac{1}{L}\nabla_{t}g(x,t_{i}))-\overline{t}_{i})$ (4.1)

- $\frac{L}{2}\Vert P_{T}(\overline{t}_{i}+\frac{1}{L}\nabla_{t}g(x,\overline{t}_{i}))-\overline{t}_{i}\Vert^{2}\leq 0(i=1,2, \ldots,p)$ .

and the above problem can be solved by an existing algorithm.
We next consider the case where $P_{T}$ cannot be calculated explicitly. Fix $i\in\{1, 2, . . . , p\}$ and

$x\in X$ arbitrarily. Then, the dual problem of

maximize $g(x, \overline{t}_{i})+\nabla_{t}g(x,\overline{t}_{i})^{T}(t-\overline{t}_{i})-\frac{L}{2}\Vert t-\overline{t}_{i}\Vert^{2}$ (4.2)

subject to $t\in T=\{t\in \mathbb{R}^{m}|At\leq b\}$

can be represented as

$minimize\eta\in \mathbb{R}^{l} \frac{1}{2L}\Vert q_{\overline{t}_{t}}(x, \eta)\Vert^{2}-r_{\overline{t}_{i}}(x, \eta)$ (4.3)

subject to $\eta\geq 0,$

where

$q_{\overline{t}_{i}}(x, \eta) :=-L\overline{t}_{i}-\nabla_{t}g(x,\overline{t}_{i})+A^{T}\eta,$

$r_{\overline{t}_{i}}(x, \eta) :=\nabla_{t}g(x, \overline{t}_{i})^{T}\overline{t}_{i}+\frac{L}{2}\Vert\overline{t}_{i}\Vert^{2}-g(x,\overline{t}_{i})-b^{T}\eta$

[3, Section 5.2.4]. Since the strong duality holds between (4.2) and (4.3), $SP_{new}(E)$ can be rewritten
equivalently as

minimize $f(x)$

subject to $\min_{\eta\geq 0}\frac{1}{2L}\Vert\tau_{t_{i}}(x, \eta)\Vert^{2}-r_{\overline{t}_{i}}(x, \eta)\leq 0(i=1,2, \ldots,p)$ ,

which is also equivalent to the following optimization problem with a finite number of constraints:

$\min_{x,\eta^{l}}imi_{Z,\eta^{p}}e f(x)$

subject to $\frac{1}{2L}\Vert q_{\overline{t}_{i}}(x, \eta^{i})\Vert^{2}-r_{\overline{t}_{i}}(x, \eta^{i})\leq 0,$ $\eta^{i}\geq 0(i=1,2, \ldots,p)$ .

This is a convex programming problem with convex quadratic constraints if $g$ t) is affne. Hence,
it can be solved effectively by means of the interior point method.

5 Numerical experiments

In this section, we implement Algorithm 1 and report some numerical results. The program is
coded in Matlab $7.4.0(R2007a)$ and run on a machine with an Inter(R) Core(TM)2 Duo E6850
3.$00GHz$ CPU and $3GB$ RAM. For the sake of comparison, we also implement another exchange-
type method named Exchange 2, in which we update the finite index set as $\overline{E}_{r+1}=\overline{E}_{r}\cup\{t_{new}^{r}\}$

and solve a sequence of finitely relaxed problems $SP_{ex}(E)$ instead of $SP_{new}(E)$ in Step 1.
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Experiment 1 (Randomly generated problems)

In the first experiment we consider the following semi-infinite program with a quadratic objective
function and infinitely many linear constraint functions:

Minimize $\frac{1}{2}x^{T}Mx+c^{T}x$

(5.1)
subject to $a(t)^{T}x-b(t)\leq 0$ for all $t\in[-1, 1],$

where $M\in \mathbb{R}^{20\cross 20},$ $c\in \mathbb{R}^{20},$ $a(t)$ $:=(a_{1}(t), a_{2}(t), \ldots, a_{20}(t))^{T}\in \mathbb{R}^{20}$ with $a_{i}(t)$ $:= \sum_{j=0}^{5}\alpha_{ij}t^{j}$

