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PAPER

Automatic Lecture Transcription Based on Discriminative Data
Selection for Lightly Supervised Acoustic Model Training

Sheng LI†a), Nonmember, Yuya AKITA†, and Tatsuya KAWAHARA†, Members

SUMMARY The paper addresses a scheme of lightly supervised train-
ing of an acoustic model, which exploits a large amount of data with closed
caption texts but not faithful transcripts. In the proposed scheme, a se-
quence of the closed caption text and that of the ASR hypothesis by the
baseline system are aligned. Then, a set of dedicated classifiers is designed
and trained to select the correct one among them or reject both. It is demon-
strated that the classifiers can effectively filter the usable data for acous-
tic model training. The scheme realizes automatic training of the acoustic
model with an increased amount of data. A significant improvement in the
ASR accuracy is achieved from the baseline system and also in compari-
son with the conventional method of lightly supervised training based on
simple matching.
key words: speech recognition, acoustic model, lightly supervised training,
lecture transcription

1. Introduction

Automatic transcription of lectures is one of the promising
applications of automatic speech recognition (ASR), since
many courses of audio and video lectures are being digi-
tally archived and broadcasted. Captions to the lectures are
needed not only for hearing-impaired persons but also for
non-native viewers and elderly people. ASR is also useful
for indexing the content.

ASR of lectures has been investigated for almost a
decade in many institutions world-wide [1]–[7], but there
are still technically challenging issues for the system to
reach a practical level, including modeling of acoustic and
pronunciation variations, speaker adaptation and topic adap-
tation. In this work, we address effective acoustic model
training targeted on Chinese spoken lectures.

There is a large amount of audio and video data of
lectures, but it is very costly to prepare accurate and faith-
ful transcripts for spoken lectures, which are necessary for
training acoustic and language models. We observed that,
even given a caption text, a lot of work is needed to make a
faithful transcript because the caption text is much different
from what is actually spoken, and phenomena of sponta-
neous speech such as fillers and repairs need to be included.

In order to increase the training data for an acoustic
model, a scheme of lightly supervised training, which does
not require faithful transcripts but exploits available verba-
tim texts, has been explored for broadcast news [10]–[12]
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and parliamentary meetings [13]. In the case of parliamen-
tary meetings, verbatim texts are made by stenographers,
and thus can be used to predict faithful transcripts. However,
in the case of TV programs, closed caption texts are not so
verbatim because of the space constraint, and thus can be
used in an indirect manner for lightly supervised training.
A typical method [10], [11] consists of two steps. In the
first step, a biased language model is constructed based on
the closed caption text of the relevant program to guide the
baseline ASR system to decode the audio content. The sec-
ond step is to filter the reliable segments of the ASR output,
usually by matching it against the closed caption. In this
simple method, only matched segments are selected.

The conventional filtering method, however, has a
drawback that it significantly reduces the amount of usable
training data. Moreover, it is presumed that the unmatched
or less confident segments of the data are more useful than
the matched segments because the baseline system failed to
recognize them and may be improved with additional train-
ing [12]. Recent work by Long et al. [14] proposed methods
to improve the filtering by considering the phone error rate
and confidence measures. Other studies, e.g. [15], intro-
duced an improved alignment method for lightly supervised
training.

Instead of simple sequence matching [10]–[12] and
heuristic measure-based selection [14], [15], in this work,
we propose to train a set of dedicated classifiers to select the
usable data for acoustic model training. Given an aligned
sequence of the ASR hypothesis and the closed caption text
(and also reference text in the training phase), a set of clas-
sifiers is trained based on a discriminative model to select
between the ASR result and the closed caption text, or reject
both if they are not matched. It is trained with a database of
a relatively small size used for training the baseline acoustic
model and applied to a large-scale database that has closed
caption texts but not faithful transcripts.

In the remainder of the paper, we first describe the cor-
pus of Chinese spoken lectures and the baseline ASR system
in Sect. 2. Next, our proposed scheme of classifier design for
lightly supervised training is formulated in Sect. 3. Then,
the implementation of the method on the lecture transcrip-
tion task is explained and experimental results are presented
in Sect. 4. The paper is concluded in Sect. 5.

