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Abstract

We consider the problem that on large ran-
dom geometric graphs, random walk-based
distances between nodes do not carry global
information such as cluster structure. In-
stead, as the graphs become larger, the dis-
tances contain mainly the obsolete informa-
tion of local density of the nodes. Many dis-
tances or similarity measures between nodes
on a graph have been proposed but none
are both proved to overcome this problem
or computationally feasible even for small
graphs. We propose new distance functions
between nodes for this problem. The idea
is to use electrical flows with different energy
functions. Our proposed distances are proved
to be metrics in Lp spaces, to keep global in-
formation, avoiding the problem, and can be
computed efficiently for large graphs. Our ex-
periments with synthetic and real data con-
firmed the theoretical properties and practi-
cal performances of our proposed distances.

1 Introduction

The graph Laplacian is a popular tool to extract in-
formation from graphs for various purposes. It is a
means to utilize global graph topology for classifica-
tion with kernels (Smola and Kondor, 2003), graph cut
(Shi and Malik, 1997) and clustering (von Luxburg,
2007; Bühler and Hein, 2009). It is particularly useful
in semi-supervised learning (Zhou et al., 2003; Belkin
et al., 2006; Chapelle et al., 2010) where graphs en-
code unlabelled data distributions in learning. It is a
standard tool in manifold and high dimensional data
learning (Belkin and Niyogi, 2003), where only near-
est neighbor graphs would give reliable information of
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the underlining distributions. Beyond these learning
tasks, it also finds applications in other areas such as
electrical networks (Klein and Randić, 1993; Bollobás,
1998; I. Gutman, 2004), random walks (Lovasz, 1996)
and collaborative filtering (Fouss et al., 2007). The
key point is that the graph Laplacians are the infor-
mation bottleneck to find distributions. It is of great
importance to be able to extract the right information
from the graphs to have the desired distributions.

The common problem is that, given graphs represent-
ing unknown distributions of data, the task is to re-
cover the original distributions using graph topolo-
gies. In case that graphs encode similarity or neighbor-
hood relationship, a continuously high density region
of the original distribution usually contains many well-
connected nodes. In order to recognize these nodes
belonging to the same region, in the framework of dis-
tance or similarity-based learning, these nodes should
have small distances to each others (compared to the
other nodes of different regions). In graph embedding,
these nodes should be close to each other in terms of
the distances in the embedding space. Therefore, the
desirable distance should contain global information of
graphs such as cluster structures, bottlenecks and den-
sity of the region in between nodes.

For this aim, many similarity and distance functions on
graphs use the idea from random walks (Lovasz, 1996;
Bollobás, 1998) with the intuition that nodes from the
same clusters can be reached by many paths of high
probability. However, it is found that, in large graphs,
distances based on graph Laplacians differ from the in-
tuition, converging to some noninformative functions
(Nadler et al., 2009; von Luxburg et al., 2010, 2014).
This is usually attributed to the fact that long ran-
dom walks tend to forget where they start (the mixing
of random walks) (Lovász and Simonovits, 1990). To
counter the effect of long random walks (Fouss et al.,
2007), many methods give more weights to short walks
compared to long ones (Yen et al., 2008; Wu et al.,
2012; Chebotarev, 2012). However, these methods are
not proved to overcome the problem.

It is proved analytically for resistance distance (also
hitting and commute time distances) on random geo-

639



New Resistance Distances with Global Information on Large Graphs

metric graphs (Penrose, 2003) that as graphs become
larger, the distances converge to a function of local
density (von Luxburg et al., 2010, 2014), losing global
information. This is called the global information loss
problem. This is a problem for all methods based
the graph Laplacians such as (i) the graph Laplacian-
based embedding and graph kernels (Smola and Kon-
dor, 2003), (ii) random walk-based measures (Klein
and Randić, 1993; I. Gutman, 2004; Fouss et al., 2007)
and (iii) spectral clustering (von Luxburg, 2007). Un-
fortunately, the only known method that provably
overcome this problem, p resistance distance (Herbster
and Lever, 2009; Alamgir and von Luxburg, 2011), is
computationally infeasible even for very small graphs.

