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Experiments were conducted at a 1:20 length scale in a large tsunami flume to measure
wave evolution and pressures on and around structural elements. The water surface profiles
of waves propagating across a bare beach were compared with those recorded in front of
an onshore obstacle representing an urban macro-roughness element. The addition of a
structure significantly changed the water surface profile for broken waves: the water surface
amplification in the presence of a macro-roughness element reached seven times the bare-
earth water surface elevation. Estimated pressures from design equations were calculated
using recommended inputs and compared with pressures recorded by gauges installed
on the structural elements. Design equations showed good agreement for non-breaking
wave pressures but underestimated peak pressures for breaking waves. Likewise, force
integrations of measured pressures on the experimental specimen indicated that design
equations may underestimate loads due to waves that break offshore and propagate across
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a beach as a turbulent bore. The time-integrated pressure impulse was shown to be less
sensitive to wave characteristics than the peak recorded pressures. Time-averaged loading
curves were also developed for different average periods.

Keywords: Tsunami design; bare-earth simulation; JCO; ASCE7; pressure impulse; time-
averaged load.

1. Introduction

Tsunamis pose significant threats to coastal communities worldwide: recent
tsunamis that have caused major damage in coastal regions include the Indian
Ocean Tsunami (2004), the South Pacific Tsunami (2009), and the Tohoku Earth-
quake Tsunami (2011). The 26 December 2004 Indian Ocean Tsunami generated
waves up to 30 m that left over 230,000 people dead or missing and caused extensive
damage in countries bordering the Indian Ocean [see for example Dalrymple and
Kriebel, 2005; Papadopoulos et al., 2006; Tsuji et al., 2006; Koshimura et al., 2009;
Leone et al., 2011]. The 29 September 2009 South Pacific Tsunami and the 27 Febru-
ary 2010 Chilean Tsunami also caused substantial damage and loss of life in local
villages [see Reese et al., 2011; Mas et al., 2012]. On 11 March 2011, the Tohoku
Earthquake Tsunami caused severe damage to over 400,000 homes and catastrophic
loss of life along the east coast of Japan [see Mimura et al., 2011; Mori et al., 2011;
Udo et al., 2012; Suppasri et al., 2013]. The magnitude and extent of damage were
surprising given Japan’s extensive history of tsunamis and the sophisticated tsunami
countermeasures and warning systems in the country [Zaré and Afrouz, 2012]. To
ensure the safety and vitality of coastal communities, local and national govern-
ments across the globe must evaluate their tsunami response and preparedness plans
to adequately protect citizens and defend structures from damage, especially from
beyond-design basis events.

Tsunami behavior on shore can vary depending on local bathymetries and the
point of tsunami generation. A tsunami propagating over a submerged reef or a broad
coastline may break, becoming an undular bore that dissolves into a chain of solitons
in a process known as soliton fission [Brühl and Oumeraci, 2010; Grilli et al., 2012].
Shoreward-propagating turbulent bores may be characterized by a steep, rapidly
moving wave front. On beaches with steep slopes, tsunamis may create a gradual
rise and fall of the water level; rarely, a tsunami will break right at shoreline and
generate a series of very large breaking waves [Yeh, 2009]. The Tohoku Earthquake
Tsunami of 2011 was characterized by leading short, peaky waves with a long tail
[Kawai et al., 2012]. Tsunami characteristics can change depending on the shape
of the tsunami profile from wave to flow. As a result, the tsunami-induced loads
can also change from that by impulsive wave-loading to that by a quasi-hydrostatic
force. Moreover, the onshore effects of these waves will vary depending on local
characteristics and tsunami countermeasures, which include warning systems and
evacuation plans as well as groupings of structures or other large obstacles, termed
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here macro-roughness elements, that affect wave propagation [Irish et al., 2014;
Thomas et al., 2015].

Post-disaster field surveys are useful in evaluating the effectiveness of the design
and construction of tsunami mitigation structures. However, it is difficult to estimate
hydrodynamic conditions and the resulting loads from survey data; therefore, many
reconnaissance-based fragility functions derived from damage surveys assume that
the entire tsunami-induced load is based on the maximum water depth [see Reese
et al., 2011; Mas et al., 2012; Suppasri et al., 2013]. Numerical models such as COUL-
WAVE [Lynett et al., 2002] and NHWAVE [Ma et al., 2012] have simulated tsunami
events over real topographies and given useful estimates of inundation, runup, and
current velocities. Recent fragility models have included such numerical simulations
of current velocity and hydrodynamic force in structural vulnerability models [see
Suppasri et al., 2011]. However, individual damage depends on local building struc-
ture and design, even under the same hydrodynamic conditions. Moreover, wave-
structure interaction is difficult to model [Petukhin et al., 2012], and many models
remove buildings to allow for more efficient calculations [see Westerink et al., 2008;
Parsons et al., 2014; Yao et al., 2014; Grilli et al., 2015]. Such simplifications can
result in errors in hydrodynamic outputs. While margins of error for the majority
of recent hurricane storm surge levels modeled by ADCIRC have been reported to
be within 0.5 m [Dietrich et al., 2012], numerically hindcast wave-heights can be
subject to larger error. For example, after Hurricane Ike affected the Bolivar Penin-
sula (2008), modeled wave-heights were shown to be greater than those measured
by USGS wave gauges by over 1m in several locations, particularly at locations far
from the shoreline; this overprediction affected wave and surge fragility functions
derived for pile-elevated residences [Tomiczek et al., 2014]. Tsunami models have
also reported that inundation predictions can be overestimated due to coarse grid
resolution and smoothed topographies [Parsons et al., 2014; Oishi et al., 2015]. A
more thorough understanding of wave propagation through urban environments will
enhance the validity and robustness of tsunami simulations.