2. Corpus and Baseline ASR System

For a comprehensive study on ASR of spontaneous Chinese
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Table 1 Organization of CCLR corpus.

language, we compile a corpus of Chinese spoken lectures
and investigate the ASR technology using it.

2.1 Corpus of Chinese Lecture Room

While Chinese is one of the major languages for which ASR
has been investigated, studies on Chinese lecture speech
recognition are limited [8], [9], and a large-scale lecture cor-
pus for this study has not been made. We have designed and
constructed a corpus of Chinese spoken lectures based on
the CCTV program of “Lecture Room” (百家講壇), which is
a popular academic lecture program of China Central Tele-
vision (CCTV) Channel 10. Since 2001, a series of lectures
have been given by prominent figures from a variety of ar-
eas. The closed caption text is also provided by CCTV and
free-download from the official website.

As of the end of 2013, we made annotation (segmen-
tation of the lecture part and faithful transcription) to the
selected 98 lectures (90 speakers: 21 female, 69 male),
which amount to 61.6 hours of speech and 1.2M characters
of text. They are categorized into three general topics: 38
lectures about history-culture-art, 29 lectures about society-
economy-politics, and 31 lectures about science-technology.
We have also collected 126 lectures with closed captions,
which are not annotated (faithfully transcribed) so far. We
call all of the data both annotated and unannotated as the
Corpus of Chinese Lecture Room (CCLR) [29]. For the
experimental purpose, we select 58 annotated lectures as
the training set (CCLR-TRN), and 19 annotated lectures as
the test set (CCLR-TST). The 126 un-annotated lectures are
used for lightly supervised training (CCLR-LSV). Addition-
ally, 12 annotated lectures are held out as a development set
(CCLR-DEV).

All these data sets are listed in Table 1.

2.2 Baseline ASR System and Performance

For a baseline lecture transcription system, we used CCLR-
TRN of 35.2 hours as the training set, and tested on CCLR-
TST.

The baseline system uses PLP-based features, consist-
ing of 13 cepstral coefficients (including C0), plus their first
and second derivatives, leading to a 39-dim feature vector.
For each speaker, cepstral mean normalization (CMN) and
cepstral variance normalization (CVN) are applied to the
features. We build both GMM (Gaussian Mixture Model)-
HMM and DNN (Deep Neural Network)-HMM systems.
We adopt 113 phonemes (consonants and 5-tone vowels)
as the basic HMM unit. The total number of tied triphone

states is 3000, and each state has 16 Gaussian mixture com-
ponents. GMM-HMM is trained with both maximum likeli-
hood (ML) and minimum phone error (MPE) criteria.

For the DNN model training, we use the same PLP fea-
tures, and the only difference from GMM-HMM is the fea-
tures are globally normalized to have a zero mean and a unit
variance. We use the baseline GMM-HMM (MPE) to gen-
erate the state alignment label. The network has 429 nodes
as input (5 frames on each side of the current frame), 3000
nodes as output and 6 hidden layers with 1024 nodes per
layer.

Training of DNN consists of the unsupervised pre-
training step and the supervised fine-tuning step. In the
unsupervised pre-training step, Restricted Boltzmann Ma-
chines (RBMs) are stacked in a greedy layer-wise fash-
ion. The Gaussian-Bernoulli RBM is trained with an ini-
tial learning rate of 0.01 and the Bernoulli-Bernoulli RBMs
with a rate of 0.4. The learning rate is decreased during pre-
training. L2 regularization is applied to the weights with a
penalty factor of 0.0002.

The supervised fine-tuning is based on frame-level
cross-entropy training. We randomly select 1/8 of total ut-
terances from CCLR-TRN for cross validation and the re-
maining 7/8 for supervised training. The utterance frames
are presented in a randomized order while using SGD
(stochastic gradient descent) to minimize the cross-entropy
between the supervision labels and network output. The
SGD uses mini-batches of 256 frames, and an exponentially
decaying schedule that starts with an initial learning rate of
0.01 and halves the rate when the improvement in the frame
accuracy on the held-out set between two successive epochs
falls below 0.5%. The stopping condition is the frame ac-
curacy increases by less than 0.1%. We used single GPU
(Tesla K20m) to accelerate the training.

