Metadata, citation and similar papers at core.ac.uk

Provided by Kyoto University Research Information Repository

Bl =
oo o e/,
&

Kyoto University Research Information Repository > KYOTO UNIVERSITY

Applications of Discrete Dynamical Systems with Mathematica
Title (Study of Mathematical Software and Its Effective Use for
Mathematics Education)

Author(s) | Ufuktepe, Unal; Kapcak, Sinan

Citation O00O0O0DbOoO0nog (2014), 1909: 207-216

Issue Date | 2014-08

URL http://hdl.handle.net/2433/223175

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University

https://core.ac.uk/display/81260116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

gL T A T AT
%5 1909 % 2014 4F 207-216 207

RESEARCH ARTICLE

Applications of Discrete Dynamical Systems with Mathematica

Unal Ufuktepe*, Sinan Kapgak

Tamar University of Economics, Department of Mathematics, Izmir, Turkey

(Received 00 Month 200z; final version received 00 Month 200z)

Mathematica is extremely popular with a wide range of researchers from all sorts of disciplines.
It is a symbolic, numerical and graphical manipulation package.

In this paper we provide an introduction to the theory of discrete dynamical systems with
the aid of the Mathematica for both senior undergraduates and graduate students.

Mathematica applications cover the stability of the one dimensional system, the Cobweb
diagram for one dimensional system, the time series diagram, the phase plane diagrams for
two-dimensional systems. Applications are taken from biomathematics subjects: prey-predator
models, host-parasitoid models, population dynamics; and modeling the populations of inter-
acting species, bifurcation, and basin of attractions are given with codes and examples.

Keywords: discrete dynamical systems; mathematica

1. Introduction

Mathematica is extremely popular with a wide range of researchers from all sorts
of disciplines. It is a symbolic, numerical and graphical manipulation package.

This paper is both an survey on theory and techniques of discrete dynamical
systems by using of the software Mathematica. This paper is intended for stu-
dents of mathematics, life sciences,economics, and engineering. The theory of dis-
crete dynamical systems developed greatly during the last twenty five years of
the twentieth century. Applications of difference equations also experienced enor-
mous growth in many areas,for example in Biology. In 1985, the software program
Phaser by H.Kocak appeared and made a great impact. Another important soft-
ware is Dynamics, by J.Yorke’s group, which appeared in 1994. Dynamics is a
program written in C that, in addition to plotting trajectories, has other capa-
bilities such as calculating of Lyapunov exponents, plotting bifurcation diagrams,
and finding basins of attraction. Recent advances in the technology of Computer
Algebra Systems (CAS) allow the use of symbolic calculation to study difference
equations. For example, linearized stability analysis of systems with paraineters,
calculation of invariants, finding Lyapunov functions (based on invariants), finding
symbolic periodic solutions, can all be treated with a CAS. They developed the
Mathematica based package Dynamica as a collection of tools for use in the study
of discrete dynamical systems and difference equations(2] .

We provide an introduction to the theory of discrete dynamical systems with the
aid of the Mathematica with codes for both senior undergraduates and graduate
students.

*Corresponding author. Email: unal.ufuktepe@ieu.edu.tr

2. One Dimensional Models

A population is defined as a group of individuals of the same species within a limited
area. Mathematical models are used to predict the size or density (population size
per unit area) of a population at any time in the future. They are also used to
check the biological assumptions that are made to produce the model. Let X; be
the size (density) of a population at time ¢, and X;;; be the size (density) of this
population at the next time interval or generation. Then X;; is related to X; by
a function f which may be written in the form X4 = f(X;).

2.1. Stability of Equilibrium points

A point z* is said to be a fixed point (or equilibrium point) of a map f if
f(z*) = z*. It is important to develop qualitative or graphical methods to
determine the behavior of the orbits ({zo, f(@o), f(f(z0)),...}) near fixed points.
Such a program of investigation is called stability theory. z* is said to be stable if
for any £ > 0 there exists § > 0 such that for all zo € I with |zg — z*| < § we have
|f™(xo) — x*| < € for all n. Otherwise, It is called unstable.