In addition to numerical modeling, laboratory experiments provide valuable
datasets of tsunami propagation. Recent laboratory experiments have measured
tsunami-induced water surface elevations, velocities, and pressures on and around
structures and on scale models of cities, and physical models have also tested the
reliability of tsunami protection structures [see Fujima et al., 2009; Bradner et al.,
2009; Hsiao and Lin, 2010; Thomas and Cox, 2012; Park et al., 2013]. However, many
previous experiments idealized the tsunami profile using a solitary wave [see Cox
et al., 2008; Thomas and Cox, 2012; Park et al., 2013]; this solitary wave model has
been shown to scale poorly to prototype tsunami time scales [Madsen et al., 2008].
While work has been done to better represent these tsunami time scales using sine
waves or long, leading depression N-waves [see Goseberg, 2013; Allsop et al., 2008;
Rossetto et al., 2011; Allsop et al., 2014; Bremm et al., 2015], real tsunami events
have shown complex water surface profiles that involve both slow and fast water
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level increases [Fujima et al., 2009; Kawai et al., 2012; Goseberg et al., 2013]. There-
fore, laboratory experiments that can combine both slow and quick rise mechanisms
will help to better understand the hydrodynamics associated with these complex
tsunami signals.

Previous laboratory measurements of tsunami-induced pressures have recorded
short duration pressure peaks corresponding with wave impact and a following quasi-
hydrostatic pressure [see Fujima et al., 2009; Bradner et al., 2009; Thomas and Cox,
2012]. While conducting scale model experiments on highway bridge superstruc-
tures, Bradner et al. [2009] found that for large-inertia structures the impulse pres-
sure may not translate to a slamming force on structural supports. However, these
pressures must not be neglected for nonengineered or low-inertia structures. Addi-
tionally, wave breaking processes cause complex nonlinear interactions with coastal
structures; these turbulent impacts and the accompanying large peak pressures can
generate debris and may cause significant structural damage on a localized scale.
Previous experiments have noted wide variations in impact pressures under identi-
cal wave conditions; therefore, it is difficult to relate wave conditions to expected
peak pressures [Chan and Melville, 1988]. The pressure impulse, defined as the time
integral of the pressure peak, has been used to characterize violent wave impacts,
because it has shown greater consistency and less sensitivity to the shape of the
wave immediately before impact than the maximum pressure [Cooker and Peregrine,
1995; Peregrine, 2003]. The energy transferred when a wave impacts a vertical wall
is reflected and may be observed as a water jet accelerating vertically up the wall
[Cooker and Peregrine, 1995]. This water jet increases inundation and damage, and
it corroborates the need for numerical and physical models to include wave-structure
interaction for reliable estimations of structural vulnerability.

Historical damage data, numerical simulations, and laboratory experiments are
used by local and national governments to create tsunami mitigation practices
for vulnerable regions. These practices include developing tsunami warning and
evacuation systems for residents and improving design equations for coastal struc-
tures. Raby et al. [2015] provide a thorough overview of Japanese, American, and
British design guidelines for sea defense structures. It is important to analyze stan-
dards for both tsunami-mitigation structures and residential structures to validate
their applicability to real world events. For example, the American Society of Civil
Engineers (ASCE) and the Japanese Cabinet Office (JCO) provide equations to
estimate the maximum pressures and loads caused by a tsunami based on the max-
imum tsunami inundation depth, hmax. This depth is an important consideration in
tsunami design; however, due to the complexity of recent tsunami profiles and the
processes associated with the interaction of a tsunami wave with a coastal struc-
ture, inputs into design equations are subject to error. Design equations must make
simplifying assumptions in order to be applicable to a wide range of coastal devel-
opments and wave characteristics; both the ASCE [2016] and JCO [2005] equa-
tions assume that hmax is the maximum depth at the structure’s location with
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no obstacle affecting tsunami propagation, termed the “bare-earth” water surface
elevation.

Using benchmark experimental data obtained at Kyoto University’s Hybrid
Tsunami Open Flume in Ujigawa (HyTOFU), this assumption was analyzed by
comparing the peak water surface elevations recorded by onshore wave gauges for
varying tsunami wave conditions with and without the presence of a single macro-
roughness element. Using these water surface elevation measurements, peak pres-
sures and loads predicted by design equations were compared with those measured
by gauges mounted on an experimental specimen. Section 2 provides a descrip-
tion of the design standards evaluated, and Sec. 3 describes the instrumentation
and experimental methods for data collection. Section 4 presents the results of the
experiment, contrasting water surface elevation measurements with and without
obstacles and comparing experimental pressure measurements with those obtained
using standards. Load calculations using distributions given in design standards
are also compared with integrated forces from experimental pressure gauges, and
time-averaged loads are presented, which may apply to structural response times.
Finally, Sec. 5 summarizes the major findings of this work and presents engineering
recommendations for tsunami load estimation.