When testing, the PLP features are feed-forwarded
through the DNN model to generate posterior probabilities
of the triphone states, which are normalized by the state
prior probabilities. The state prior probabilities are esti-
mated from the training label. All these above are im-
plemented with the Kaldi toolkit [26]. For decoding, we
use Julius 4.3 (DNN version) [16] using the state transition
probabilities of GMM-HMM (MPE).

The dictionary consists of 53K lexical entries from
CCLR-TRN together with Hub4 and TDT4. Cut-off is not
applied to define the lexicon. The OOV rate on CCLR-TST
is 0.368%. The pronunciation entries were derived from the
CEDICT open dictionary and the HKUST dictionary mate-
rials included in the Kaldi package. There are 1.7K English
word entries and most of them are technical terms and per-
sons’ names. We converted the English phoneme set into
the Mandarin phoneme set using the language transfer rules
described in [27].

A word trigram language model (LM) was built for de-
coding. Since the size of the annotated text of CCLR-TRN is
very small, we complemented it with lecture texts collected
from the web, whose size is 1.07M words. Then, the lecture
corpus was interpolated with other three corpora distributed



LI et al.: AUTOMATIC LECTURE TRANSCRIPTION BASED ON DISCRIMINATIVE DATA SELECTION FOR LIGHTLY SUPERVISED ACOUSTIC MODEL TRAINING
1547

Table 2 Specification of language model training corpora.

through LDC. The interpolated weights were determined to
get a lowest perplexity on CCLR-DEV. The text size, the
perplexity on CCLR-DEV, and the interpolation weights are
listed in Table 2.

This baseline system achieved an average Character Er-
ror Rate (CER) of 39.31% with the GMM (MLE) model,
36.66% with the GMM (MPE) model, and 31.60% with the
DNN model for CCLR-TST. The main reason of the rel-
atively low performance of the baseline system compared
with the CSJ [1] and TED talks [7] is the small amount of
faithful training data. Therefore, we investigate lightly su-
pervised training to exploit unlabeled data.

3. Classifier Design for Data Selection

3.1 Lightly Supervised Training Framework

To perform lightly supervised training, we need a criterion
to select data. The conventional lightly supervised train-
ing relies on simple matching between the caption text and
the ASR hypothesis, and thus discards so much data which
could be useful.

In this paper, we propose a data selection framework
based on dedicated classifiers to replace the simple method
as shown in Fig. 1. Training of the classifiers is conducted
by using the training database of the baseline acoustic model
(CCLR-TRN).

First, we generate an ASR hypothesis (1-best) using
the baseline acoustic model and a biased language model.
A biased language model is made for each lecture by inter-
polating the baseline model with the language model gener-
ated by the caption text of the lecture. The weights of these
language models are 0.1 and 0.9. We conduct unsupervised
MLLR speaker adaptation, which is also done in decoding
CCLR-LSV.

Then, the ASR hypothesis is aligned with the corre-
sponding caption text by using dynamic programming. By
referring to the annotation (faithful transcript) of CCLR-
TRN, both text-based and speech-based features are ex-
tracted from the alignment patterns between the ASR hy-
pothesis and the caption text. They are used to train dis-
criminative classifiers to select one of them or reject both.

Finally, for CCLR-LSV, an ASR hypothesis is also
generated and aligned with the corresponding caption text
in a similar manner. But there is no faithful annotation for
this data set, so the derived classifiers are applied to select
and verify word by word either from the ASR hypothesis or
the caption text.

Fig. 1 Framework of proposed lightly supervised training.

Table 3 Category of alignment patterns.

3.2 Category of Word Alignment Patterns

By analyzing the aligned word sequence between the ASR
hypothesis and the caption text, we can categorize patterns
by referring to the faithful transcript, as listed in Table 3.
Here, insertion and deletion cases are handled by introduc-
ing a null token.

• C1: the ASR hypothesis is matched with the caption
and also the correct transcript. A majority of the sam-
ples falls in this category.
• C2: although the ASR hypothesis is matched with the

caption, it is not correct. This case is rare.
• C3, C4 and C5: the ASR hypothesis is different from

the caption. In C3, neither of them is correct. In C4,
the ASR hypothesis is correct. In C5, the caption is
correct.