Theorem:(For hyperbolic fixed points) If |f'(z*)| < 1 then z* is stable. If
|f'(z*)| > 1 then z* is unstable

Theorem: (For nonhyperbolic fixed points)

1) If f'(=z*) =1 (F, f", f" are continuous at z*)

a) If f'(z*) # 0, then z* is unstable (semistable)

b) If f”(z*) =0 and f"(z*) > 0, then z* is unstable

c) If f"(z*) = 0 and f"(z*) < 0, then z* is asymptotically stable

(2) If f'(z*) = =1, (f', f", f" are continuous at z*) :
a) If Sf(z*) < 0 then z* is asymptotically stable where (Sf(z) = ffjl(zx -
3E)°)
f(z

b) If Sf(z*) > 0 then z* is unstable [1]
By the following code when the wuser enters the function f(t) as
OneDimStability[f[t],t] then he/she will get the type of fixed point(s) and
whether it is stable or not.

OneDimStability[F1_, x1_] := Modulel{},
OneDimStabilityy[F_, x_, p_] := Module[{},
If[(F /. x -> p) !'= p, Printlp, " is not a fixed point!"],
If[Abs[(D[F, {x, 1}] /. x > p)] < 1,
Print[p, ": Hyperbolic, Stable"l];
If[Abs[(D[F, {x, 1}] /. x -> p)] > 1,
Print(p, ": Hyperbolic, Unstable"]];
Schwarzian[f_, xx_] :=
D(f, {xx, 3}1/(D[f, xx]) - (3/2) ((D[f, {xx, 2}1)/(D[f, xx1))"2;
If[(D[F, {x, 1}] /. x -> p) == 1,
If[(D[F, {x, 2}] /. x -> p) != 0,
Print[p, ": Nomhyperbolic, Unstable (Semistable)"],
Which[(D[F, {x, 3}] /. x -> p) > 0,

208

Print[p,

": Nonhyperbolic, Unstable"], (D[F, {x, 3}] /. x -> p) <O,
Print[p,

": Nonhyperbolic, Stable"]l, (D[F, {x, 3}] /. x ->p) =0,
If[(DIF, {x, 4} /. x -> p) !=0,

Print[p, ": Nonhyperbolic, Unstable"]11]]}];

1f[(D[F, {x, 1}] /. x -> p) == -1,
Which[(Schwarzian[F, x] /. x -> p) > O,
Print [p,
": Nonhyperbolic, Unstable"], (Schwarziamn[F, x] /..x -> p) <
0, Print[p, ": Nonhyperbolic, Stable"]]]
]
].

aa = Solvel(F1 /. x1 -> t) ==t, tl;

taa = Transpose([aal;

sol = First[taal;

soll = Function[Last[#]] /@ sol;

sonlist = {};

sonlistt =

If [Im(soll[[#]11] == O, Append[sonlist, soll[[#]1]], sonlist] & /@
Range [Length[s011]];

sonlist = Union[Flatten[sonlistt]];

First[OneDimStabilityy[F1, x1, #] & /@ sonlist]]

Example 2.1

In[1] OneDimStability[t"4 - 2 t"3 - t72 + 3 t, t]
Out[1] -1: Hyperbolic, Unstable

0: Hyperbolic, Unstable

1: Nonhyperbolic, stable

2: Hyperbolic, Unstable

3. Cobweb Diagram

One of popular graphical methods to study the dynamics of first order difference
equations is the cobweb diagram. To plot the cobweb-diagram, first draw the
curves y = f(x) and y = = on the same graph. The intersections points are the
fixed point(s). Then starting at zo which is either from left hand side of the fixed
point or from right hand side , we pinpoint the value 1 = f (zo) by drawing a
vertical line through the point (zg,0) so that it will intersect the graph of f at the
point (xg,z;). Next we draw a horizontal line from ((zo,21) to meet the diagonal
line y = z at the point (21,). A vertical line drawn from the point (z1, z1) will
intersect the graph of f at the point (z1,z2). Continuing this process, one may
find z3,z4,--- ;@s,---) for all t > 0. If these sequence(s) converge to the fixed
point then we say that the fixed point is stable otherwise it is unstable. In our code,

Cobweb|[Function(var),var,Initial Point,interval,iteration]
when the user types the function with initial point zo, the interval of fixed

point, and the number of iteration then the user can get the Cobweb diagram. In
this diagram the Pink Point shows the terminal point after n iterations.