In this work, we propose two distance functions,
named Rp and R12 distances, that (1) provably over-
come the global information loss problem and (2) are
computationally feasible for large graphs. Our pro-
posed distances would be the first to satisfy both con-
ditions of overcoming the problem and being practi-
cally applicable. The idea is to use electrical flows
as in resistance distance, as the flows contains all the
information from the graph, and can be computed ef-
ficiently for all pairs of nodes altogether. To prevent
the global information loss problem, different energy
functions are proposed, giving higher weights to the
global part of the distance functions. Global infor-
mation of the graph is proved analytically to be kept
(in the same manner as p resistance distance). The
distances are also proved to be metrics, resulting in
embeddings of the graphs into Lp spaces. In our ex-
periments, our proposed distances consistently showed
the cluster structures in large graphs while resistance
distance failed.

The paper is organized as follows. In Section 2, we
analyze the problem of global information loss in ran-
dom walk-based distances and show how to overcome
the problem using variants of resistance distance. We
propose the two distance functions for this problem in
Section 3 and show their useful properties. We show
experimentally the merit of these distances in simula-
tion in Section 4 and real data in Section 5, and then
conclude the paper.

2 Problem Setting and Terminology

2.1 Distances on Random Geometric Graphs

Random Geometric Graph. Random geomet-
ric graphs are generated from a distribution in some
spaces (Bollobás, 1998; Penrose, 2003). They are
used to investigate whether statistical estimations on
graphs can retain properties of the distributions that
are desirable in learning processes such as cluster/class

structures. The objective is that, from the graphs,
clusters, classes, and bottlenecks should be detected
based solely on the graphs’ topologies. Nodes of graphs
are sampled according to the distribution (Penrose,
2003). Edges between nodes are generated by con-
necting either ε neighbors or k nearest neighbors. The
weight of an edge w(xi, xj) determines if it is a simi-
larity graph (e.g. conductance) or dissimilarity graph
(e.g. resistance) with different weighting schemes such
as: w(xi, xj) = 1 (unweighted), w(xi, xj) = ‖xi − xj‖
or w(xi, xj) = exp(‖xi − xj‖2/δ2).
The problem setting is that a random geometric graph
G = (X,E,A), where X = {xi}ni=1 is the node set of
n nodes drawn randomly from a smooth distribution
p (Alamgir and von Luxburg, 2011), and E is the edge
set with ‖E‖ = m. Let L−1 be the pseudo-inverse
of L = D − A, which is the graph Laplacian, with D
denoting the degree matrix with node degrees on the
diagonal, and A is the edge weight matrix.

Distance on Graph. A distance function d on graph
G is defined as d : (X,X)→ R. For any pair of nodes
(xs, xt), some examples are:

• sp(xs, xt): shortest path distance between xs and
xt.

• ht(xs, xt): hitting time distance: the expected
time passage from xs to arrive at xt.

• ct(xs, xt) = ht(xs, xt)+ht(xt, xs): commute time
distance.

• res(xs, xt) = 1
2mct(xs, xt): resistance distance.

• pres(xs, xt): p resistance distance generalizing
resistance distance (Alamgir and von Luxburg,
2011).

Flow and Energy on Graph. Many distances and
their properties are derived from flows from one node
to another on a graph defined as follows.

• Y : a flow is a set of real values assigned to edges
of the graph: Y ∈ R|E| (Bollobás, 1998).

• A unit flow from xs to xt is a flow with a total
flow 1 coming in at xs and going out at xt.

• Ip(xs, xt): p flow from xs to xt satisfying:
Ip(xs, xt)

def
= argminY

∑
e∈E re|ye|p for p ∈

R, p ≥ 1 and Y = {ye}e∈E being any unit flow
from xs to xt (Alamgir and von Luxburg, 2011;
Herbster and Lever, 2009).

• I2(xs, xt): (2 flow) the electrical flow from xs to
xt.