Note that the conventional method [10], [11] is equiva-
lent to simply using C1 and C2. The objective of this study
is to incorporate more effective data (C4 and C5) while re-
moving erroneous data (C2 and C3).

The distribution of these patterns in CCLR-TRN is
shown in Fig. 2. It is observed that 75.7% of them are cat-
egorized into C1. Among others, C4 is the largest because
the caption text is often edited from the faithful transcript
for readability.

We initially tried to design a classifier to conduct clas-
sification of these five categories, but it turned to be difficult
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Fig. 2 Data distribution in CCLR-TRN.

Fig. 3 Cascaded classification scheme for data selection.

because of the complex decision and the data imbalance.
Therefore, we adopt a cascaded approach.

3.3 Cascaded Classifiers for Word-Level Data Selection

In the cascaded approach, we design two kinds of classifiers.
One is for selection of the hypothesis and the other is for
verification of the selected hypothesis.

C1 and C2 are the matching cases between the ASR
hypothesis and the caption. In these cases, the data selec-
tion problem is reduced to whether to accept or discard the
word hypothesis. On the other hand, C3, C4 and C5 are
the mismatching cases between the ASR hypothesis and the
caption. We train a binary classifier to make a choice be-
tween the ASR hypothesis and the caption word. Then, we
apply the other classifier to verify it. This classifier can be
the same as the one used for C1 and C2.

The classification is organized by the two binary clas-
sifiers in a cascaded structure as illustrated in Fig. 3. The
binary classifiers are focused on specific classification prob-
lems, so they are easily optimized. This design also miti-
gates the data imbalance problem. In Fig. 3, one classifier
is used for selection of the word hypothesis with highest
credibility either from the ASR hypothesis or the caption
text, and the other is used for verification of the selected (or
matched) hypothesis.

To make binary classification, we merge C3 into C4,
because we observed the phone accuracy of the ASR hy-
pothesis is higher than that of the caption text in C3. Erro-
neous patterns in C3 will be rejected by the second classifier.

Table 4 Feature set for classification.

Note that the conventional method [10], [11] simply ac-
cepts C1 and C2, but our proposed method can also incorpo-
rate more effective data (C4 and C5) and remove erroneous
data (C2).

3.4 Feature Set Design for Classifiers

We use conditional random fields (CRF) [17] as the clas-
sifier for this task. It can model the relationship between
the features and labels by considering sequential dependen-
cies of contextual information. For this reason, it is used
for many applications such as confidence measuring [18],
ASR error detection [19], and automatic narrative retelling
assessment [20].

When training the classifiers and conducting data se-
lection, we need to convert the alignment patterns into a
feature vector. These features include both acoustic and lin-
guistic information sources. They are selected by referring
to the work on confidence measures and ASR error detec-
tion. The text-based features are defined for both ASR hy-
pothesis and caption text while the speech-based features are
computed for the ASR hypothesis only.

These features, listed in Table 4, are explained below.

• The lexical feature (LEX) is a lexical entry (ID) of the
current word. It is a symbolic feature.
• The Part-of-Speech (POS) feature is obtained by a CRF

classifier trained with Chinese-Tree-Bank (CTB) 4. We
defined 15 POS tag symbols according to the CTB’s
guideline. This feature is symbolic.
• The language model probability feature (LM) is a neg-

ative log probability of the current word by unigram,
bigram and trigram models. Back-off is not considered
here. This feature set is numeric.
• The tf-idf (TF) feature is computed by multiplying the

tf-value and the log idf-value. The tf-value is calcu-
lated from the word frequency in the caption text of
the current lecture. The idf-value is computed from the
caption text of entire CCLR-TRN and CCLR-LSV sets.
This feature is numeric.
• The confidence measure score (CMS) is output by the

Julius decoder [28] of the baseline ASR system. The
value is between [0,1] approximating a posterior prob-
ability of the hypothesis word.
• The word duration (DUR) feature is the number of

frames of the word.