$(i=1,2, \ldots, 20)$ and $b(t):=6+ \sum_{k=1}^{5}\beta_{k}t^{k}\in \mathbb{R}^{2}$ We choose $\alpha_{ij},$ $\sqrt{}k(i=1,2,$ . . . , 20, $j=$
$0$ , 1, $\cdots$ , 5, $k=1$ , 2, $\cdots$ , 5$)$ and all components of $c$ randomly from [-1, 1]. Also, we set $M$ $:=N^{T}N$

where all components of a matrix $N\in \mathbb{R}^{20x20}$ are selected from [-1, 1] randomly. The actual
implementation of Algorithm 1 and Exchange 2 are carried out as follows. In Step $0$ , we set the
initial index set $T^{0}$ as $T^{0}=\{-1+q/10\}_{q=0,1,\ldots,20}$ . In Steps 1-0 and 1-2 of Algorithm 1, we
solve $SP_{new}(E)$ of the form (4.1) with $P_{T}(s):=med(-1, s, 1)$ . For solving $SP_{new}(E)$ and the finite
relaxed problem $SP_{ex}(E)$ , we make use of fmincon solver in Matlab optimization Toolbox. In
Step 1-1, we set $t_{new}^{f} \in\arg\max_{t\in T}g(v^{r}, t)$ . For solving $\max_{t\in T}g(v^{r}, t)$ , we first choose grid points
$\overline{t}_{i}$ $:=-1+(i-1)/100(i=1, \ldots, 201)$ from the index set $T$ and let $t_{\max}\in argmasC_{1\leq i\leq 201}9(v^{r},\overline{t}_{i})$ .
Furthermore, we run Newton’s method starting from $t_{\max}$ and regard the obtained solution as an
optimum of $\max_{t\in T}g(v^{r}, t)$ . We apply Algorithm 1 with $L=30$ , 40, and 100 and Exchange 2 to 50
problem instances generated in the above way. The obtained results are shown in Table 1, where
each column represents as follows:
From the table, we can observe that Algorithm 1 finds an approximate feasible point $v^{r}$ such

Algo 1 (M) : Algorithm 1 with $L=M$

ave-time(sec): the average time in seconds over 50 problems
ave-ite: the average number of iterations over 50 problems

ave-optv: the average number of output optimal values over 50 problems

that $\max_{t\in T}g(v^{r}, t)\leq 10^{-5}$ in a lower number of iterations than Exchange 2. In fact, the average
number of iterations for all Algols are about one iteration while Exchange 2 takes about 5 iterations.
This may represent that a subproblem $SP_{new}(E)$ approximates a feasible domain of the original
problems more precisely than $SP_{ex}(E)$ that is solved in Exchange 2.

Note that Algorithm 1 does not necessarily obtain an optimum of CSIP (5.1) if $L$ is not so large
that Assumptions $A(i)$ and C(ii) for the global convergence holds. On the other hand, Exchange 2
finds an approximate optimum of CSIP (5.1) when the stopping condition is satisfied, since it
generates iteration points by so’lving a sequence of the relaxed original problems $SP_{ex}(E)$ . Hence,
we check whether or not Algorithm 1 succeeds in getting an optimum of CSIP (5.1) by comparing
the optimal values output by Algorithm 1 and Exchange 2. From the results, Algo 1(30) and
Algo 1(40) fail to obtain optima for many problems. Actually, while the average optimal value by
Exchange 2 is 1.47, the output values by Algo 1(30) and Algo 1 (40) are more than 3. When $L=100,$

we can observe that Algorithm 1 successfully finds optima since the both values of ave-optv for the
two methods takes 1.47.

Table 1: the results for Experiment 1

$2$

Note that the origin is strictly feasible point for (5.1) since we have $-b(t)<0$ from $\sum_{j=1}^{5}\beta_{j}t^{j}$ for all $t\in[-1, 1].$
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Experiment 2 (Chebyshev approximation problem)

In the second experiment, we consider a semi-infinite program derived from the Chebyshev ap-
proximation problem. Given a function $h$ : $\mathbb{R}arrow \mathbb{R}$ , one of the typical Chebyshev approximation
problem is to determine the coefficients $(x_{1}, x_{2}, \ldots, x_{n-1})^{T}\in \mathbb{R}^{n-1}$ such that $\sum_{i=1}^{n-1}x_{i}t^{i}\approx h(t)$

over a compact set $T(\subseteq \mathbb{R})$ , where $t^{i}$ denotes the i-th power of $t\in \mathbb{R}$ . This can be naturally
reformulated as

