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1. Two QUESTIONS IN TRANSFORMATION GROUPS

When studying classification problems in the theory of transformation groups one usually focuses on
smooth actions of compact Lie groups $G$ on specific manifolds $M$ , such as Euclidean spaces, disks, spheres,
and complex projective spaces. Consider the following two basic related questions.

(1) Which manifolds $F$ are diffeomorphic to the corresponding fixed points sets $M^{G}$ in $M$ ?

(2) Which $G$-vector bundles over $F$ are isomorphic to the $G$-normal bundles of $M^{G}$ in $M^{7}$

Our goal is to discuss results related to (1) obtained so far for actions on Euclidean spaces, disks, and
spheres, and then to describe new results for actions on complex projective spaces obtained in [2]. Hence,

every manifold $F$ which occurs as the fixed point set is a second-countable space, i.e., $F$ is paracompact

and $F$ has countably many connected components, possibly not of the same dimension.
We do not discuss the Smith theory and the converse related results. Except for Theorem 2.1 below,

the acting group $G$ is always a finite group not of prime power order.

2. EQUIVARIANT TRIANGULATION AND THICKENING CONCLUSION

For a finite dimensional countable CW-complex $X$ , let $KO(X)$ be the reduced real $K$-theory of $X.$

More generally, if $G$ is a compact Lie group and $X$ is a G-CW complex (i.e., a topological space built up

from $G$-equivariant cells), we denote by $KO_{G}(X)$ the $G$-equivariant reduced real $K$-theory of $X.$

Theorem 2.1. Let $G$ be a compact Lie group and let $F$ be a smooth manifold such that $F$ is compact
$(resp., \partial F=\emptyset)$ . Let $\nu$ be a real $G$ -vector bundle over $F$ such that $\dim\nu^{G}=0$ . Then the following two
statements are equivalent.

(1) There exists a finite (resp., finite dimensional countable) contractible G-CW complex $X$ such

that $X^{G}=F$ , and the Whitney sum $\tau_{F}\oplus v$ stably extends to a real $G$ -vector bundle over $X$ , i. e.,

the class $[\tau_{F}\oplus\nu]$ lies in the image of the restriction map

$\overline{KO}_{G}(X)arrow\overline{KO}_{G}(F)$ .

(2) There exists a smooth action of $G$ on a disk (resp., Euclidean space) $M$ such that (i) the fixed
point set $M^{G}$ is diffeomorp $hic$ to $F$ , and (ii) the $G$-equivariant normal bundle of $M^{G}$ in $M$ is
stably isomorphic to $v.$

For a smooth $G$-manifold $M$ with fixed point set $F$ , the tangent bundle $\tau_{M}$ has the structure of a real
$G$-vector bundle over $M$ such that $\tau_{M}|_{F}\cong\tau_{F}\oplus v$ , where $v$ is the $G$-equivariant normal bundle of $F$ in $M.$

In particular, $G$ acts trivially on the tangent bundle $\tau_{F}$ and $\dim\nu^{G}=0$ . Moreover, by the Equivariant
Triangulation Theorem [1], $M$ has the structure of a G-CW complex containing $F$ as a subcomplex.

Therefore, in Theorem 2.1, if (2) is true, so is (1). The converse implication, (1) implies (2), follows by

the Equivariant Thickening Theorem [11].

This is a research report based on a talk given by K. Pawalowski at the RIMS conference “‘ Topology and Algebraic

Structures of $\mathcal{I}$Vansformation G$roups’\rangle$ , Kyoto, May 26-30, 2014.
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3. SIX $G$-FIXED POINT SET BUNDLE CONDITIONS

The discussion below is based on the work of Oliver [10]. For a finite group $G$ , denote by $\mathcal{P}(G)$ the
family of subgroups of $G$ of prime power order. Two real (resp., complex) $G$-modules $U$ and $V$ are called
$\mathcal{P}(G)$ -matched if $U$ and $V$ are isomorphic as real (resp., complex) $P$-modules for every $P\in \mathcal{P}(G)$ .

