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Distributions based on the Choquet integral and
non-additive measures

Viceng Torral

1 IIIA-CSIC, Campus UAB s/n, 08193 Bellaterra, Catalonia, Spain
Email: vtorra@iiia.csic.es

Abstract. In recent papers we introduced multivariate probability dis-
tributions based on the Choquet integral. In this paper we review some
previous results on multivariate distributions, and locate the Choquet
based ones in this area.
Keywords: Multivariate distributions

1 Introduction

Non-additive measures [3, 19] are used to represent situations in which there
are interactions between variables. They replace the axiom of additivity by the
condition of monotonicity. Because of that, they generalize probabilities.

The Choquet integral [2] is one of the existing integrals to integrate a function
with respect to a non-additive measure. This integral reduces to the Lebesgue
integral when the measure is additive.

Nevertheless, non-additive measure is not the only construct that is used
to represent situations in which there are interactions between variables. For
example, the multivariate normal distribution also permits to consider inter-
actions between variables. In multivariate normal distributions interactions are
expressed in terms of the covariance matrix. In fact, the definition of the mul-
tivariate normal distribution can be seen as the definition of a distribution by
means of the Mahalanobis distance. The Mahalanobis distance is a weighted
distance where the covariance matrix plays the role of the weights.

In a recent paper [17] we introduced new multivariate distributions that
generalize the multivariate normal distribution. They are based on the Choquet
integral, through the use of a distance that is based on the Choquet integral.
In short, the Mahalanobis distance that uses the covariance matrix to express
weights (and interactions) of variables is replaced by a Choquet integral based
distance that uses a non-additive measure to express weights (and interactions)
of variables.

The literature on distributions presents other generalizations of the multi-
variate normal distribution. The spherical and the spherical distributions [5,4,
7] are two of them.

In this paper we review S011le of these defimtio1is, aIld some relationships
between them. The structure of the paper is as follows. In Section 2 we review
basic definitio1l needed later. In Section 3 we review the Choquet integral based
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distributions as well as some of the results on these distributions. The paper
finishes with some conclusions and hnes for future work

2 Preliminaries

This section reviews some definitions related to non-additive measures and prob-
ability distributions. We begin with some basic definitions that are needed later.

Definition 1. The Hadamard or Schur product $0$ of vectors $v$ and $w$ is defined
as follows (vo $w$) $=(v_{1}w_{1}\ldots v_{n}w_{n})$

Lemma 1. Let $u,$ $v$ two arbitrary vectors in $\mathbb{R}^{n}$ , and let $a_{m}$ the vector in $\mathbb{R}^{n}$

defined by $a_{m}=(a, \ldots, a)$ . When $a_{m}=(1, \ldots, 1)$ we will use $1_{n}$ . If $n$ is clear
from the context we will use only $a$ . Then,

(uov)a $=a(uv)$ .

Proof. Note that,

$( u\circ v)a=(u_{1}v_{1}, \ldots, u_{n}v_{n})’(a, \ldots, a)=a\sum_{i}u_{i}v_{i}=a(uv)$ .

$\square$

Corollary 1. For two arbitrary vectors in $\mathbb{R}^{n}u,$ $v$ the following holds

$(u\circ v)1=(uv)$

2.1 Non-additive measures and the Choquet integral

We begin defining non-additive $measures\backslash$ , which generalize probabilities.

Definition 2. Let $(\Omega$ , ノ be a measurable space. A set function $\mu$ defined on $\mathcal{F}$

is called a non-additive measure if an only if
$-0\leq\mu(A)\leq\infty$ for any $A\in \mathcal{F}$;
$-\mu(\emptyset)=0$;

-If $A_{1}\subseteq A_{2}\subseteq \mathcal{F}$ then
$\mu(A_{1})\leq\mu(A_{2})$

It is often required that $\mu(\Omega)=1$ . If the measure is additive and $\mu(\Omega)=1$

then we have that $\mu$ is a probability distribution. In this work we do not presume
this condition. In fact, some results, as Lemma 3, do not follow if $\mu$ is bounded
by one.