$\min_{x\in \mathbb{R}^{n}}\max_{t\in T}|h(t)-\sum_{i=1}^{n-1}x_{i}t^{i}|.$

By using an auxiliary variable $x_{n}\in \mathbb{R}$ , the above problem can be transformed into the following
semi-infinite program with two linear semi-infinite constrains:

mlnlmlze $x_{n}$

$(x_{1},x_{2},\ldots,x_{n})^{T}\in\pi n$

subject to $g_{1}(x, t)$ $:=x_{n}- \sum_{i=1}^{n-1}x_{i}t^{i-1}+h(t)\leq 0$ $(t\in T)$ , (5.2)

$g_{2}(x, t) :=x_{n}+ \sum_{i=1}^{n-1}x_{i}t^{i-1}-h(t)\leq 0 (t\in T)$ .

In the experiment, we actually solve the above SIP with the following specific data:

$n=9, T=[-5, 5],$

and

$h(t)=\{\begin{array}{ll}t+\frac{5}{6}\pi (t\leq-\frac{5}{6}\pi) ,\sin(t+\frac{5}{6}\pi) (- \frac{5}{6}\pi<t\leq 0) ,\frac{1}{2}(1+\sqrt{3}-\sqrt{3}\exp(t)) (0<t\leq 2) ,5t^{2}-\frac{1}{2}(40+\sqrt{3}\exp(2))t+\frac{1}{2}(1+\sqrt{3}+\sqrt{3}\exp(2)) (t>2) .\end{array}$

For solving CSIP (5.2) involving two linear semi-infinite constraints, we add some modifications
on Algorithml as follows: Let $\{E_{1}^{r}\}$ and $\{E_{2}^{r}\}$ be sequences of finite index sets corresponding to the

constraints $g_{1}$ and $g_{2}$ , respectively. Define $SP_{new}(E_{1}, E_{2})$ with $E_{i}$ $:=\{\overline{t}_{1}^{i}, t_{2}^{i}, . . . , t_{p_{i}}^{i}\}\subset T(i=1,2)$

by

$minimizex\in f(x)$

subject to $\hat{g}_{i}(x,\overline{t}_{1}^{i})$ $:=g_{i}(x, \overline{t}_{1}^{i})+\nabla_{t9i(x,\overline{t}_{1}^{i})^{T}(t}-\overline{t}_{1}^{i}$ ) $- \frac{L}{2}\Vert t-\overline{t}_{1}^{i}\Vert^{2}\leq 0$ $(t\in T)$ ,

:

$\hat{g}_{i}(x,\overline{t}_{p:}^{i}) :=g_{i}(x,\overline{t}_{p_{i}}^{i})+\nabla_{t}g_{i}(x, \overline{t}_{p_{i}}^{i})^{T}(t-\overline{t}_{p_{t}}^{i})-\frac{L}{2}\Vert t-\overline{t}_{p_{i}}^{i}\Vert^{2}\leq 0 (t\in T)$ ,

$(i=1,2)$ .

Also we define $SP_{ex}(E_{1}, E_{2})$ by replacing $\hat{g}_{i}(x,\overline{t}_{j}^{i})\leq 0$ in $SP_{new}(E_{1}, E_{2})$ with $g(x,\overline{t}_{j}^{i})\leq 0$ for
$j=1$ , 2, . . . , $p_{i}.$

Modified Algorithm 1

Step $0$ : Choose a small number $\gamma>0$ and finite subsets $E_{0}^{1},$ $E_{0}^{2}\subset T$ . Solve $SP_{new}(E_{0}^{1}, E_{0}^{2})$ to
obtain the optimum $v^{0}$ . Set $r:=0.$

Step 1: Find a $t_{new}^{r}$ such that $\max(g_{1}(v^{r}, t_{new}^{r}),g_{2}(v^{r}, t_{new}^{r}))>\gamma$ . If such a $t_{new}^{r}$ does not exist,
i.e., $\max(g_{1}(v^{r}, t), g_{2}(v^{r}, t))\leq\gamma$ for any $t\in T$ , then output $v^{*}(\gamma)$ $:=v^{r},$ $E_{1ast}^{1}:=E_{r}^{1},$

and $E_{1ast}^{2}$ $:=E_{r}^{2}$ . Otherwise, let $\overline{E}_{r+1}^{1}$ $:=E_{r}^{1} \cup\{P_{T}(t+\frac{1}{L}\nabla_{t}g_{1}(v^{r}, t)) t\in E_{r}\}\cup\{t_{new}^{r}\},$