640



Canh Hao Nguyen, Hiroshi Mamitsuka

• Ep : R|E| → R: p energy function. For any flow
Y :

Ep(Y )
def
=

∑

e∈E
re|ye|p. (1)

p energy function is related to the distances as fol-
lows: res(xs, xt) = E2(I2(xs, st)) and pres(xs, xt) =
Ep(Ip(xs, xt)) as Ip-s are unit flows (Bollobás, 1998;
Alamgir and von Luxburg, 2011). From here on, we
use energy (of unit flow) to refer to resistance distance.

We define global and local parts of energy function Ep
(: R|E| → R) for later proofs as follows. For (xs, xt):

• Elocal: the set of edges incident to either node
in the pair: Elocal(xs, xt)

def
= {e}xs∈e,e∈E ∪

{e}xt∈e,e∈E .

• Eglobal: the set of remaining edges:
Eglobal(xs, xt)

def
= E \ Elocal(xs, xt).

• Elocalp : local energy function of Ep. For any q ∈ R:

Elocalp (Iq(xs, xt))
def
=

∑

e∈Elocal(xs,xt)

re|Iq(xs, xt)e|p.

• Eglobalp : global energy function of Ep. For any
q ∈ R:

Eglobalp (Iq(xs, xt))
def
=

∑

e∈Eglobal(xs,xt)

re|Iq(xs, xt)e|p.

According to definitions of local and global set, Elocalp

and Eglobalp are local and global parts of energy func-
tion Ep and Ep = Elocalp +Eglobalp . Please note that this
is a slightly different version from the one defined in
(von Luxburg et al., 2010; Alamgir and von Luxburg,
2011) without changing its results.

2.2 Global Information Loss problem

Global information loss problem is that distances or
similarity measures do not contain the global informa-
tion of graphs such as clusters or bottlenecks. Global
information is necessary for learning purposes such as
clustering and classification. Even though this phe-
nomenon is known experimentally for large graphs
(Nadler et al., 2009), it can be proved rigorously
only for resistance distance on large random geometric
graphs. Resistance distance does not contain the in-
formation of the area between the nodes (global infor-
mation), regardless whether between them is a low or
high density region (von Luxburg et al., 2010; Alamgir
and von Luxburg, 2011):

lim
n→∞

Elocal2

Eglobal2

=∞, lim
n→∞

E2(I2(xs, xt))

1/ds + 1/dt
= 1. (2)

where ds and dt are the degrees of node xs and xt.
As resistance distance only contains information of lo-
cal density, it has global information loss problem. A
demonstration is shown in Figure (1).

3 Rp and R12 distances

In this section, we propose two distance functions that
give higher weights to the global part of total energy
to reflect global information of the graph. We then
show their metric, embedding properties, computa-
tional analysis, and phase transition by changing pa-
rameters.

3.1 Definition

The desideratum is that the two nodes should have a
long distance if they are from different clusters. There-
fore, the distances should reflect not only geodesic dis-
tance (like shortest path distance), but also the density
of the space in between the two nodes. Following the
same principle as p resistance distance (Alamgir and
von Luxburg, 2011), we wish to design distances that
can be decomposed into global and local parts. To re-
flect global information such as clusters, the distances
should have the global part at least of the same mag-
nitude as the local part.

The global information loss problem on large graphs
occurs due to two issues. The first issue is that large
graphs divide a unit flow into many paths, resulting
in small flows on edges in the global part (ye > ye′

for e ∈ Elocal, e′ ∈ Eglobal). The second issue is that
electrical energy function E2(I2) =

∑
rey

2
e , quadratic

on flows on edges, further reduces the weights of energy
on the global parts (rey2e >> r

′
ey

2
e′
).

Our solution to the global information loss problem
of resistance distance is to address the second issue,
electrical energy function. We propose to use Ep for
p < 2 to define energies (distances)1 based on electrical
flow I2(xs, xt) ∈ R|E|. Ep with p < 2 can give a higher
weight to the global part of the total energy. That is,
for smaller p, the difference between rey2e and r

′
ey

2
e′
will

not be amplified as much as p = 2. We propose two
distances: Rp distance and R12 distance as follows.