2. Design Standards

The design equation proposed by the JCO [2005] is based on a series of laboratory
experiments performed by Asakura et al. [2000] on two-dimensional scale models.
From these experiments, Asakura et al. [2000] empirically estimated the maximum
tsunami loading as a triangular distribution with base pressure, pmax, equal to three
times the hydrostatic pressure [see Fig. 1(a)]; that is,

pmax = 3ρghmax, (1)

where ρ and g are the density of water and the acceleration due to gravity, respec-
tively. In Eq. (1), hmax is taken as the height of the bore at the structure, without
considering splash or other phenomena associated with wave-structure interaction.
This equation has been examined for its applicability to real tsunami events and
other flume experiments. For example, Nakano [2008] observed damage after the
Indian Ocean Tsunami disaster and calculated a coefficient, α, for Eq. (1) by assum-
ing the tsunami pressure was equal to the lateral resistance of a damaged home at
an elevation, z, above ground level:

p′max = ρg(αhmax − z). (2)

Nakano [2008] found that α = 3 was reasonably able to distinguish between dam-
aged and surviving structures, but drifting debris and other environmental factors
may make Eq. (1) less conservative. Similar evaluations of Eq. (1) have been per-
formed experimentally [see Fujima et al., 2009; Achmed et al., 2009] and alternative
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(a)

(b)

Fig. 1. Design vertical tsunami pressure distribution, recommended by (a) Japanese Cabinet Office
[2005] and (b) American Society of Civil Engineers [2016].

coefficients have been suggested. Still, Eq. (1) remains the standard in Japan for
tsunami design, although much research has been done to improve its formulation
to include flow effects [see Kihara et al., 2015]. Using this design pressure, the maxi-
mum force per unit width, Fmax/W , may then be estimated by applying a triangular
distribution over a height 3hmax :

Fmax

W
= 4.5ρgh2

max
(3)

Prior to 2011, a US standard for designing structures to resist tsunami effects
did not exist [ASCE, 2014]. This circumstance was partially because the US has
experienced fewer damaging tsunamis than other regions in the Pacific Ocean. The
most destructive tsunami affecting the West Coast of North America to date was
the 1964 Great Alaska Earthquake Tsunami, which caused damage and loss of life
in Alaska, California, Oregon, and British Columbia [Parsons et al., 2014]. How-
ever, many areas of the US remain vulnerable to damage by earthquake-generated
tsunamis. Therefore, in early 2011, the ASCE formed a subcommittee to develop
the first U.S. tsunami loading standard. These standards will be published in ASCE
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7–16 as a new chapter [ASCE, 2014; Raby et al., 2015; ASCE, 2016] and have been
developed for the Pacific Coast of the US. The guidelines include tsunami hazard
maps for Alaska, the Pacific Coast, and Hawaii, and the chapter provides procedures
for estimating tsunami inundation, runup, flow characteristics, and hydrostatic and
hydrodynamic loads [ASCE, 2016]. Equation 6.10.1-1 of ASCE 7 [2016] estimates the
combination of the unbalanced lateral hydrostatic and hydrodynamic loads caused
by a tsunami as:

pmax = 1.25Itsuγshmax, (4)

where pmax is the simplified equivalent uniform lateral static pressure. In Eq. (4),
Itsu = 1.0 or 1.25 based on the Importance Factor of the structure and γs is the
minimum fluid weight density for hydrostatic loads, equal to 1.1 times the specific
weight of seawater. Substituting conservative coefficients such that Itsu = 1.25 and
γs = 1.1 ρg, Eq. (4) may be reformulated to resemble Eq. (1):

pmax = 1.72ρghmax. (5)

Comparison of Eqs. (1) and (5) implies that the design pressure estimated using
ASCE [2016] is less conservative than that obtained using JCO [2005]. Note also
in Fig. 1(b) that ASCE [2016] recommends a different pressure distribution when
estimating the tsunami-induced force on a structure, applying pmax uniformly over
1.3 times the inundation depth in the direction of flow. This distribution leads to a
force per unit width estimate of:

Fmax

W
= 2.23ρgh2

max . (6)

Therefore, ASCE [2016] loads are less than those estimated by JCO [2005] by a
factor of two.

3. Instrumentation and Experimental Conditions

HyTOFU measures 45 m × 4 m × 2m deep; plan and profile views of the flume may
be seen in Fig. 2. The flume is capable of three types of wave generation: a mechanical
piston capable of producing a solitary wave with height up to 0.5 m, a 70 kW pump
that can produce constant flow rates from 0–0.833 m3/s, and volumetric tank that
can vertically discharge a constant volume of water from a set elevation above the
free surface in an analogy to a dam break mechanism. Generation mechanisms may
be used individually or in combination to create complex wave profiles. In this
experiment, a constant flow rate was generated for 60 s before the mechanical paddle
was used to create a wave that propagated 14.05 m across a flat bathymetry with
initial water depth h0 = 0.700 m, up a 7.95 m long 1:10 planar slope, and across a
flat beach to the end of the flume.
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(a)

(b)

(c)

Fig. 2. Hydraulic Flume (a) plan and (b) profile. (c) Schematic of pressure sensors installed on the
front face of the structural element.