$\overline{E}_{r+1}^{2}$
$:=E_{r}^{2} \cup\{P_{T}(t+\frac{1}{L}\nabla_{t}g_{2}(v^{r}, t))|t\in E_{r}\}\cup\{t_{new}^{r}\}$ and go to Step 2.
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Step 2: Solve $SP_{new}(\overline{E}_{r+1}^{1},\overline{E}_{r+1}^{2})$ to obtain its optimum $v^{r+1}$ and the corresponding Lagrange

multiplier $\lambda_{1}^{r+1}$ $:=\{\lambda_{1}^{r+1}(\overline{t})|\overline{t}\in\overline{E}_{r+1}^{1}\}$ and $\lambda_{2}^{r+1}$ $:=\{\lambda_{2}^{r+1}(\overline{t})|\overline{t}\in\overline{E}_{r+1}^{2}\}.$

Step 3: Let $E_{r+1}^{1}$ $:=\{t\in\overline{E}_{r+1}^{1}|\lambda_{1}^{r+1}(\overline{t})\neq 0\}$ and $E_{r+1}^{2}$ $:=\{t\in\overline{E}_{r+1}^{2}|\lambda^{r+1}(\overline{t})\neq 0\}$ . Set $r:=r+1$
and return to Step 1.

We also modify Exchange 2 by replacing $SP_{new}$ ) in the modified Algorithm 1 with $SP_{ex}$ )

and updating $\overline{E}_{r+1}^{i}(i=1,2)$ as $\overline{E}_{r+1}^{i}$ $:=E_{r}^{i}\cup\{t_{new}^{r}\}(i=1,2)$ in Step 1. Implementations of
Algorithm 1 and Exchange 2 are carried out in the same manner as Experiment 1. The obtained
results are shown in Table2 and Table3 where

optval: the objective functional value of CSIP(5.2) in the final iteration;
$\max g$ : the value of $\max_{t\in T}g(v^{r}, t)$ in the final iteration;

iter: the number of iterations;
time(sec): computational time in seconds;
Algo 1 (M): Algorithm 1 with $L=M$;

$T^{i}fin(i=1,2)$ : the index set $E_{r}^{i}$ obtained in Step 3 of the final iteration.

We also give Figures 1 and 2 showing how the objective functional value for CSIP(5.2) and
$\max_{t\in T}g(v^{r}, t)$ vary as the iteration proceeds in Exchange 2 and Algo 1(30). From the tables,
we can observe that Exchange 2 and Algo 1(30) finds an optimum of CSIP (5.2) successfully. On
the other hand, Algo1(10) fails to attain the optimum although it obtains an accurate feasible
point such that $\max_{t\in T}g(v^{r}, t)=1.0\cross 10^{-11}$ From Figures 1 and 2, we can also observe that
Algorithm 1 with $L=30$ finds the optimal solution in a lower number of iterations than Exchange
2. However, from the point of view of computational time, Exchange 2 reaches the optimum faster
than Algorithm 1. Actually, Exchange 2 takes only 0.98 seconds while Algorithm 1 takes more
$than^{\backslash }2$ seconds. This is due to the fact that a subproblem $SP_{ex}(E)$ solved by Exchange 2 is a
just linear programming while $SP_{new}(E)$ solved by Algorithm 1 is a nonlinear programming with
a complicated structure. Thus, for the case where $SP_{ex}$ is a nonlinear programming, Algorithm 1
may be superior to Exchange 2 even in the computational time.

Table 2: comparison of the exchange method and Algorithm 1

Table 3: the index sets obtained by the two methods

6 Conclusion

In this paper, we proposed the new algorithm for solving semi-infinite programming problems,
and showed its convergence property under some assumptions. We also applied the algorithm
to some test problems including a certain Chebyshev approximation problem and observed that
the algorithm finds the SIP optimum efficiently. However, there still remain some future works.
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Fig. 1: the optimal values for two methods
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Fig. 2: $\max g$ for two methods

First, it is desired to relax the assumption that were used for the convergence analysis. Also, it
is important to consider better techniques of how to choose the constant $L$ when the Lipschitz
constant is unknown.
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