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Abstract
We formulate ensemble clustering as a regulariza-
tion problem over nuclear norm and cluster-wise
group norm, and present an efficient optimization
algorithm, which we call Robust Convex Ensem-
ble Clustering (RCEC). A key feature of RCEC al-
lows to remove anomalous cluster assignments ob-
tained from component clustering methods by us-
ing the group-norm regularization. Moreover, the
proposed method is convex and can find the glob-
ally optimal solution. We first showed that us-
ing synthetic data experiments, RCEC could learn
stable cluster assignments from the input matrix
including anomalous clusters. We then showed
that RCEC outperformed state-of-the-art ensemble
clustering methods by using real-world data sets.

1 Introduction
Clustering is a major technique in data science with many
applications including text clustering [Huang et al., 2011] and
image segmentation [Shi and Malik, 2000], etc. However, no
single clustering algorithm, such as k-means [Hartigan and
Wong, 1979] and spectral clustering [Ng et al., 2002], can
capture all types of patterns and so clustering results are likely
to be unstable, if the assumption behind the used model is
violated [Jain, 2010].

Ensemble clustering [Strehl and Ghosh, 2003] has been
proposed to improve the performance of a single clustering
algorithm by integrating more than one clustering results (i.e.,
the partition vectors p, see Figure 1). Ensemble clustering
can be regarded as a meta-learning algorithm [Zhou, 2012],
and there exist various types of methods including graph the-
ory based approaches [Fern and Brodley, 2004], probabilistic
models [Topchy et al., 2005; Wang et al., 2011], matrix fac-
torization based models [Li et al., 2007], and matrix comple-
tion [Yi et al., 2012]. However, these algorithms implicitly
assume that all input partitions by different clustering algo-
rithms are reasonably good while this assumption can be eas-
ily violated if partition vectors include anomalous partitions.

For solving the problem of anomalous partitions, the
weighted consensus clustering (WCC) algorithm has been
proposed [Li and Ding, 2008]. WCC uses “importance”
weights over partitions which are estimated from inputs by

quadratic programming (QP), resulting lower weights for
more anomalous partitions to be removed. Recently, an al-
ternative approach, Instance-wise weighted NMF (Nonnega-
tive Matrix Factorization)-based Aggregation (INA), has been
proposed [Zheng et al., 2015]. INA tries to find anomalous
clusters within a partition (See Figure 1), while WCC tries to
find anomalous partitions. Both approaches are state-of-the-
art ensemble clustering methods that can deal with anoma-
lous partitions/clusters. However, they are non-convex; the
clustering performance heavily depends on initial parameter
values. That is, for both WCC and INA, parameter values
need to be carefully initialized. However, finding appropriate
initial parameter values is a rather hard problem.

We propose Robust Convex Ensemble Clustering (RCEC).
Specifically, we formulate the ensemble clustering problem
as a nuclear norm and cluster-wise group norm regularization
problem. A clear advantage of RCEC over WCC and INA is
that the formulation of RCEC is convex and can find the glob-
ally optimal solution, being free from tuning initial parameter
values. Moreover, the group norm regularization allows to re-
move anomalous clusters efficiently. Through synthetic and
real-world experiments, we show that the proposed method
outperformed state-of-the-art ensemble clustering methods.

In summary, the contributions of this paper are as follows:

• We formulate the ensemble clustering problem as an op-
timization problem with nuclear norm and cluster-wise
group norm regularization, and propose an efficient op-
timization algorithm over this problem.

• We introduce the `2,1 norm regularization to detect
anomalous clusters. To our knowledge, this is the first
work to use the `2,1 norm in ensemble problems.

• The proposed method empirically outperformed state-
of-the-art ensemble clustering algorithms.

2 Problem Formulation
Let S = [s1, . . . , sN ] ∈ Rd×N be the feature matrix for N
instances and P = [p1, . . . ,pM ] ∈ RN×M be the input par-
tition matrix obtained by applying M clustering algorithms
to S. The pm = [p1,m, p2,m, . . . , pN,m]> ∈ RN are the
partition vectors, where pi,m ∈ {1, 2, . . . ,Km} and Km is
the number of clusters for the m-th partition. Note that, the
number of clusters in different partitions can be different.
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Figure 1: An example of cluster assignment matrix L (N =
9,M = 3,K1 = 3,K2 = 3,K3 = 3).

We further define binary cluster assignment matrices Lm ∈
RN×Km , indicating the clusters to which each instance be-
longs, as follows:

[Lm]ij =

{
1 if pi,m = j
0 otherwise .

The columns of the partition matrix Lm can be permuted
without loss of generality.

We pool all binary cluster assignment matrices as

L = [L1, . . . LM ] ∈ RN×K , K =

M∑
m=1

Km

and use L as the input matrix for our algorithm. In this paper,
we assume two types of clusters: normal clusters with dom-
inant patterns and anomalous clusters without the patterns.
Figure 1 shows an example of L.