209

Cobweb[F_, t0_] :=
Module{{ff, diagonal, funct, list, 1, ldot, ttt, sonlist},
ffla_]l :=F /. x -> a;
diagonal = Plot(x, {x, 0, 1}, PlotStyle -> Red];
funct = Plot[F, {x, 0, 1}];
list = Table[{Nest[ff, t0, nl], Nest[ff, t0, n + 1]}, {n, 0, 100}];
ldot = ListPlot[list];
sonlist = {{t0, 0}};
For[i = 1, i < 101, i++, sonlist = Append(sonlist, list[[i]]];

sonlist =Append(sonlist, {sonlist[(2 il]([2]], sonlist[[2 i]1[[2]1}1];

1 = ListPlot(sonlist, Joined -> True]l;
ttt = Graphics[{PointSize([Large], Pink, Point[Last[sonlist]]}];
Show[ldot, funct, diagonal, 1, ttt]]

Example 3.1
In[2]: Cobweb[3.2 x (1 - x),.88,(0,2),20]

. 7
=

0.6

04

02

02 04 0.6 08 1.0

4. Time Series Diagram

Code

DDSPhasePlanel [fg_, varx_, vary_, xO_, y0_] :=
Module[{F, G, X, Y, pO, 111},
Flx_, y_] := £gl[1]] /. {varx -> x, vary -> y};
Glx_, y_] := £fgl21]1 /. {varx -> x, vary -> y};
X{a_]l := Flal[1]], al[2]11;
Yib_] := G[b{[11], bl[211];
p0 = {x0, yO};
111 = NestList [{X[{#[[1]], #([2]11}], Y[{#[[1]1], #([(211}1} &, poO,
100];
11 = ListPlot[Transpose[1111[[1]], Joined -> True, PlotRange -> All];
12 = ListPlot[Transpose[111] [{2]], Joined -> True,
PlotStyle -> Orange]l;
Show[11, 12]]

In this code the user can get the graph of the population(s) with respect to time
to see the behavior of the population whether it is stable or not. In this command
when the user enters the fitness functions (for two dimensional dynamical systems),
variables names, and initial values of the populations then the user can get the time

210

series.

Example 4.1 This example for a prey-predator model with zp = 0.8,y = 0.1
initial values

DDSPhasePlaneli[{x + 2.9 x (1 - x) - 2 xy, 1.33 x y}, x, y, .8, .1]

1.0

08

{ n Il L 1 L Il n Il
20 40 60 80 100
we can see the fixed points and

stability of the system around the initial point in this time series graph .

5. Phase Diagram for two dimensional discrete dynamical systems

Consider the following two-dimensional discrete dynamical systems

ze1 = f(2t, Y1)

Y1 = g(xmyt)

The fixed point(s) of this system is the solution of the following system

f(x,y)=x
g(x,y)=y

Nicholson-Bailey Model (1935) is a model to abiological system involved two
insacts, a parasitoid and its host; a parasite is free living as an adult but lays eggs
in the larvae or pupae of the host. Hosts that are not parasitized give rise to their
own progeny. Hosts that are successfully parasitized die but the eggs laid by the
parasitoid may survive to the next generation of parasitoids.

Nt+1 = "'Nt‘f(Ntv PL‘)
Pi1 = eNy(1 = f(Nt,)

where r is the number of eggs laid by the host that survive, e is the number of
eggs laid by the parasitoid on a single host that survive, f is fraction of hosts not
parasitized.
Predator-Prey Models are similar to both host-parasite/parasitoid models. How-
ever, unlike the latter two systems, the predator does not live on the host. The
prey serves as a food source for the predator. The following code gives the phase
diagram of two dimensional systems and the orbit of the given initial point.

211

Code

Example 5.1 This example gives the phase diagram of a host-parasitoid model
and the orbit of the given (Np, Py) = (0.3, 0.4) initial point with manifolds

DDynamicss[{M Exp[1.1 (1 - M/.9) - .9 P],
M (1 - Exp[-2.2 P1)}, M, P, .3, .4]

1.0

08

0.6

04

dyn [xx0_, yy0_]

DDynamicss[fg_, varx_, vary_, ss_, rr_.]

Module [{horizontalinitials, verticalinitials, x, y, ppvector, dyn,
grl, gr2},PtoPvector(fgl_, varxl_, varyl_, x01_, yOi_]
Module[{F, G, X, Y, pO, 111, 1p, ttt},

fg1{(11] /. {varxl -> x, varyl -> y};

fg1(21] /. {varxl -> x, varyl -> y};

Flx_, y_]
Glx_, y_]
X{a_] := Flal[11], all2]1];
Y[b.]) := G[b[[1]], b[[2]11];

pO = {x01, y01}; q0 = {X[pO], Y[pOl}; q0 - pO];

ppvector =VectorPlot[PtoPvector[fg, varx, vary, x, y], {x, 0, 1}, {y,
VectorPoints -> Fine, VectorScale ->