Definition 3.1. The Oliver three-class series $\mathcal{G}_{R}\subset C_{\mathbb{C}}\subset \mathcal{G}_{\mathbb{C}}$ of finite groups $G$ not of prime power order,

is defined as follows.
$G\in \mathcal{G}_{\mathbb{R}}$ if there exist two real $\mathcal{P}(G)$-matched $G$-modules $U$ and $V$ such that $\dim_{\mathbb{R}}(U^{G})=0$

and $\dim_{\mathbb{R}}(V^{G})=1.$

$G\in C_{\mathbb{C}}$ if there exist complex $\mathcal{P}(G)$-matched $G$-modules $U$ and $V$ such that $\dim_{\mathbb{C}}(U^{G})=0$

and $\dim_{\mathbb{C}}(V^{G})=1$ , and moreover $U$ and $V$ are self-conjugate.1
$G\in \mathcal{G}_{\mathbb{C}}$ if there exist complex $\mathcal{P}(G)$-matched $G$-modules $U$ and $V$ such that $\dim_{\mathbb{C}}(U^{G})=0$

and $\dim_{\mathbb{C}}(V^{G})=1.$

Lemma 3.2. The follovnng three statements are true.

(1) $G\in \mathcal{G}_{R}$ if and only if there exist subgroups $N\underline{\triangleleft}H\leq G$ such that $H/N$ is isomorphic to the
dihedral group of order $2pq$ for some two distinct primes $p$ and $q.$

(2) $G\in C_{\mathbb{C}}$ if and only if there $ex\iota sts$ an element $g\in G$ such that $g$ is not of prime power order, and
$g$ is conjugate to its inverse $g^{-1}.$

(3) $G\in \mathcal{G}_{\mathbb{C}}$ if and only if $G$ has an element $g$ not of prime power order.

Let $\mathcal{G}$ be the class of finite groups not of prime power order. Let $\mathcal{G}_{2}^{\triangleleft}\subset \mathcal{G}$ be the class of groups $G\in \mathcal{G}$

with a normal 2-Sylow subgroup $G_{2}$ . Set $\mathcal{G}_{2}^{i}=\mathcal{G}\backslash \mathcal{G}_{2}^{\triangleleft}$ . Note that $C_{\mathbb{C}}\subset \mathcal{G}_{2}^{\sqrt{}}$ , i.e., if $G$ has an element $g$ not
of prime power order such that $g$ is conjugate to its inverse, then $G_{2}$ is not normal in $G.$

Definition 3.3. The Oliver six-class splitting of the class $\mathcal{G}$ by the Oliver three-class series

$\mathcal{G}_{\mathbb{R}}\subset C_{\mathbb{C}}\subset \mathcal{G}_{\mathbb{C}}\subset \mathcal{G}=\mathcal{G}_{2}^{\triangleleft}\cup \mathcal{G}_{2}^{4}$

and the two classes $\mathcal{G}_{2}^{\triangleleft}$ and $\mathcal{G}_{2}^{\sqrt{}}$, is the following decomposition of $\mathcal{G}$ into six mutually disjoint classes:

(1) $\mathcal{G}_{R}$ and $C_{\mathbb{C}}\backslash \mathcal{G}_{\mathbb{R}}$ , both contained in $\mathcal{G}_{2}^{i},$

(2) $(\mathcal{G}_{\mathbb{C}}\backslash C_{\mathbb{C}})\cap \mathcal{G}_{2}^{4}$ and $(\mathcal{G}\backslash \mathcal{G}_{\mathbb{C}})\cap \mathcal{G}_{2}^{\sqrt{}},$

(3) $(\mathcal{G}_{\mathbb{C}}\backslash C_{\mathbb{C}})\cap \mathcal{G}_{2}^{\triangleleft}=\mathcal{G}_{\mathbb{C}}\cap \mathcal{G}_{2}^{\triangleleft}$ and $(\mathcal{G}\backslash \mathcal{G}_{\mathbb{C}})\cap \mathcal{G}_{2}^{\triangleleft}.$

Consider the following maps (group homomorphisms):

-the complexification of real bundles

$c_{R}:\overline{KO}(F)arrow\overline{KU}(F) , [\xi]\mapsto[\xi\otimes \mathbb{C}],$

-the quaternization of complex bundles

$q_{\mathbb{C}}:\overline{KU}(F)arrow\overline{KSp}(F) , [\xi]\mapsto[\xi\otimes\mathbb{H}],$

-the complexification of symplectic bundles

$c_{\mathbb{H}}:\overline{KSp}(F)arrow\overline{KU}(F) , [\xi]\mapsto[c_{\mathbb{H}}(\xi)],$