Based on flume dimensions, a 1:20 length scale and Froude Number similitude
were chosen for experiments. Offshore water surface perturbations from 0.40 m to
0.48 m were representative of prototype waves with amplitudes between 8 and 9.6 m,
and the dimensions of the structural element (0.4 m × 0.4 m × 0.5 m tall) corre-
sponded with those of a narrow Japanese house with base dimensions 8 m × 8m.
Placing the macro-roughness element in the flume resulted in an increased blocking
ratio, which caused greater wave reflection and an increased drag coefficient. This
effect caused slightly increased water surface elevations in the offshore as well as
flow amplification in the side channels due to flow constriction. Additionally, this
effect caused lower water surface elevations in areas directly shielded by the macro-
roughness element. Trials with multiple structural elements in the flume showed
that structures shielded by one or more rows of obstacles experienced lower pres-
sures than unshielded structures [Tomiczek et al., 2016]. Thus, results presented
here apply to unshielded structures impacted by a tsunami wave.
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Figure 2(a) shows wave gauge distances (x) from the mechanical paddle and the
obstacle positioned a distance Li = L1 = 0.79 m from the start of the horizontal
beach. Four configurations were tested: one with no onshore obstacles and three
with the front edge of the macro-roughness element positioned a distance (Li) from
the beginning of the horizontal beach. The three distances tested were: L1 = 0.79 m
(x = 22.79 m from the wavemaker origin), (b) L2 = 1.59 m (x = 23.59 m) or (c)
L3 = 2.39 m (x = 24.39 m). To evaluate the effects of the macro-roughness element
on the variation of the onshore water surface profile, the water surface elevation
time series directly in front of the structure was compared for experiments with and
without the obstacle.

The water surface elevation time series was recorded using wire resistance wave
gauges; in wave generation, mechanical and pumping inputs were chosen to create
waves with similar total offshore water surface perturbations, (ηwave + ηflow), but
varied contributions due to pumping flow and solitary wave, which affected onshore
wave transformation and breaking conditions. Table 1 shows the seven combinations
of mechanically generated waves and pump-generated flow rates used for experi-
ments, as well as the ensemble average and standard deviation of the total water
surface perturbation. The contribution to the total water surface perturbation by
the mechanically generated wave was defined as ηwave and that from the constant
pumping flow was defined as ηflow; as seen in Table 1, trials ranged from constant
pump flow (resulting in a large ηflow and ηwave =0) to a nearly pure solitary wave with
minimal pumping input (resulting in ηwave nearly equal to (ηwave + ηflow)). Figure 3
shows the water surface profiles at six distances from the mechanical paddle ori-
gin for the bare-earth configuration and the definitions for ηwave and ηflow. Note in
Fig. 3 that each water surface profile ηi refers to the water surface perturbation
measured for the corresponding trial in Table 1. As shown in the figure, from Trial 1
to Trial 7, the combinations of pumping and mechanical wave inputs created waves
with similar total offshore water surface perturbations but increasing contribution
from the solitary wave and decreasing contribution from pumping flow. Trials with
large pumping flows (large ηflow) may be thought to represent a hurricane-induced

Table 1. Combinations of mechanically generated wave and constant pumping flow
characteristics and maximum water surface perturbation at x = 14.50 m.

Target Soliton Pump Constant (ηwave + ηflow) (m) Standard

Trial Wave Input (m) Flow Input (m3/s) x = 14.50 m deviation (cm)

1 0 0.80 0.4085 0.0010
2 0.10 0.60 0.4129 0.0014
3 0.15 0.40 0.3980 0.0027
4 0.20 0.30 0.4026 0.0012
5 0.25 0.20 0.3961 0.0016
6 0.35 0.10 0.4194 0.0012
7 0.40 0.10 0.47789 0.0016
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Fig. 3. Water surface perturbations (η) at distances (xwg) from the mechanical paddle for the
seven combinations of mechanical and pumping inputs tested. Each subscript (i) of ηi refers to the
numbered trial listed in Table 1.

storm surge or a tsunami that causes a constant rise and fall of water level. Trials 6
and 7 were shown to successfully recreate the tsunami profile recorded by offshore
GPS Buoys during the 2011 Tohoku Earthquake Tsunami [Tomiczek et al., 2016].
Although the period of a solitary wave, when scaled, is less than that of a prototype
tsunami [Madsen et al., 2008], trials in which ηwave > ηflow are still important for
comparison with design equations that estimate the total tsunami-induced force on
a structure based only on the maximum tsunami height.

Each of the seven trials listed in Table 1 was generated twice for each experimen-
tal set up to check the repeatability of wave characteristics, giving a total of eight
iterations of each trial. As seen in Table 1, the standard deviation of water surface
elevations at x = 14.50 m from the wavemaker origin ranged from 0.001 to 0.003 cm
for individual trials, indicating that wave conditions were very repeatable and thus
could confidently be compared for different distances Li. Comparison of all trials
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indicates that Trials 1–6 produced an offshore (x = 14.50 m) total water surface
perturbation between 0.395 m and 0.420 m, while Trial 7 produced a total water
surface perturbation 17.6% larger than other trials with (ηwave + ηflow = 0.479 m).