{Automatic, Automatic, None},VectorStyle -> Orangel;
DDSPhasePlane2[fg2_, varx2_, vary2_, x02_, y02_, iterate_]
Module([{F, G, X, Y, pO, 111, 1lp, ttt},

£fg2[[11] /. {varx2 -> x, vary2 -> y};

£g2[[2]]1 /. {varx2 -> x, vary2 -> y};

Fix_, y_]
Glx_, y.]
X[a_] := Flal[1]], al[2]]];
Y[b_] := G[b[[1]], v[[2]1];
p0 = {x02, y02};

111 =NestList [({X[{#[[11], #([(211}], Y[{#[(1]1]1, #((211}1} &, poO,

iterate];

1p = ListPlot[111, Joined -> True, AxesLabel -> {varx2, vary2},
PlotRange -> All, PlotLabel -> {varx2, vary2}];

Show[lp, Graphics[Point[Last([111]]]1];

:= DDSPhasePlane2([fg, varx, vary, xx0, yyO, 1000];

horizontalinitials = Tablel[dyn[nx, rr], {nx, 0, 1, .2}];

verticalinitials = Table([dyn(ss, ny], {ny, 0, 1, .3}];

gr2 = ContourPlot[{varx == fg[[1]], vary == fg([2]]}, {varx, O,

1}, {vary, 0, 1}, ColorFunction -> Hue]l;

Show[{horizontalinitials, verticalinitials, gr2, ppvector}]l]

{M, P}
A
\\'
‘f\\\ ///
/.
N L
AN s <
P = ersS
\\ R < ‘< 74‘7\ %

02 04 0.6 08 1.0

0, 1},

212

213

6. Bifurcation Diagram

In general, the term bifurcation refers to the phenomenon of a system exhibiting
new dynamical behavior as the parameter (r) is varied in the one dimensional
system z;,1 = f(x¢, 7). Bifurcation is calcified withe respect to the following rules:

Saddle node bifurcation if 8f(§;’r‘) =1, 3f(za;’r‘) £ 0, and %}’T—‘) £0
Pitchfork bifurcation if &) = 1, 21&r) — o, and ZLET) = 0
Transcritical bifurcation if 2/ (g;’r*) =1 of (gjr*) =0, and %—;ﬂ #0

Period doubling bifurcation if Qf—(%ﬂ =-1, QL(fTTl # 0, and ﬁ%‘%rﬁ #0[1]

Code

BifiD[f_, varx_, a_] := Module[{T, Iter, g},
glxx_] :=1£f /. varx -> xx;
Iter[k_] := Nest{g, 0.4, k];
T := Table[Iter[n], {n, 100, 107}];
Plot[{T}, a, AxesOrigin -> {al[2]], 0}]]

Example 6.1 The following example shows the period doubling bifurcation of a
Logistic model

BifiD[r x (1 - x), x, {r, 0, 4}]

10+
08
06

04+

L n L
1 2 3 4

We developed the following code for two dimensional discrete dynamical systems

Code

Bif2D[fg_, varx_, vary_, xO_, yO_, param_, interval] :=Module[{F, G, X, Y, pO, 111},
Flx_, y_1 := £fgl[11] /. {varx -> x, vary -> y};
Glx_, y_] := £fgl([2]] /. {varx -> x, vary -> y};
X[a_]l := Flal[11], al[2]1];
Y[b_]l := G[b[[1]], bL[2]1]];
p0 = {x0, yO}; '
Iterasyon[d_] :=Nest[{X[{#[[111, #[[211}], Y[{#([11], #[[2]1]1}]} &, pO, dl;
Tx := Table[Iterasyon([n][[1]], {n, 80, 87}];
Ty := Table[Iterasyon[n][[2]], {n, 80, 87}];
Plot [{Tx, Ty}, {param, interval[[1]], interval[[2]]},PlotRange -> All,
AxesLabel -> {param, {Subscript[x, n], Subscriptly, n]}}1]

Example 6.2 The following example for the host-parasitoid model

Bif2D[{x Exp[r (1 - x/4) - y], x (1 - Exp[-yD},
x, y, .3, .2, r, {.3, 3}]

{Xns yub

7. Basin of Attractions

Definition: Let z* be a fixed point of a map f. Then the basin of attraction (or
the stable set) W$(z*) of z* is defined as

We(z") = {z: lim f*(z) = 2"}

Example 7.1 z,4; = z2 : 1 and 0 are fixed points. W*(0) = (~1,1), 1 is unstable
fixed point.