-the realification of complex bundles

$r_{\mathbb{C}}:\overline{KU}(F)arrow\overline{KO}(F) , [\xi]\mapsto[r_{\mathbb{C}}(\xi)].$

For an abelian group $A$ , the subgroup Div $A$ of quasidivisible elements of $A$ is defined as

$DivA=\bigcap_{\varphi}Ker(\varphi)$
,

where $\varphi$ varies within homomorphisms mapping $A$ into free abelian groups. Note that if $A$ is finitely

generated then quasidivisible elements are simply torsion elements. In particular, if $F$ is a compact smooth
manifold, the $K$-theory groups of $F$ are finitely generated, and therefore

$DivK(F)=TorK(F)$

for the real, complex, and symplectic $K$-theory groups of $F.$

1 A complex $G$-module is self-conjugate if it is isomorphic to its complex conjugate.
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FIGURE 1. Oliver six-class splitting of $\mathcal{G}$ with six G-fixed point set bundle conditions

The six G-fixed point set bundle conditions defined below depend on the classes in the Oliver six-class
splitting of $\mathcal{G}$ , the class of finite groups $G$ not of prime power order, described in Definition 3.3.

Definition 3.4. The G-fixed point set bundle conditions. Let $G\in \mathcal{G}$ . Then the class $[\mathcal{T}_{F}]$ of the tangent

bundle $\tau_{F}$ of a smooth manifold $F$ is said to be well-G-located in $\overline{KO}(F)$ , provided:

(1) if $G\in \mathcal{G}_{\mathbb{R}}$ : there is no restriction on the class

$[\tau_{F}]\in\overline{KO}(F)$ .

(2) if $G\in C_{\mathbb{C}}\backslash \mathcal{G}_{\mathbb{R}}$ :

$[\tau_{F}\otimes \mathbb{C}]\in c_{\mathbb{H}}(\overline{KSp}(F))+Div\overline{KU}(F)$ .

(3) if $G\in(\mathcal{G}_{\mathbb{C}}\backslash C_{\mathbb{C}})\cap \mathcal{G}^{\oint_{2}}$ :

$[\tau_{F}]\in r_{\mathbb{C}}(\overline{KU}(F))+Div\overline{KO}(F)$ .

(4) if $G\in(\mathcal{G}\backslash \mathcal{G}_{\mathbb{C}})\cap \mathcal{G}_{2}^{4}$ :
$[\tau_{F}]\in Div\overline{KO}(F)$ .

(5) if $G\in \mathcal{G}_{\mathbb{C}}\cap \mathcal{G}_{2}^{\triangleleft}$ :

$[\tau_{F}]\in r_{\mathbb{C}}(\overline{KU}(F))$ .

(6) if $(G\in \mathcal{G}\backslash \mathcal{G}_{\mathbb{C}})\cap \mathcal{G}_{2}^{\triangleleft}$ :

$[\tau_{F}]\in r_{\mathbb{C}}(Div\overline{KU}(F))$ .
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4. $0$LIVER NUMBER AND EQUIVARIANT EXTENSION OF BUNDLES

The results presented in this section have been obtained by Oliver [9, 10].

Proposition 4.1. For a finite group $G$ not of prime power order, the set

{$\chi(X^{G})-1:X$ is a finite contractible G-CW complex}

forms a subgroup of the group $\mathbb{Z}$ of integers.

Therefore, if $X$ is a finite contractible G-CW complex, then

$\chi(X)\equiv 1$ (mod $n_{G}$ )

for a unique integer $n_{G}\geq 0$ . We refer to $n_{G}$ as to the Oliver number of $G.$

If $n_{G}=1,$ $G$ is called an Oliver group. In algebraic terms this means that $G$ contains no normal series
of subgroups $P\underline{\triangleleft}H\underline{\triangleleft}G$ such that $P$ and $G/H$ are of prime power order and $H/P$ is cyclic. Examples

of Oliver groups include finite nonsolvable groups, as well as finite nilpotent groups with three or more
noncyclic Sylow subgroups.

Theorem 4.2. Let $G$ be a finite group not of prime power order, and let $F$ be a finite $CW$-complex. Then

there exists a finite contractible G-CW-complex $X$ such that the fixed point set $X^{G}$ is homeomorphic to $F$

if and only if $\chi(F)\equiv 1(mod n_{G})$ .