Definition 3.1. (Rp distance).

Rp(xs, xt)
def
= (Ep(I2(xs, xt)))

1
p

= (
∑

e∈E
re|I2(xs, xt)e|p)

1
p . (3)

1For unit flows, resistance distance coincides with en-
ergy.
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Definition 3.2. (R12 distance) For a given α:

R12(xs, xt)
def
= αR2(xs, xt) + (1− α)R1(xs, xt) (4)

=α(
∑

e∈E
re|I2(xs, xt)e|2)

1
2 + (1− α)

∑

e∈E
re|I2(xs, xt)e|.

One unique feature of our distances is that, we can
use the information of I2 in the same way as sparsity-
inducing norms in Optimization. The distances have
parameters p and α to interpolate, containing R2 =√
E2(I2) and R1 = E1(I2) in their spectra. For p→ 1

and α→ 0, they both converge to R1: the total flows
on all edges added together. They have interesting
properties as follows.

• Consider the case that flows between the two
nodes can be separate paths as in Figure 2. E1(I2)
is the harmonic mean of the lengths of all paths.
It is equal to the shortest path added with the
amount of flow outside of the shortest paths (the
shaded region).

• Rp and R12 distances are different from p resis-
tance distance, randomized shortest path distance
and others in the sense that they do not converge
to shortest path distance. In all spectra of their
parameters, they contain the information of con-
nectivity in between the two nodes present in I2
(taking into account all paths, instead of only the
shortest path).

3.2 Dealing with Global Information Loss

Intuitively, E1(I2) energy function overcomes the
problem of E2(I2) by giving more weights to global
part. Any s, t min cut would contain the edges with
the total flow weight of 1, having total energy of the
same order of magnitude as that of the local part of
E1(I2) (containing only one s, t min cut). Hence, the
global part, consisting of many disjoint s, t min cuts,
dominates the local one. We prove that, in E1(I2),
the global energy dominates the local energy for ε-
neighborhood and knn graphs as follows.
Theorem 3.3. For connected ε-neighborhood random
geometric graphs constructed from a valid region X in
Rd (von Luxburg et al., 2014), the global part of E1(I2)

(Eglobal1 (I2)) dominates the local part (Elocal1 (I2)) al-
most surely (for any pair (xs, xt)) as n → ∞. Con-
cretely, the following statements hold:

1. For unweighted graph wij = 1: limn→∞
Eglobal

1

Elocal
1

→
∞ almost surely as n→∞ and ε→ 0.

2. For Euclidean weighted graph with wij =

d(xi, xj):
Eglobal

1

Elocal
1

→ ∞ almost surely as n → ∞
and ε→ 0.

3. For Gaussian weighted graph with wij =

exp(
d(xi,xj)

2

δ2 ): Eglobal
1

Elocal
1

→ ∞ almost surely as
n→∞, ε→ 0 and O(δ) > O( ε√

− ln(ε)
).

Theorem 3.4. For connected k-nearest neighbor (ran-
dom geometric) graphs constructed from a valid region
X in Rd (von Luxburg et al., 2014), the global part
of E1(I2) dominates the local part almost surely as
n → ∞. Concretely, there exist constants c1, c2 that
the following statements hold:

1. For unweighted graph wij = 1: limn→∞
Eglobal

1

Elocal
1

→
∞ almost surely as n→∞, k > log(n) and k

n → 0

with a probability of at least 1− c1n exp(−c2
√
nk)

(converging to 1).

2. For Euclidean weighted graph with wij =

d(xi, xj):
Eglobal

1

Elocal
1

→ ∞ almost surely as n → ∞,

k > log(n) and k
n → 0 with a probability of at

least 1− c1n exp(−c2
√
nk) (converging to 1).

3. For Gaussian weighted graph with wij =

exp(
d(xi,xj)

2

δ2 ): Eglobal
1

Elocal
1

→ ∞ almost surely as

n→∞, k > log(n), kn → 0 and O(δ) = ( kn )
1
d with

a probability of at least 1−c1n exp(−c2k ·log(nk )
d
2 )

(converging to 1).