Figure 2(c) shows the locations of the 50 kPa-rated pressure gauges, manufac-
tured by Kyowa Co. Ltd., that were mounted on the front, lateral, and rear sides of
the structural element to measure the impact and following quasi-hydrostatic pres-
sures. As seen in the figure, nine pressure gauges were positioned on the front face
of the structural element in three rows of three at elevations 0.01 m, 0.05 m, and
0.15 m. On the side and back faces, seven pressure gauges were positioned in two
rows of three at elevations 0.01 m and 0.05 m, with one gauge located at elevation
0.15 m along the centerline of the structure. Sensitivity tests recorded pressure data
at 200 Hz, 500 Hz, and 1000 Hz and verified that a 200 Hz sampling frequency was
sufficient to capture the magnitude of the short-duration impulsive pressure peaks;
thus, to optimize the efficiency of the recording software, the 200 Hz frequency was
selected for data collection. Data were checked for contamination by local utility
frequencies (60 Hz) using a low pass filter for frequencies less than 50 Hz. Cleaned
data was checked for sensitivity to higher frequency components, and filtered peak
pressure recordings differed by less than 5% from unfiltered data.

4. Results and Discussion

4.1. Water surface amplification by structures

Figure 4 shows a comparison of the water surface elevation time series with and
without the structure for setback distances L2 = 1.59 m and L3 = 2.39 m for the
wave of Trial 7 in Table 1. The control, bare-earth time series in Fig. 4 indicates
that the wave propagated past both locations with a very low water surface elevation
ηbe; visual observation and video analysis of the trial confirmed that the wave broke
near the crest of the slope and propagated along the flat beach as a turbulent bore
with a high propagation speed. As seen in Fig. 4, adding a structure significantly
changed the water surface profile when the wave propagated past the location of
interest. The collision of the wave with the structure created a large vertical jet
that was nearly five times the height of the water surface elevation with no obstacle
present when at setback distance L2 and over seven times that at distance L3. Trials
with the obstacle positioned at both distances L2 and L3 showed wave amplification
due to wave-structure interaction; however, the wave gauge in front of the obstacle
positioned further inland recorded a larger amplification despite having a lower peak
water surface elevation when the wave propagated across the no-obstacle topography.
Therefore, the difference between the true water surface profile and that predicted
by bare-earth numerical models may be larger at inland distances affected by waves
that still contain a great amount of energy. As tsunamis lose energy moving inland
due to breaking, turbulence generated around obstacles, and overland friction, waves
are expected to create smaller reflected jets when they come into contact with a rigid
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(a)

(b)

Fig. 4. (Color online) Time series of water surface elevation for Trial 7 at distances (a) L1 =
1.59 m (b) L2 = 2.39 m over bare-earth topography (blue line) and with a macro-roughness element
positioned in the flume (red line).

structure. Therefore, after a certain distance inland, error in numerical simulations
should decrease with increasing distance from shore.

Trial 7 was generated by the largest mechanical wave input (0.40 m target wave-
height) and the smallest pumping flow input (0.10 m3/s). Other trials considered
waves with increased flow rates and decreased mechanical solitary wave inputs. To
parameterize these varying wave conditions, the offshore solitary wave fraction, η∗,
was defined as the ratio of the mechanically generated wave perturbation, ηwave, to
the total water surface perturbation above the stillwater depth caused by both the
constant flow and the mechanical wave, (ηwave + ηflow):

η∗ =
ηwave

ηwave + ηflow
. (7)

As the wave profile approaches that of a solitary wave, with no constant-flow contri-
bution to the water level increase, η∗ approaches 1. For pure pumping conditions in
which the water level steadily increases but no mechanical wave is generated, both
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ηwave and η∗ become 0. This constant flow, η∗ = 0 condition can be equated to the
slow water level rise associated with a storm surge generated by a tropical cyclone.

In experiments, waves with large pumping flow inputs corresponded to those
with small solitary wave fractions (η∗ < 0.5); these waves did not break on the
obstacle. Breaking waves are associated with more violent wave impacts on struc-
tures [see Cooker and Peregrine, 1995; Bullock et al., 2007]; thus the maximum
obstacle-induced water surface amplification was expected to occur for larger values
of η∗. This hypothesis was confirmed by comparing the maximum water surface
elevation including a macro-roughness element, ηmr, to the bare-earth water surface
profile, ηbe. The ratio ηmr/ηbe was plotted against η∗ for Trials 1–7 of Table 1 for
distances L2 and L3 in Fig. 5. For both setback distances, increasing values of η∗
corresponded with larger water surface amplification ratios. As η∗ approached 1,
ηmr/ηbe increased rapidly. Note that increasing the obstacle setback distance from
1.59 m to 2.39 m increased the water surface amplification ratio for Trials 6 and
7. However, positioning the obstacle a large enough distance from shore such that
waves have lost a significant amount of energy is expected to reduce the water surface
amplification caused by wave-structure interaction.