For an abelian group $A$ and a prime $p$ , let $Div_{p}^{\infty}$ $A$ denote the subgroup of $A$ consisting of the infinitely
$p$ divisible elements of $A$ . Moreover, let $A_{(p)}$ denote the localization of $A$ at $p.$

Let $G$ be a finite group not of prime power order. For a finite dimensional, countable CW-complex $F,$

consider the abelian group

$\overline{KO}_{\mathcal{P}(G)}(F)=\overline{KO}(F)\oplus\oplus\overline{KO}_{P}(F)_{(p)}/Div_{p}^{\infty}\overline{KO}_{P}(F)_{(p)}$

$P\neq\{e\}$

where $P$ varies within the family $\mathcal{P}(G)$ .
According to Theorem 4.2, the Euler characteristic is the only obstruction for a finite CW-complex

$F$ to occur as the fixed point set of a finite contractible G-CW complex $X$ . The possibility of stable
extension of a $G$-vector bundle $\eta$ over $F$ to a $G$-vector bundle $\xi$ over $X$ is obstructed by the location of

the class $[\eta]$ in $KO_{G}\underline{(F}$), namely, the stable extension $\xi$ of $\eta$ exists if and only if $[\eta]$ lies in the kernel of

the canonical map $KO_{G}(F)arrow KO_{\mathcal{P}(G)}(F)$ .
In the case where $X$ is not finite, the stable extension $\xi$ of $\eta$ is obstructed in the same way, but there is

no restriction on the Euler characteristic of $F.$

Theorem 4.3. Let $G$ be a finite group not of prime power order, and let $\nu$ be a real $G$ -vector bundle over
a smooth manifold $F$ , such that $\dim\nu^{G}=0$ . Assume also that $F$ is compact and the Euler characteristic
$\chi(F)\equiv 1(mod n_{G})$ . Then the following three statements are equivalent.

(1) The class $[\tau_{F}]$ is well-G-located in $\overline{KO}(F)$ .
(2) The class $[\tau_{F}\oplus\nu]$ lies in the kernel of the canonical map

$\overline{KO}_{G}(F)arrow\overline{KO}_{\mathcal{P}(G)}(F)$ .

(3) There exists a finite contractible G-CW complex $X$ such that $X^{G}=F$ and the class $[\tau_{F}\oplus v]$ lies
in the image of the restriction map

$\overline{KO}_{G}(X)arrow\overline{KO}_{G}(F)$ .

Theorem 4.4. Let $G$ be a finite group not of prime power order, and let $\nu$ be a real $G$ -vector bundle over
a smooth manifold $F$ , such that $\dim\nu^{G}=0$ . Then the following three statements are equivalent.

(1) The class $[\tau_{F}]$ is well-G-located in $\overline{KO}(F)$ .
(2) The class $[\tau_{F}\oplus\nu]$ lies in the kernel of the canonical map

$\overline{KO}_{G}(F)arrow\overline{KO}_{\mathcal{P}(G)}(F)$ .

(3) There exists a finite $dimensional_{Z}$ countable, contractible G-CW complex $X$ such that $X^{G}=F$

and the class $[\tau_{F}\oplus\nu]$ lies in the image of the restriction map

$\overline{KO}_{G}(X)arrow\overline{KO}_{G}(F)$ .
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5. GROUP ACTIONS ON DISKS AND EUCLIDEAN SPACES

Some of the results of this section were obtained in [11, 12], and the complete classification theorems
presented here go back to Oliver [10].

Theorem 5.1. Let $G$ be a group not of prime power order. Then there exists a smooth action of $G$ on

some disk $\mathcal{S}uch$ that the fixed point set is diffeomorphic to a smooth manifold $F$ if and only if
(i) $F$ is compact, $\chi(F)\equiv 1(mod n_{G}$ and

(ii) the class $[\tau_{F}]$ is well-G-located in $KO(F)$ .

Theorem 5.2. Let $G$ be a group not of prime power order. There exists a smooth action of $G$ on some
Euclidean space such that the fixed point $\mathcal{S}et$ is diffeomorphic to a smooth manifold $F$ if and only if

(i) the boundary of $F$ is empty, and

(ii) the class $[\tau_{F}]$ is well-G-located in $\overline{KO}(F)$ .

Theorems 5.1 and 5.2 follow from Theorems 4.3 and 4.4, respectively, and Theorem 2.1.