Please find the proofs in the supplementary mate-
rial. The valid region definition is the same as in
(von Luxburg et al., 2014), but in fact, we only re-
quire that distribution p is bounded and the graphs
are connected. Note that the conditions of parameters
in these theorems cover all the conditions for hitting
times and commute distances to lose global informa-
tion (von Luxburg et al., 2014). Hence, our proposed
distance can retain global information in the cases that
resistance distance cannot.

3.3 Lp Space Embedding of Graphs

We show that Rp and R12 distances are metrics in cor-
responding Lp spaces. Therefore, the distances natu-
rally lead to embeddings of the graphs onto Lp spaces
that preserve global information. The idea is to utilize
the formulation of I2 from L−1. Let ei ∈ Rn denote a
vector of all zeroes except for the i-th position having
value 1.
Lemma 3.5. Let V (i) = L−1.i denote the i-th column
of L−1, respectively. Then,

V (s) − V (t) = L−1(es − et) (5)

is a possible potential assignment to the nodes of the
network that makes the unit flow from xs to xt.
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Figure 1: Heatmaps of pairwise resistance distances for a two-
cluster distribution (details in Section 4.1) with different numbers
of data points sampled: 100 points (left) and 800 points (right).
Block structures of the distance matrices, indicating cluster struc-
tures, were lost for large graphs.

  

Figure 2: Composition of E1(I2) in a sim-
ple network: shortest path distance (to-
tal flow in non-shaded region) plus the
amount of flow on longer paths (shaded
region).

Theorem 3.6. (Lp space embedding) The following
embedding f of the nodes of graph G into an Lp space:

f : X → R|E|

xs → f(xs) = {· · · ,
V

(s)
i − V (s)

j

r
(p−1)/p
ij

, · · · }T(i,j)∈E (6)

makes the p-norm of the space coincide with Rp:
‖f(xs)− f(xt)‖p = Rp(xs, xt).

Proof in the supplementary file for brevity.
Corollary 3.7. Both Rp and R12 are metrics.

R12 is also a metric because it is a convex combination
of two metrics.

3.4 Computing Rp and R12 distances

We show that these distances can be computed effi-
ciently for all pairs of nodes in large graphs, as opposed
to p resistance distance even in small graphs.
Theorem 3.8. Given the inverse Laplacian matrix
L−1, the Rp and R12 distances between any pair of
nodes can be computed in O(m) time.

Proof. The formulas (5) and (6) allow us to compute
Rp and R12 distances in O(m) time complexity from
L−1 as computing the p-norm in an m dimensional
space. Therefore, the total cost of computing all pair-
wise distances of a graph is the time to inverse the
matrix L plus O(mn2).

This is different from p resistance distance, which is
obtained by solving an O(n2) number of optimization
problems, each with m variables and n linear equality
constraints.

3.5 The phase transition

Rp and R12 have trade-off parameters p and α respec-
tively. When p = 1 and α = 0, the global energy

dominates the local one as both distances converge to
R1(I2). When p = 2 and α = 1, the local one dom-
inates global ones as both distances converge R2(I2).
Due to the the continuity of the distances as functions
of p and α, there should be phase transition points
p∗ and α∗ that separate the dominant sides: local or
global. The exact transition points are hard to com-
pute (Alamgir and von Luxburg, 2011), but can be es-
timated roughly. For example, let β∗ = 1 − α∗, then,
with the usual definition of local and global parts as in
(Alamgir and von Luxburg, 2011), the transition point
can be characterized as follows.

O(β∗) = O(
E2(I2)

local

E1(I2)global
) (7)

The phase transition points are necessary in the cases
that we wish to have local information having the same
or higher weight compared to global one.

3.6 Comparison with p Resistance Distance

Our proposed distances and p resistance distance are
different in the flows used. p resistance distance uses
Ip to address the first issue of E2(I2). However, for
all pairs of nodes (xs, xt), Ip(xs, xt) is computed inde-
pendently by solving an optimization problem, mak-
ing this method computationally infeasible even for a
small. On the other hand, our proposed distances use
I2, which can be computed for all pairs of nodes alto-
gether, are computationally efficient for large graphs.