4.2. Comparison with design standards

As discussed above, design equations for estimating the maximum tsunami-induced
pressure often use the bare-earth water surface elevation in front of the struc-
ture without accounting for wave-structure interaction. Equations (1) and (5) were
evaluated using the water surface elevations recorded in the bare-earth trial, and
estimated pressures were compared with the peak pressures recorded during exper-
iments. Figure 6 shows the pressures predicted by design equations, nondimension-
alized by the bare-earth hydrostatic pressure, plotted against η∗ at the elevations of
experimental pressure gauges. The corresponding peak pressures measured by each
of the three front gauges at the corresponding elevation are also plotted for distances
L1, L2, and L3. As seen in the figure, taking hmax as the no-obstacle water surface

Fig. 5. Ratio of maximum water surface elevation with the obstacle (ηmr) to that without the
macro-roughness element (ηbe), for distances L2 (•) and L3 (x).
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Fig. 6. Normalized peak pressure: measured (x), JCO (�) or ASCE (�), versus η∗ at elevations
0.15 m (top), 0.05 m (middle), and 0.01 m (bottom) above the base of the structure for setback
distances L1 (left), L2 (middle), and L3 (right).

elevation resulted in good agreement between predicted and measured pressures for
non-breaking wave conditions. However, after wave breaking, disregarding the water
surface amplification caused by wave-structure interaction generally underestimated
measured peak pressures, especially for pressure gauges located near the base of the
structure. For example, for breaking waves, measured pressures were three times as
high as those predicted by Eq. (1) and five times as high as those obtained from
Eq. (5) at distance L1; distances L2 and L3 showed even larger differences. Equa-
tion (1) was a factor of 5 times smaller than measured values at distance L2 and 7.3
times smaller at distance L3, while Eq. (5) underpredicted experimental pressures
by a factor of 9.1 at distance L2 and 12.9 at distance L3. Better understanding of
the environmental conditions at a structure and the processes associated with wave
impact may give more reliable estimations of expected peak pressures and loads on
coastal structures.

Because peak impulsive pressures are associated with wave breaking, when
designing a building component to resist these critical pressures, coastal engineers
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must consider a structure’s location from shore and the wave characteristics, which
determine the horizontal inland position of wave breaking. As discussed above, cur-
rent design equations do not include wave-structure interaction in hmax inputs for
pressure determinations; therefore, depending on the condition, they may underes-
timate peak pressures as shown in Fig. 6. While it is useful to compare pressure
estimations directly, most design codes are written to resist the total load on a
structure; both the ASCE [2016] and JCO [2005] provide pressure distributions for
estimating the total force caused by a tsunami wave. Therefore, the respective force
estimates of Eqs. (3) and (6) were applied to estimate the JCO [2005] and ASCE
[2016] design loads, and these load estimations were compared with integrations
of experimental pressures on each face of the structure. To estimate the maximum
force on the macro-roughness element, pressure measurements were integrated to
create an envelope of potential forces by using assumptions that yielded an upper
and lower-limit force. The face of the structural element was divided into three sub-
sections; the pressure measured by a gauge at a given elevation was assumed to be
constant over the width of its subsection. Pressures gradients were assumed to be
linear between vertical gauges; therefore, instantaneous loads were estimated via a
combination of triangular and trapezoidal distributions. The upper-limit force esti-
mation assumed a hydrostatic pressure between the top pressure gauges (z = 0.15 m)
and the point of zero pressure; while the lower bound assumed that all pressures
above z = 0.15 m were zero. The rear force was calculated in a similar manner,
with trapezoidal distributions of pressure gauge measurements at 0.01 m and 0.05 m
elevations and assuming the pressure at the gauge elevated at 0.15 m was constant
across the width of the structure. For each trial, the front and rear forces were cal-
culated, and the total force was determined by subtracting the rear force from the
front force.

A comparison of experimentally determined and design-based loads, nondimen-
sionalized by the bare-earth hydrostatic force, may be seen in Fig. 7. For each trial,
the front, rear, and total forces are plotted against η∗. As shown in the figure, the
rear force for all wave conditions gave a negligible contribution to the total force
on the structure. Therefore, for further analyses presented here, the frontal force is
considered as a critical force to account for potential damage to a sea facing wall
or other element. However, for cases involving multiple obstacles (such as a coastal
community), where reflection is likely to create wave impact on the rear side of a
structure, this rear force may be amplified and should be accounted for in coastal
design. Comparing the experimental load integrations with those predicted by the
JCO [2005] and ASCE [2016] equations indicates that design equations perform
well for non-breaking waves (η∗ < 0.5), giving conservative estimates that agree
with experimental loads. However, as the solitary wave fraction approached one,
design equations tended to underestimate even the lower bound peak force integra-
tions. Therefore, modifications to design equations are recommended to account for
a wave’s impulsive force on a structure.
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Fig. 7. (a, b, and c): upper and (d, e, and f) lower-bound force integrations: front (•), rear (•), and
total (x), normalized by the bare-earth hydrostatic force, at each setback location.

It is important to note that upper-bound experimental forces are extrapolations;
more reliable force estimations would be obtained with additional pressure sen-
sors installed on the experimental specimen, particularly at elevations higher than
0.15 m. Additionally, there remains some debate as to whether the large pressure
peaks and resulting loads associated with wave impact need to be included in the
design of large-inertia structures due to their short duration [Bradner et al., 2009].
Nevertheless, when considering small-inertia structures or localized damage to house
components, these large impulsive pressures should not be neglected.