6. GROUP ACTIONS ON SPHERES

The results of this section have been obtained in the series of papers $[4]-[8]$ . If $G$ is a finite non-trivial
perfect group, then any Sylow 2-subgroup of $G$ is not normal in $G$ . Therefore, the union of the classes

$\mathcal{G}_{\mathbb{R}}, C_{\mathbb{C}}\backslash \mathcal{G}_{\mathbb{R}}, (\mathcal{G}_{\mathbb{C}}\backslash C_{\mathbb{C}})\cap \mathcal{G}_{2}^{4}, (\mathcal{G}\backslash \mathcal{G}_{\mathbb{C}})\cap \mathcal{G}_{2}^{4}$

(cf. Definition 3.3) contains all finite non-trivial perfect groups. Moreover, every of the four classes above
contains an infinite family of perfect groups.

Theorem 6.1. Let $G$ be a finite perfect group, and let $F$ be a smooth manifold. There exists a smooth

action of $G$ on a sphere $S$ such that the fixed point set $S^{G}$ is diffeomorphi.c to $F$ and $S^{P}\neq S^{G}$ for every
$P\in \mathcal{P}(G)$ , if and only if

(i) $F$ is closed and
(ii) the class $[\tau_{F}]$ is well-G-located in $\overline{KO}(F)$ .

Let $G$ be a finite group with an element not of prime power order. Assume that $G$ has a normal Sylow
2-subgroup $G_{2}$ . Then $G\in \mathcal{G}_{\mathbb{C}}\cap \mathcal{G}_{2}^{\triangleleft}$ by Lemma 3.2. Unravelling the notion of well-G-location, we see that
$[\tau_{F}]$ is well-G-located in $KO(F)$ if and only if $[\tau_{F}]$ lies in the image of the map

$r_{\mathbb{C}}:\overline{KU}(F)arrow\overline{KO}(F)$ .

This amounts to $F$ being a stably complex manifold, i.e., the stable normal bundle of $F$ admits a complex

structure. In particular, the dimensions of the connected components of $F$ are of the same parity.

Theorem 6.2. Let $G$ be a finite Oliver group with a quotient isomorphic to the cyclic group of order $pqr$

for three $di_{\mathcal{S}}tinct$ primes $p,$ $q$ , and $r$ . Moreover, suppose $G_{2}$ is normal in G. Then there exists a smooth
action of $G$ on a sphere $S$ such that the fixed point set $S^{G}$ is diffeomorphic to $F$ and $S^{P}\neq S^{G}$ for every
$P\in \mathcal{P}(G)$ , if and only if

(i) $F$ is closed and
(ii) $F$ is stably complex.

In particular, Theorem 6.2 holds for any finite abelian, more generally, finite nilpotent group with three
or more noncyclic Sylow subgroups.

7. GROUP ACTIONS ON COMPLEX PROJECTIVE SPACES

The results of this section are obtained in the $PhD$ Thesis of Marek Kaluba [2].

Theorem 7.1. Let $G$ be a finite perfect group and let $F$ be a smooth manifold. Assume also that either
(1) or (2) below holds.

(1) $G\in \mathcal{G}_{\mathbb{R}}$ and (i) $F$ is closed and (ii) there is no restriction on $[\tau_{F}].$

(2) $G\in \mathcal{G}_{\mathbb{C}}$ and (i) $F$ is closed, the connected components of $F$ all are even dimensional, and (ii) the

class $[\tau_{F}]$ is well-G-locatel in $\overline{KO}(F)$ .

Then there exists a smooth action of $G$ on a complex projective space such that the fixed point set is
diffeomorphic to $F.$
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The idea of the proof Consider a smooth action of $G$ on the sphere $S^{2n}$ of dimension $2n$ for some integer
$n\geq 1$ , with the given fixed point set $F$ , obtained by Theorem 6.1. Next, modify the action so that the
fixed point set consists of $F$ and an isolated point $x$ . Aside, create the complex projective space $\mathbb{C}P^{n}$

equipped with the linear action of $G$ coming from the projectivisation $P_{\mathbb{C}}(V\oplus \mathbb{C})$ of $V=T_{x}(S^{2n})$ , the
tangent $G$-representation space at the point $x$ . Finally, perform the $G$-equivariant connected sum

$S^{2n}\#\mathbb{C}P^{n}=S^{2n}\# P_{\mathbb{C}}(V\oplus \mathbb{C})$

around the points $x$ in $S^{2n}$ and $[0 :. . . : 0 : 1]$ in $P_{\mathbb{C}}(V\oplus \mathbb{C})$ , to obtain the required action of $G$ on $\mathbb{C}P^{n}\square$

Theorem 7.1 does not include perfect groups in $\mathcal{G}\backslash \mathcal{G}_{\mathbb{C}}$ , such as $A_{5}$ and $A_{6}$ , the alternating groups on
five and six letters, respectively.