Our proposed distances and p resistance distance are
similar in energy function Ep to address the second
issue of E2(I2). For small p (< 2), Ep gives more
weight to the global part of corresponding flows (I2 and
Ip), making Eglobalp larger. This is key to have global
information not to be dominated by local information.
Fortunately, addressing the second issue is enough to
overcome the global information loss problem.
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4 Simulation

We showed simulated experiments in which graphs
were generated with known cluster structures to show
that our distances can overcome the global information
loss problem. The distances being compared were: (i)
R2 (square roots of resistance distances), (ii) R1, (iii)
Rp with p = d+1

d , (iv) R12 with α = 1 − 1
k·n1/d , and

(v) the shortest path distance (sp). These values of pa-
rameters p and α were set to be around the transition
points (these are recommended values). Note that,
p resistance distance, the only method that provably
overcome the problem, cannot be experimented due to
its high computational complexity even for very small
graphs.

The distances are compared by the quality of their
clustering solutions using clustering accuracy. Clus-
tering accuracy measures how clustering results agree
with the known labels (each label corresponds to a
component in the distribution, expecting as a cluster
in graph). To compare metric distances for clustering
purpose, in all our experiments, we used k-medoids
algorithm on these (precomputed) distances and re-
ported the accuracy of the best assignment of clusters
to the (given) classes of data. Distances were also visu-
alized in heat maps for intuition (supplementary file).

4.1 Two-cluster case

We designed simulations with clear cluster structures
to show that our proposed distances take into account
global graph information. The experimental setup was
as follows. Mixtures of two anisotropic Gaussian com-
ponents fi(x) = c · exp(− 1

2δ2 |x −mi|2), i = 1, 2, with
x,mi ∈ Rd were generated, having standard deviation
in any direction of δ = 1. n/2 points were sampled
independently from each component, then all the n
points were used to construct k ≈ log(n) nearest neigh-
bor graphs (random geometric graphs). Data points
from the same component are expected form a cluster
in graphs, stored in each half of the data set. Dis-
tances taking global information of graphs into account
should have short distances for the pairs of points in
the same half. A demo of the global information loss
problem for resistance distance is shown in Figure 1.

4.2 Data size effect

In this simulation, we set d = 7, |m1 −m2| = 4 (being
4 apart from each other) for different sizes of graphs:
n = 50 to 800, with the corresponding numbers of
nearest neighbors of k = 5 to 9 (namely, k ∼= log(n)).2

Clustering accuracy of the distances were shown in
Figure 3 (a). We could observe that clustering ac-
curacy of R2 decreased as n increased. However, clus-

0 100 200 400 800Data size
0.75

0.8

0.85

0.9

0.95

1

1.05

C
lu

st
er

in
g 

A
cc

ur
ac

y

R
2

R
1

R
p

R
12

sp

5 10 15 20
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Dimension
C

lu
st

er
in

g 
A

cc
ur

ac
y

 

 

R
2

R
1

R
p

R
12

sp

Figure 3: Clustering accuracies for the distances at
(a) different data sizes (upper, for dimension 7) and
(b) different dimensions (lower, for data size of 200) of
the spaces (x axis).

tering accuracies of our proposed distances remained
stable and significantly higher than that of R2. The
results of our proposed distances were also much more
stable (low variances) compared to that of R2. This
also confirmed the merit of our proposed distances.

4.3 Dimensional effect

We also found experimentally that as the dimension
of the space (d) increased (with a fixed data size), re-
sistance distance also lost global information in the
same way as data size increased. We showed simu-
lations over different dimensions d = 5, 10, 15 and 20
for n = 2002. We showed clustering accuracy for dif-
ferent dimensions in Figure 3 (b). We could observed
that, as the dimension became larger, our proposed
distances were still able maintained high clustering ac-
curacies while R2 could not. Our proposed distances
were also more stable, having much lower variances.
This also confirmed the merit of our proposed dis-
tances. However, in too high dimension spaces, nearest
neighbor distances are not reliable, making neighbor-
hood graphs and all distances based on these graphs,

2The heat maps of the distances are shown in the sup-
plementary file for intuition.
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Table 1: Clustering accuracies of the distances for different data sets.