Because most of the CRF implementations are de-
signed to work with symbolic features, we need to convert
the numeric features into discrete features. To minimize the
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Table 5 Number of classes of the features.

information loss in the quantization, we first normalize all
of the numeric features to [0,1] and then use a step of 0.01
to get 100 binary features for the LM, TF and CMS features.
The DUR feature is quantized into 10 bins. Table 5 lists the
number of classes after discretization for each feature.

Moreover, for the symbolic features of LEX and POS,
the contextual information of the current word is also incor-
porated by adding features of the preceding two words and
the following two words.

3.5 Utterance Selection for Acoustic Model Training

For CCLR-LSV, the ASR hypothesis and the caption text
are merged into a single word sequence after the matching
and selection process, and every word in the sequence will
have a label, either “accept” or “discard”, based on the veri-
fication process according to Fig. 3.

Then, we need to make a decision whether or not this
sequence of the data by the utterance unit is used for acous-
tic model training. Since the acoustic model is based on
phone units, phone-based accuracy is a natural measure for
selection of utterances [14]. In this work, we can compute
the phone acceptance rate (PA) for every utterance by dis-
tributing the “accept” and “discard” classification results to
all phones. The “PA” actually means the ratio of “accept”
phones over the total number of phones in an utterance.

However, it is not easy to figure out the optimum point
on the threshold of this measure between the growth of noise
and the amount of training data [22]. It is affected by a num-
ber of factors and often determined a posteriori depending
on the data set and the baseline performance. In this work,
we will show that using only reliable utterances (PA=100%)
is best for the proposed lightly supervised acoustic model
training.

4. Experimental Evaluations

4.1 Classifier Implementation and Performance

The proposed method is applied to CCLR-LSV to make an
enhanced acoustic model, which are tested on CCLR-TST.

We first conduct speech segmentation to the utterance
unit based on the BIC (Bayesian Information Criterion)
method [23] and speaker clustering to remove non-speech
segments and speech from other than the main lecturer in
CCLR-LSV.

In our implementation, we used the Wapiti CRF clas-
sifier [24] to train two classifiers using CCLR-TRN: CRF-
2, which is trained to discriminate C1 vs. C2, and CRF-1,
which is trained to discriminate C3 + C4 vs. C5. In the ex-
periment, we use second-order CRF. Because of the sparse
features with a high dimension (more than one thousand),
L1 regularization and the Orthant-Wise Limited-memory

Table 6 Feature set evaluation of CRF-1 by 5-fold cross validation on
CCLR-TRN.

Table 7 Feature set evaluation of CRF-2 by 5-fold cross validation on
CCLR-TRN.

Quasi-Newton (OWL-QN) algorithm is used to train the
CRF models [25].

In the training dataset, there is serious imbalance be-
tween classes as observed in Fig. 2. This will bias the train-
ing of the classifiers. Thus, we introduce a re-sampling tech-
nique. Specifically, we duplicated the samples in C2, and
discarded part of samples in C1 and C3 + C4. As a result,
the calibrated distributions are as follows: C1: 44.1%, C2:
24.1%, C3 +C4: 19.5% and C5: 12.3%.

Classification performance with various feature sets
is compared by 5-fold cross validation on CCLR-TRN, as
shown in Table 6 and Table 7. Performance is measured by
precision, recall and F-score:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-score =
2 × Precision × Recall

Precision + Recall

where TP is true positives (correct output), FP is false posi-
tives (false alarm), and FN is false negatives (miss).

We observe the overall performance of CRF-2 (Table 7)
is higher than that of CRF-1 (Table 6). It suggests selection
of the hypothesis is more difficult than verification of the
hypothesis. In CRF-2 (Table 7), performance of C1 (ver-
ification) is higher than that of C2 (rejection), because the
number of training samples of C1 is much larger than that
of C2. The re-sampling technique does not essentially solve
the problem of a smaller variety and coverage, though it mit-



1550
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.8 AUGUST 2015

Table 8 Confusion matrix.

igates it.
Among the set of features, the text-based features are

generally more effective than the speech-based features, but
combination of both feature sets shows further improve-
ment. As an individual feature, the lexical feature is the
most effective for CRF-1, while the POS feature is the most
effective for CRF-2, since more variety is needed for selec-
tion than verification of the hypothesis.