We developed the following command for the basin of attraction

Code

BasinOfAttraction[fg_, varx_, vary_, radius_, iterationnumber_,
xintv_, yintv_] :=

Module [{horizontalinitials, verticalinitials, x, y, ppvector, dyn,
grl, gr2},
PtoPvector[fgl_, varxi_, varyl_, x01_, y0i_] :=
Module({F, G, X, Y, p0O, 111, 1p, ttt},

Flx_, y_1 := £fg1[[1]] /. {varxl -> x, varyl -> y};
Glx_, y_] := £g1([2]] /. {varxl -> x, varyl -> y};
X[a_] := Flal[1]], a[[2]]1];

n

Y[b_] G[b[[11], bl[211];

p0 = {x01, y01}; q0 = {X[pOl, Y[p0l}; q0 - pO];
ppvector = VectorPlot[PtoPvector[fg, varx, vary, x, y],
{x, xintv[[1]], xintv([([2]]}, {y,yintv[[1]], yintv([[2]1},
VectorPoints -> Fine,VectorScale -> {Automatic, Automatic, Nonel},
VectorStyle -> Bluel;
DDSPhasePlane2[fg2_, varx2_, vary2_, x02_, y02_, iterate_] :=
Module[{F, G, X, Y, p0, 111, 1lp, ttt},

Flx_, y_] £g2[11]] /. {varx2 -> x, vary2 -> y};

Glx_, y.] fg2[[2]] /. {varx2 -> x, vary2 -> y};

X[a_] := Flall1]], al(2]]];

Y(b.] := G[b[[1]], bl[[2]11];

W

214

p0 = {x02, y02};
111 = NestList [{X[{#([[11], #[[211}], Y[{#[[11], #[[2]11}]} &, poO,
iterate] ;
1lp = ListPlot[111l, Joined -> True, AxeslLabel -> {varx2, vary2},
PlotRange -> All, PlotLabel -> {varx2, vary2}];
renk =If[Sqrt[(111[[iterationnumber]]([1]] -
111[[iterationnumber - 1]][[
111)~2 + (Q11{[iterationnumber]][[2]] -
111 [[iterationnumber - 1]]1[[2]]1)"2] < radius,
RGBColor[1/(1 + Abs[Last[111][[1111),
1/(1 + Abs[Last[111][[2]111), O], Bluel;
Show[Graphics [{PointSize [Large], renk, Point [First[11111},
Frame -> True] ,Graphics({Locator[111[[iterationnumber]], Background -> renk,
Appearance -> Small]}]1];
dyn[xx0_, yyO_] :=DDSPhasePlane2(fg, varx, vary, xx0, yy0, iterationnumber];
verticalinitials =Table[Tablel[dyn[sss, ny], {ny, yintv[[1]], yintv[[2]], .05}], {sss,
xintv[[1}], xintv[[2]], .05}]1;
gr2 = ContourPlot[{varx == fg[[1]], vary == fgl[211}, {varx,
xintv[[1]], xintv[[211}, {vary, yintv[[1]], yintv[[2]1},ColorFunction -> Huel ;
Show[{verticalinitials, ppvector}]]

This example for a competion model

Example 7.2

a

= 2.116; r = .2372; b = .1606;

BasinOfAttraction[{(a x"2 + r x)/(1 + x*2 +b y), (ay 2+ y)/(1 +

05 &

0.0 -4

8.

y°2 + b x)}, x, y, .01, 200, {.01, 2}, {.01, 2}]

. = »
1009000000

\//A/A/A«/'
Py JAAAAA e
KKK, LR RSSO
Zah g
Conclusion

The modules we create can be used as the main tool, for the students who wish
not to emphasize proofs, or as a supplement for an undergraduate course in dis-
crete dynamical systems and difference equations. It can also be useful to graduate
students and researchers studying higher order dynamics. It is hard to find the
positive fixed point(s) and the Namer-Sacker bifurcation of the map in some dis-

215

crete dynamical systems in this case we need to either use the some numerical
methods to approximate the fixed point/Namer -Sacker bifurcation. In our study
find at least the smallest region of the fixed point. We have some modules for these
processes for specific biological models and traced determinant condition for the
higher order dynamics but because of the page limitation we could not give in
this paper. In future studies we will generalize these modules for the general two
dimensional systems.

References

[1] S. Elaydi, Discreté Chaos:With Applications in Science and Engineering, Chapman and Hall/CRC,
Second Edition, (2008).

[2] M.R.S Kulenovic and O. Merino, Discrete Dynamical Systems and Differnce Equations with Mathe-
matica, A CRC Press Company,2002

216