4.3. Pressure impulse and characteristic time-scale loading

Impulsive pressure is significant if a wave breaks near an obstacle, although its
duration time is very short. For example, Cooker and Peregrine [1995] noted that
laboratory experiments may record pressures that are significantly larger than those
in the field, and peak pressures may vary for breaking waves at a given location.
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Witte [1988] showed that even regular waves cause impact pressures that can vary
significantly; this variability in impact pressure was shown in later experiments to
be largely due to the shape of the breaker [Oumeraci et al., 1993; Hattori et al.,
1994]. The current experiment also showed that pressures varied significantly with
a changing solitary wave fraction; thus, the maximum pressure on a structure is
strongly influenced by the shape of the incoming wave. One way to reduce the
variability of the pressure peaks is to calculate the total pressure impulse, P (x), by
integrating the pressure time series, p(x, t), over the duration of the impact, dt:

P (x) =
∫ ta

tb
p(x, t)dt, (8)

where tb is the time before impact and ta is the time after impact [Cooker and
Peregrine, 1995; Lamb, 1995].

The pressure impulse has shown consistency for waves of known characteristics
[Bagnold, 1939] and may be significant when analyzing the lifecycle fragility of a
coastal structure to repeated wave impacts. However, pressure impulse is difficult to
quantify, because the definition of the integration boundaries tb and ta in pressure
impulse calculations are subject to the somewhat arbitrary choice of the scientist
[Wood et al., 2000]. In experiments of aerated and nonaerated violent breaking
wave impacts on vertical and sloping walls, Bullock et al. [2007] defined tb as the
initial point at which a wave-induced force rose above the noise level and ta as the
first point after which the peak pressure fell below the maximum quasi-hydrostatic
force. Wood et al. [2000] used a similar definition for ta and identified the start of
impact as the intersection of the pressure time series with a horizontal line projected
from the maximum quasi-hydrostatic pressure. Following the definition of Bullock
et al. [2007], tb and ta were selected as shown in Fig. 8, and the area under the
pressure time series was integrated to calculate the pressure impulse for each trial
listed in Table 1 for setback distances L2 and L3. Note that impulsive pressure is
characterized by its short time duration: depending on level of aeration involved in
the wave-structure collision, the total time span of an impulsive pressure is typically
between 0.08 s and 0.45 s [Bullock et al., 2007]. The first three trials of Table 1
involved large pumping rates, and the mechanically generated wave propagated past
the obstacle unbroken. Under these conditions, the pressure sensors did not record
an impulsive pressure spike, but rather a gradual rise and fall of pressure that agreed
reasonably with an equivalent hydrostatic pressure calculated from the water surface
elevation. Therefore, the pressure impulse was not calculated for trials involving large
flow and non-breaking waves.

The effects of varying offshore wave conditions on changing the peak pressure and
pressure impulse were analyzed by calculating dimensionless parameters as follows:

p∗max =
pmax

ρg(ηwave + ηflow)
, (9)

1750004-17

C
oa

st
. E

ng
. J

. 2
01

7.
59

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
Y

O
T

O
 U

N
IV

E
R

SI
T

Y
 o

n 
04

/0
5/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



2nd Reading

March 3, 2017 8:16 WSPC/101-CEJ 1750004

T. Tomiczek et al.

Fig. 8. Definition of pressure impulse. The pressure time series was integrated from the beginning
of the pressure rise (tb) to the time that a horizontal line projected from the point of maximum
quasi-hydrostatic pressure (–) first intersected the time series after the peak pressure (ta).

and

P∗ =
P

ρg(ηwave + ηflow)Twave
. (10)

In the above equations, p∗max and P∗ represent the dimensionless peak pressure
and dimensionless pressure impulse, respectively. The offshore solitary wave rise
time, Twave, and total water surface perturbation were measured at xWG = 14.50 m
from the mechanical paddle. Twave was determined manually for each trial based
on the wave gauge time series, with the start and end of the wave determined as
the points at which the water surface profile crossed a horizontal line extending
through ηflow. Note that Twave approaches infinity for the constant flow condition
(η∗ = 0); however, the pressure impulse, P , and its corresponding dimensionless
parameter, P∗, are relevant for breaking and broken wave conditions. Dimension-
less values are plotted for each value of the solitary wave ratio in Fig. 9 for setback
distances L2 and L3. Non-breaking waves (η∗ < 0.5) were characterized by peak
pressures similar to the offshore hydrostatic pressure measured 14.50 m from the
wavemaker. Although no pressure impact peak was recorded for non-breaking waves,
note that these wave-flow combinations induced greater water depths affecting the
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(a)

(b)

Fig. 9. Normalized pressure impulse (left axes, •) and peak pressure (right axes, x) versus offshore
solitary wave fraction for obstacle placed (a) 2.39 m and (b) 1.59 m from the horizontal beach.