Clustering accuracy (in percentage)
R2 R1 Rp R12

idian 69.4±2.9 65.8±2.1 64.7±2.4 65.5±1.7
pop 86.5±8.9 59.8±6.4 62.8±6.4 61.4±9.2
spect 72.2±6.7 57.4±5.0 57.5±3.5 60.3±9.8
ecoli 77.4±10.7 67.9±8.4 74.1±6.4 73.8±9.8
iris 60.1±9.1 87.9±7.5 71.9±17.3 78.6±7.1

column 69.7±0.0 73.4±1.7 72.6±2.0 73.2±1.8
breast 93.7±10.7 89.6±12.0 79.6±12.2 88.1±1.3

ionosphere 60.3±2.6 65.2±0.0 65.2±0.0 63.6±4.5
user 44.2±3.0 49.4±2.4 49.1±4.4 49.0±4.3

including our proposed distances, meaningless.

5 Experiments

We showed experiments on real supervised data with
known classes2, to see whether our proposed distances
can discover cluster structures corresponding to classes
more effectively than resistance distance. We selected
data sets for classification from UCI Machine Learn-
ing repository3 with numerical attributes and the sizes
that the global information loss problem might occur
(> 100 nodes). k nearest neighbor graphs were gen-
erated with k > log(n). We grouped nodes of graphs
according to their class labels to see if they formed
clusters. We showed clustering accuracy for each data
set in Table 1. There were two scenarios. The first sce-
nario was that the classes formed clear cluster struc-
tures, even when resistance distance failed to capture
the cluster structures, our distances were expected to
show them. The second scenario was that the classes
did not form cluster structures, therefore, the graphs
did not have clusters corresponding to the classes. In
this scenario, it was reasonable to expect that all the
distances failed to show cluster structures.

The clustering accuracies indicated that our proposed
distances performed well in practice. It could be
observed from Table 1 that clustering accuracies of
R2 were never significantly higher than those of our
proposed distances. Especially, clustering accuracies
of R2 were significantly lower in iris, column, iono-
sphere and user data sets. It is possible that our
proposed distances had higher clustering performances
than resistance distance (R2) because they overcame
the global information loss problem, as in the first sce-
nario. It was also noteworthy that our proposed dis-
tances did not always guarantee performance improve-
ments. This could be the second scenario that the data
might not suffer from global information loss problem

3http://archive.ics.uci.edu/ml/

that we were targeting. Given that this was supervised
data and classes might not coincide with clusters, this
result was very encouraging that our distances could
show cluster structures.

We show the heat maps of distances on real data to
show how clear cluster structures can be seen by us-
ing our proposed distances compared to resistance dis-
tance in Figure 4.

6 Conclusion

We proposed two distance functions, Rp and R12, that
overcome the problem of global information loss in
large graphs. Our proposed distances are proved to
have global information dominated local one if the pa-
rameters are properly set in the same manner as p
resistance distance. The distances are metrics, natu-
rally leading to embeddings of graphs into Lp spaces.
They can be computed efficiently for large graphs. In
synthetic and real data experiments, they were shown
to be effective in capturing cluster structures while re-
sistance distance failed even for simple cases. Future
work includes elucidating more theoretical properties
of edge space embedding, scaling up the distances for
massive data sets, transforming from distances to sim-
ilarity measures such as kernels for classification and
other tasks as well as applications.
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Figure 4: Results on real datasets from UCI Machine Learning repository. The datasets were for classification.
We grouped the nodes according to their classes to see whether the distances on the generated graphs could show
cluster structures by having diagonal blocks with shorter pairwise distances. The first three datasets showed that
no distances could discover cluster structures, probably because the classes did not form clusters. For the rest
of the datasets, our distances could always show clear cluster structures. On the other hand, resistance distance
either not clearly showed the cluster structures, or completely failed to show them.
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