Note that the confidence measure score (CMS) is not
so effective as expected. Its performance is comparable to
that of the duration feature (DUR).

From these results, we adopt the complete feature set.
Although errors by CRF-1 in the first stage of the classifi-
cation is inevitable, part of them are detected and discarded
in the second stage of classification by CRF-2, as shown in
Fig. 3.

The confusion matrix with all features is shown in Ta-
ble 8, and the classification rate is C1: 98.5%, C2: 63.9%,
C3 +C4: 84.5%, C5: 76.9%.

4.2 Utterance Selection for Model Training

Next, we investigate the effect of utterance selection based
on the phone acceptance rate (PA). It is not practical to
tune the threshold by using the development set, as it would
take so long to train the DNN model for each PA threshold
value. Therefore, the tuning is conducted with GMM-HMM
(MLE) by adding the selected data to CCLR-TRN.

ASR performance (CER%) on CCLR-DEV is plotted
in Fig. 4. Note that adding more data by relaxing the PA
threshold only degrades the ASR performance due to the
increase of errors. The best ASR performance is achieved at
PA=100%. It shows the advantage of our proposed method
that it can effectively select the most usable utterances and
makes the data selection easy without tuning the threshold.

4.3 ASR Performance with Enhanced Model Training

Then, we conduct lightly supervised training of the acous-
tic model with the data selected from CCLR-LSV with
PA=100%. ASR performance of the model enhanced by
the selected data is evaluated on CCLR-TST. The proposed
data selection method is compared with other three methods
as follows:

• Baseline: the model trained by only using CCLR-TRN
as described in Sect. 2. It is an expected lower bound
of the proposed method.
• No selection: simply pool the CCLR-TRN lectures and

Table 9 ASR performance (CER%) by lightly supervised training.

Fig. 4 ASR performance (GMM-HMM on CCLR-DEV) for different PA
threshold values.

entire CCLR-LSV lectures together, and directly use
the ASR hypothesis of CCLR-LSV without any selec-
tion.
• Conventional: the conventional lightly supervised

training method which selects the data based on sim-
ple matching of the ASR hypothesis and the caption
text [10], [11] (upper part of Fig. 3).

In this experiment, we use the same setting with the
baseline system described in Sect. 2 for GMM (MLE and
MPE) and DNN acoustic model training as well as the lexi-
con and the language model.

ASR performance in CER is listed for GMM (MLE),
GMM (MPE) and DNN models in Table 9. The results
show that our proposed lightly supervised training method
outperforms all other methods for MLE, MPE and DNN
models. The improvement is statistically significant. The
p-values from two-tailed t-test at 0.05 significant level of
our proposed method compared with Baseline, No selection
and Conventional methods are 0.0031, 0.0017 and 0.028
for GMM (MLE), 1.96e-07, 0.011 and 3.28e-04 for GMM
(MPE) and 7.06e-09, 0.0183 and 0.0011 for DNN.

Another advantage of our method confirmed in this ex-
periment is that it can significantly enlarge the training data
by selecting usable data while discarding the erroneous seg-
ments effectively. As shown in Table 9, the percentage of
the data selected from CCLR-LSV by our proposed method
is 78.9%, which is almost double of the data by the con-
ventional method (41.9%). In the conventional method, an
utterance unit is discarded if it contains any words of C3, C4
or C5 cases. However, without any selection, ASR perfor-
mance is degraded due to inclusion of erroneous segments.
This phenomenon is also confirmed in Fig. 4. This result
demonstrates that the classifiers work effectively for lightly
supervised training.
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5. Conclusions

We have proposed a new data selection scheme for lightly
supervised training of an acoustic model. The method uses
dedicated classifiers for data selection, which are trained
with the training database of the baseline acoustic model.
We designed a cascaded classification scheme based on a
set of binary classifiers, which incorporates a variety of
features. Experimental evaluations show that the proposed
lightly supervised training method effectively increases the
usable training data and improves the accuracy from the
baseline model and in comparison with the conventional
method. This means our method can effectively identify the
most credible data in huge archives of unfaithful data. This
is very important for big data tasks.
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