structure for longer periods of time. Therefore, although the maximum pressures
recorded for non-breaking waves were less than those measured in trials involving
larger solitary waves, the duration and magnitude of these pressures may contribute
to fatigue failure or failure due to time-dependent phenomena such as foundation
scour. Thus, these quasi-hydrostatic pressures are significant design considerations.
Breaking waves, on the other hand, showed relatively consistent pressure impulse
values with increasing η∗, as has been observed in previous experiments [see Bagnold,
1939; Peregrine, 2003]. This consistency may be contrasted with the dimensionless
peak pressure, which increased as η∗ approached 1. Therefore, the pressure impulse
may be more robustly estimated by numerical models of wave propagation over
topographies with urban roughness effects than the peak pressure itself; if set up
correctly, these computational fluid dynamics models may successfully reproduce
the pressure time series due to wave impact. Future work must standardize the def-
initions of the beginning and end of the pressure peak. By integrating the pressure
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time series over this defined duration, a characteristic pressure impulse may be char-
acterized for a given wave condition. Because the characteristic pressure impulse has
not previously been included in design standards, care must be taken to incorporate
this quantity as a useful value for engineers to identify a range of peak pressures
affecting a structure.

The total pressure impulse is important for lifecycle fragility analysis or when
analyzing the vulnerability of a bridge or other large-inertia structure. Thus, a way
to parameterize a characteristic loading time scale for wave impacts may be useful
in the design of structures with known response periods in order to resist failure
due to fatigue as well as critical loading. Figure 10 shows the time-averaged force
integrations plotted against the averaging duration, T∗, with T ∗ = dt√

ηbe/g
. Loads

obtained from design standards are shown as horizontal lines, because time scales
are not considered in Eqs. (3) and (6). Non-breaking wave conditions impose sim-
ilar forces over all time scales, while breaking waves, (η∗ > 0.51), tend to exceed
estimations by design standards, particularly at short time scales. As seen in the
figure, time-averaged loads tend to decrease and approach constant values as T∗
increases for non-breaking and broken wave conditions. Therefore, design equations

Fig. 10. Upper- (a, b, and c) and lower- (d, e, and f) bound force estimations versus normalized
averaging time for L1 (a and d), L2 (b and e) and L3 (c and f). Breaking conditions (dotted lines)
exceed standards-based force estimations.
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for structures built to resist longer time scale loads may consider including conser-
vative safety factors to estimate the maximum force based on the expected wave
climate. However, when considering localized damage to structural components, an
engineer may consider the peak pressure associated with breaking waves.

5. Summary and Conclusions

Experiments conducted at Kyoto University’s Hybrid Tsunami Open Flume in Uji-
gawa generated a general dataset for a simple structural setup and showed that the
presence of an idealized macro-roughness obstacle significantly affected onshore wave
propagation by changing the water surface profile compared to a bare-earth configu-
ration. Results identified important trends for both non-breaking and breaking wave
interactions with structures. Key findings from this work are threefold:

1. The water surface elevations of waves propagating across a bare beach were sig-
nificantly different than those measured when obstacles were positioned onshore,
especially for waves that broke before the obstacle and propagated across the
beach as high velocity, low-elevation bores. Urban macro-roughness elements may
therefore cause errors in numerical models that calculate water surface eleva-
tions and velocities using the post-event, bare-earth topography of a region. The
horizontal location of the structure and the solitary wave fraction were shown
to be important parameters influencing wave propagation and dissipation. For
breaking waves, the difference between the bare-earth water surface elevation
and that affected by a macro-roughness element increased when the obstacle
was positioned further from shore. Thus, compared to field measurements, water
surface elevations obtained from bare-earth numerical models are hypothesized
to have significant errors in front of structures impacted by waves propagating
with a great deal of energy. As waves lose energy moving very far inland, error in
numerical models should likewise decrease, although this has not been definitively
proven in this work. Additional wave tests for obstacles positioned at further set-
back distances will provide better understanding about wave transformation and
dissipation.

2. Using bare-earth water surface elevations in ASCE [2016] and JCO [2005] design
equations yielded pressures that agreed with measured peak pressures for non-
breaking waves. However, these bare-earth inputs for hmax significantly underesti-
mated measured peak pressures for breaking waves, especially at pressure gauges
elevated 0.01 m above the base of the structure. Likewise, estimates of the total
force on the obstacle using the ASCE [2016] or JCO [2005] equations were gen-
erally conservative for non-breaking waves but underestimated force integrations
of recorded pressures for breaking waves.

3. For breaking waves, the time-integrated pressure impulse showed more consis-
tency for trials with varying solitary wave fractions than did the impulsive peak
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pressure. Design equations that can estimate time-averaged loads may be useful
for the design of structures with known response periods.

In practice, a coastal engineer must account for case-specific parameters associ-
ated with local bathymetry, community layout, and offshore wave characteristics. In
addition, due to the short duration of the very large impact pressures measured here,
conservative designs to withstand these peak pressures should be applied to struc-
tures of significant community importance, and more research is required to fully
understand the effects of impulsive breaking wave loads on coastal structures. How-
ever, coastal structures must be designed to resist all loads generated by tsunamis,
which include wave impacts on structural components, debris impact, and other
uncertainties. Engineers, city planners, and residents must work together to under-
stand the full effects of macro-roughness elements on wave propagation in order to
find cost-effective, innovative design techniques that prepare coastal communities to
robustly withstand future tsunami events.
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