We will use $\mu^{1}$ to denote the additive measure $\mu(A)=|A|$ for all $A\subseteq\Omega.$

That is, $\mu^{1}$ is an additive measure where the weight of each element in $A$ is one.
We will use $d(\mu)$ to denote the vector $(\mu(\{x_{1}\}),$

$\ldots,$
$\mu(\{x_{1}\})$ . Naturally, $d(\mu^{1})=$

$1.$

Given a non-additive measure and a function $f$ , the Choquet integral [2] of
$f$ with respect to $\mu$ is defined as follows.
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Definition 3. [2] Let $\mu$ be a non-additive measure on $X$ ; then, the Choquet
integral of a function $f$ : $Xarrow \mathbb{R}^{+}$ with respect to the non-additive measure $\mu$ is

defined by

($c$) $\int fd\mu=\sum_{i=1}^{N}[f(x_{s(i)})-f(x_{s(i-1)})]\mu(A_{s(i)})$ , (1)

where $f(x_{s(i)})$ indicates that the indices have been permuted so that $0\leq f(x_{s(1)})\leq$

. . . $\leq f(x_{s(N)})\leq 1$ , and where $f(x_{s(0)})=0$ and $A_{s(i)}=\{x_{s(i)}, . .., x_{s(N)}\}.$

We will also use the notation $CI_{\mu}(y)$ for a given vector $y$ . In this case, we
understand that $f(x_{i})=y_{i}.$

The Choquet integral corresponds to the Lebesgue integral when the measure
is additive. Note also that the following holds.

Lemma 2. When the measure is additive, $CI_{\mu}(x)=d(\mu)x.$

In this paper we will use the following distance, which is based on the Choquet
integral. We will denote by $dCI^{2}$ the square of the distance. Only when the
measure $\mu$ is submodular $(i.e., \mu(A)+\mu(B)\geq\mu(A\cup B)+\mu(A\cap B))$ , we have that
$dCI$ is, properly speaking, a distarlce (i.e., it satisfies the triangular inequality).
This definition is used in [12, 1].

Definition 4. Given two vectors $a=(a_{1}, \ldots, a_{n})$ and $b=(b_{1}, \ldots, b_{n})$ and a
non-additive measure on the set $\{$ 1, . . . , $n\}$ we define

$dCI_{\mu}^{2}(a, b)=CI_{\mu}((a_{1}-b_{1})^{2}, \ldots, (a_{n}-b_{n})^{2})$ .

2.2 Multivariate probability distributions

Multivariate normal distribution are defined in terms of the probability density
function as follows:

$PM_{m,\Sigma}( x)=\frac{1}{(2\pi)^{m/2}|\Sigma|^{1/2}}e^{-z(x-m)’\Sigma^{-1}(x-m)}1.$

However, as poirrted out in [4], there are different ways to extend the normal
univariate distribution to the multivariate case. Doing so through the definition
of the density function is only one of such approaches. [4] considers the following
four extensions.

-Extension by means of density functions.
-Extension by characteristic functions.
-Extension by means of a linear combination.
-Extension by means of stochastic decomposition. If $x\sim N(m, \sigma)$ , $x$ can

be expressed by $x=m+\sigma y$ where $y\sim N(O, 1)$ . So, if $y=(y_{1}, \ldots, y_{p})’$

have independent identically distributed components and $y_{i}\sim N(0,1)$ , an
extension is to consider $x=m+Ay$ where $x,$ $m\in \mathbb{R}^{n}$ and A is a $n\cross p$

matrix.
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Real data does not always satisfy the assumption of normality. One of the
existing lines of research introduces new distributions that extend and diverge
from the normality model. This line studies elliptical distributions. This type of
distributions have two advantages [7]. First, the elliptical distribution generalizes
the multivariate normal distribution (as well as other well known distributions).
Second, many results for multivariate normal distributions also hold for elliptical
distributions.

Following, [7] and [4] we review elliptical distributions starting from spherical
distributions.

Definition 5. [4] A $n$ -random vector $xi_{\mathcal{S}}$ said to have a $\mathcal{S}$pherical distribution

if for every orthogonal $n\cross n$ matrix $\Gamma,$
$\Gamma x=xd$

Here $=d$ is the operator that denotes that the two variables have the same
distribution.

A spherical distributions is an extension of the multivariate standard normal
distribution $N(0, I_{n})$ .

Definition 6. [4] An-random vector $x$ is $\mathcal{S}aid$ to have an elliptical distribution
with parameter $m$ (an $n$ vector) and $\Sigma$ (an $n\cross n$ matrix) if

$x^{d}=A’y$

where $y$ has a spherical distribution, A $i\mathcal{S}$ a $p\cross k$ matrix and the matrix V

defined by $V=AA’$ has rank $k(i.e., rank(V)=k)$ .