Theorem 7.2. Let $G=A_{5}$ . Let $F$ be a smooth manifold. Assume also that

(i) $F$ is closed, the components of $F$ are of the same, even dimension, and
(ii) $[\tau_{F}]$ is well-G-located in $\overline{KO}(F)$ , i. e., $[\tau_{F}]\in Tor\overline{KO}(F)$ .

Then there exists a smooth action of $G$ on a complex projective space such that the fixed point set is
diffeomorp $hic$ to $F.$

In this setting, we are not able to repeat the arguments from the proof of Theorem 7.1, because if
$G\in \mathcal{G}\backslash \mathcal{G}_{\mathbb{C}}$ , the lack of the appropriate real $G$-modules (cf. Definition 3.1) means that there is no smooth
action of $G$ on a sphere $S^{2n}$ with fixed point set $F\sqcup\{x\}$ for $\dim F>0.$

The idea of the proof Consider a smooth action of $G$ on the sphere $S^{2n}$ of dimension $2n$ for some integer
$n\geq 1_{\rangle}$ with the given fixed point set $F$ , obtained by Theorem 6.1. Next, modify the action so that the
fixed point set consists of $F$ and the sphere $S^{2d}$ , where $2d=\dim F.$

Following the construction above, perform the $G$-equivariant connected sum $S^{2n}\#\mathbb{C}P^{n}$ around two
points, one chosen from $S^{2d}\subset S^{2n}$ and one chosen from $\mathbb{C}P^{d}\subset \mathbb{C}P^{n}$ This yields a smooth action of $G$

on $\mathbb{C}P^{n}$ such that the fixed point set consists of $F$ and a number of components diffeomorphic to complex
projective spaces, possibly of distinct dimesions.

The new step of the construction is to use the $G$-equivariant surgery to modify the action of $G$ on $\mathbb{C}P^{n}$

so that the fixed point set is just $F$ , i.e., the extra components diffeomorphic to complex projective spaces
are deleted. More specifically, construct an appropriate $G$-equivariant normal map of degree 1,

$f:Xarrow \mathbb{C}P^{n}$

To convert $f$ into a homotopy equivalence $Marrow \mathbb{C}P^{n}$ , the intermediate surgery obstructions for the maps

$f^{H}:X^{H}arrow(\mathbb{C}P^{n})^{H}, H<G,$

are killed by means of the (geometric) reflection method due to Morimoto [3]. The final surgery obstruction
vanishes (algebraically) by the Dress Induction. As a result, one obtains a smooth action of $G$ on a closed
smooth manifold $M$ homotopy equivalent to $\mathbb{C}P^{n}$ , with fixed point set diffeomorphic to $F^{2}$ $\square$

We expect that similar arguments are true and Theorem 7.2 holds for any finite perfect group $G\in \mathcal{G}\backslash \mathcal{G}c.$

We wish to pose the following problem, where we assume that $G$ is a finite group not of prime power
order, such that $n_{G}=1$ $(i.e., G is an$ Oliver group) and $G$ is not a perfect group.

Problem 1. Let $F$ be a smooth manifold such that (i) $F$ is closed, the connected components of $F$ all are
even dimensional, and (ii) the class $[\tau_{F}]$ is well-G-located in $\overline{KO}(F)$ . Is it true that there exists a smooth
action of $G$ on some complex projective space, such that the fixed point set is diffeomorphic to $F$ ?

Answering the following question seems to be a challenging project.

Problem 2. Given a smooth action of a finite group $G$ on $\mathbb{C}P^{n}$ with fixed point set $F$ , what are the closed
smooth manifolds homotopy equivalent to $\mathbb{C}P^{n}$ which admit a smooth action of $G$ with fixed point set
diffeomorphic to $F^{7}$

2 We are grateful to Masaharu Morimoto for bringing to our attention the fact that the resulting manifold $M$ is also
normally cobordant to $\mathbb{C}P^{n}$ and therefore, $M$ is actually diffeomorphic to $\mathbb{C}P^{n}.$
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