An elliptical distribution is an extension of the multivariate normal distribu-
tion $N(m, \Sigma)$ .

3 Extensions of probability distributions using the
Choquet integral

In this section we review different families of distributions we have introduced
based on the Choquet $irrteg_{T}a1$ . Using the classification in [4] reviewed in Sec-
tion 2.2, these new extensions were introduced by means of density functions.

Definition 7. $[17]$ Let $Y=\{Y_{1}, . . . , Y_{n}\}$ be a set of random variables describing
data on a $\mathbb{R}^{n}$ dimensional space. Let $\mu$ : $2^{Y}arrow[0$ , 1$]$ be a non-additive measure
and $m$ a vector in $\mathbb{R}^{n}.$

Then, the exponential family of Choquet integral based class-conditional probability-
density frmctions is defined by:

$PC_{m,\mu}( x)=\frac{1}{K}e^{-}z^{CI_{\mu}((x-m)o(x-m))}1$
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where $K$ is a constant that is defined so that the function is a probability, and
where vo $w$ denotes the Hadamard or Schur (elementwise) product of vectors $v$

and $w$ $(i.e., (v\circ w)=(v_{1}w_{1}\ldots v_{n}w_{n}$

The constant $K$ is defined so that $P$ is a density function. Therefore, the
value of $K$ is such that,

$\int_{x\in X}PC_{m,\mu}(x)=1,$

so,

$K= \int_{x\in X}e^{-\tau^{CI_{\mu}((x-m)o(x-m))}}1.$

We will denote by $C(m, \mu)$ a distribution of this form.
In [17], this distribution was introduced for a classification problem. In such

type of problems, the exact value of $K$ is not needed.

Lemma 3. The family of distributions $N(m, \Sigma)$ in $\mathbb{R}^{n}$ with a diagonal matrix
X of rank $n$ , and the family of distributions $C(m, \mu)$ with an additive measure
$\mu$ with all $\mu(\{x_{i}\})\neq 0$ are equivalent.

Proof. To proof this, let us first consider $N(m, \Sigma)$ with a diagonal matrix $\Sigma.$

Then, if we define the additive measure $\mu(\{x_{i}\})=1/(\sigma_{i}^{2})$ $(and,$ therefore, $\mu(A)=$

$\sum_{a\in A}\mu(\{a\})$ for all $A\subseteq X$ such that $|A|>1$ ), we have that $C(m, \mu)(x)=$

$N(m, \Sigma)(x)$ for all vector $x.$

Similarly, if we consider a distribution $C(m, \mu)$ with an additive measure $\mu,$

then we define $\Sigma$ as the diagonal matrix with $\sigma_{i}^{2}=1/\mu(\{x_{i}\})$ . $\square$

Corollary 2. The distribution $N(O, \mathbb{I})$ corresponds to $C(O, \mu^{1})$ where $\mu^{1}$ is the
additive measure defined as $\mu^{1}(A)=|A|$ for all $A\subseteq X.$

In general, the two families of distributions $N(m, \Sigma)$ and $C(m, \mu)$ are differ-
ent. The following family of distributions was introduced to make a generaliza-
tion of both $N(m, \Sigma)$ and $C(m, \mu)$ .

Definition 8. [17] Let $Y=\{Y_{1}, . . . , Y_{n}\}$ be a set of random variables describing
data on a $\mathbb{R}^{n}$ dimensional space. Let $\mu$ : $2^{Y}arrow[0$ , 1 $]$ be a fuzzy measure, $m$ be a
vector in $\mathbb{R}^{n}$ , and $Q$ a positive-definite matrix.

$Then_{f}$ the exponential family of Choquet-Mahalanobis integral based class-
conditional probability density f$\prime$J,nctionsi,s defined by:

$PCM_{m,\mu,Q}(x)= \frac{1}{K}e^{-\frac{1}{2}CI_{\mu}(vow)}$

where $K$ is a constant that is defined so that the function is a probability, where
$LL^{T}=Q$ is the Cholesky decomposition of the matrix $Q,$ $v=(x-m)^{T}L_{f}$

$w=L^{T}(x-m)$ , and where vo $w$ denotes the elementwise product of vectors $v$

and $w.$
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We will denote by $CMI(m, \mu, Q)$ a distribution of this form.

Proposition 1. The distribution $CMI(m, \mu, Q)$ generalizes the multivariate
normal distributions and the Choquet integral based distribution. In addition

$-ACMI(m, \mu, Q)$ with $\mu=\mu^{1}$ corresponds to a multivariate normal distri-
butions,

$-ACMI(m, \mu, Q)$ with $Q=\mathbb{I}$ corresponds to a CI$(m, \mu)$ .

Proof. We first proof the equality between $CMI(m, \mu^{1}, Q)$ and multivariate
normal distributions.

First note that when $\mu=\mu^{1}$ we have

$(x-m)^{T}Q$ ($x$ – $m$) $=(x-m)TLL^{T}$ ($x$ – $m$).

Now, as matrix multiplication is associative we have that this expression is equiv-
alent to $((x-m)^{T}L)(L^{T}(x- m))$ which using Lemma 1 corresponds to

$(((x-m)^{T}L)\circ(L^{T}(x-m)))1.$

Using Lemma 2 in this expression, we have that the last expression is equivalent
to $CI_{\mu^{1}}(((x-m)^{T}L)\circ(L^{T}$ (x–m From this follows the equality of the two
distributions $(PM_{m,Q}(x)=PCM_{m,\mu,Q}(x))$ and also that for any $N(m, Q)$ we
have $CMI(m, \mu^{1}, Q)$ that has the same distribution.

Now we prove the equality between $CMI(m, \mu, 11)$ and the Choquet integral
based distributions.

If $Q=\mathbb{I}$ , then $L=L^{T}=\mathbb{I}_{n}$ , therefore, $v=(x-m)^{T}L=$ (x–m) and
$w=L^{T}$ (x–m) $=(x-m)$ and

$PCM_{m,\mu,Q}( x)=\frac{1}{K}e^{-\frac{1}{2}CI_{\mu}(vow)}$

$= \frac{1}{K}e^{-\tau^{CI_{\mu}((x-m)\circ(x-m))}}1$

$=PC_{m,\mu}(x)$

From this equations we have that for any distribution $C(rr|,, \mu)$ we have
$CMI(m, \mu, 11)$ with the same distribution. $\square$

In general, the family $CMI(m, \mu, Q)$ is different than the spherical and the
elliptical distributions. For non-additive measures, $CMI(m, \mu, Q)$ cannot be ex-
pressed as spherical or elliptical distributions. On the contrary, a spherical dis-
tribution does not need to have its maximum in the mean vector. Consider for
example the spherical distribution with density

$f(r)=(1/K)e^{-(\frac{r-r0}{\sigma})^{2}},$

where $r_{0}$ is a radius over which the density is maximum, $\sigma$ is a variance, and $K$ is
the normalization constant. As distributions $CMI(m, \mu, Q)$ have its maximum
in the mean vector $m$ , they cannot represent this type of spherical distribution.
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Lemma 4. In general neither $CMI(m, \mu, Q)$ is more general than spherical/
elliptical distributions, nor spherical/elliptical distributions are more general
than $CMI(m, \mu, Q)$ .

In [18] a more general defir ition of Choquet integral based distributions was
introduced. It is based on the generalized mesures defined by Greco et al. in [6].
That is, in the level dependent measures.

Definition 9. Let $\{Y_{1}, . .., Y_{n}\}$ be a set of random $variable\mathcal{S}$ describing data on
$a\mathbb{R}^{n}$ dimensional space. Let $(\alpha, \beta)\subseteq \mathbb{R}$ , and $\mu^{G}$ : $2^{Y}\cross(\alpha, \beta)arrow[0$ , 1$]$ be a
generalized non-additive measure.

Let $m\in \mathbb{R}^{n}$ be the mean of the random variables; then, the exponential
family of level dependent Choquet integral based class-coniitional probability-
density functions is defined by:

$P( x)=\frac{1}{K}e^{-\S CI_{\mu^{G}}^{G}((x-m)o(x-m))}$

where $K$ is a constant $tl\iota at$ should be defined so that $tf\iota e$ function is a pro bability,
and where vo $w$ denotes the elementwise product of vectors $v$ and $w$ (i.e.,
$(v\circ w)=(v_{1}w_{1}\ldots v_{n}w_{n}$

4 Summary and future work

In this paper we have reviewed our definitions and results on distributions based
on the Choquet integral. We have shown some relationship between these dis-
tributions and some other multivariate distributions. Future work on this topic
includes the identification of the parameters of the Choquet integral based dis-
tributions and the study of tests of hypothesis.
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