The goal of this paper is to find normal partitions/clusters
from the binary cluster assignment matrices, and use the ob-
tained normal clusters for meta-clustering.

3 Related Work
We first introduce related ensemble clustering methods and
discuss their drawbacks.

Graph-based ensemble methods: Graph-based methods
first construct a graph (bi-graph, hypergraph, or meta-graph)
from input partitions and then apply a graph-cut partition-
ing algorithm to get ensemble clustering results. The hy-
brid bipartite graph formation (HBGF) generates a bipartite
meta-graph from a binary assignment matrix L, where both
input clusters and instances are nodes. HBGF then finds a
clustering assignment from the bipartite graph. HBGF has
been empirically verified to be a state-of-the-art graph-based
method [Huang et al., 2011; Fern and Brodley, 2004]. How-
ever, HBGF treats normal and anomalous partitions/clusters
equally.

Matrix completion based ensemble methods: ECMC [Yi
et al., 2012] is a two-step method. The first step is to con-
struct the similarity matrix Wm (Wm

ij = 1 if instances i and

j are in the same cluster of the m-th partition, zero other-
wise.) from a binary assignment matrix L and filter out un-
certain data pairs (possibly anomalous input pairs) using pre-
defined thresholds. Then, they use a matrix completion al-
gorithm to complete the partially observed similarity matrix.
Finally, spectral clustering is used to obtain the final clus-
tering result from the completed similarity matrix. ECMC
uses pre-defined thresholding parameters, and may lose some
important information. Similarly, the Robust Clustering En-
semble (RCE) [Zhou et al., 2015] also focuses on detecting
anomalous instance pairs.

Non-negative matrix factorization (NMF) based ensemble
methods: NMF-based methods factorize the input similarity
matrix or the cluster assignment matrix, to obtain a consensus
cluster assignment matrix. NMF-based consensus clustering
(NMFC) [Li et al., 2007] is the first NMF-based algorithm.
Similar to ECMC, NMFC first computes the similarity ma-
trix from L and then uses orthogonal non-negative matrix tri-
factorization (tri-NMF) [Ding et al., 2006] to have a cluster
assignment matrix. Since NMFC uses the input similarity
matrix that is estimated from all normal and anomalous par-
titions, the performance of NMFC can be poor if there exist
some anomalous partitions. To overcome this issue, WCC [Li
and Ding, 2008] introduces “importance” weights over input
partitions which are determined by quadratic programming
(QP). That is, WCC computes the similarity matrix by putting
larger weights for normal partitions and smaller weights for
anomalous partitions. However, WCC assumes that some
partition vectors p are anomalous. This means even if clus-
ters within an anomalous partition are normal, WCC may ig-
nore those information. Moreover, WCC is computationally
expensive due to the QP computation.

Instance-wise Weighted NMF-based Aggregation (INA)
[Zheng et al., 2015] was proposed to overcome the prob-
lem of WCC. More specifically, INA introduces weights
over clusters to explicitly consider normal/anomalous clus-
ters. The objective function of INA is given as

min
H≥0,G≥0,Ψ≥0

‖L�Ψ−HGT ‖2 + λ‖Ψ‖2

s.t. (L�Ψ)1K×1 = 1N×1,

where Ψ = (φij)
N×K is a weighting matrix, indicating the

reliability of cluster j for instance i. WCC and INA can han-
dle anomalous partitions/clusters, but both are non-convex,
resulting in that initial parameter values need to be carefully
tuned.

4 Proposed method
4.1 Robust Convex Ensemble Clustering Model
The key idea of RCEC is to reconstruct a cluster assignment
matrix X from L by choosing representative normal clusters.
To this end, we impose cluster-wise (column-wise) sparsity
by assigning a `2,1 regularizer to X . Moreover, since the
matrix L tends to be low-rank, we assume the rank of the
obtained assignment matrix to be smaller than the number of
true clusters c.



The optimization problem can be written as

min
X≥0

‖L−X‖2F + β‖X‖2,1

s.t. rank(X) ≤ c, (1)

where β ≥ 0 is the regularization parameter tuning the num-
ber of anomalous clusters, ‖·‖F is the Frobenius norm, and ‖·
‖2,1 is the `2,1-norm defined as follows [Yuan and Lin, 2006;
Yang et al., 2011; He et al., 2012; Yang et al., 2013]:

‖X‖2,1 =

K∑
j=1

√√√√ N∑
i=1

X2
ij =

K∑
j=1

‖X.j‖2,

where X.j represents the j-th column of X , which corre-
sponds to a particular cluster. The `2,1-norm enforces spar-
sity over groups and non-sparsity within a group, and thus,
the coefficients of anomalous clusters can be shrunk to zero
by imposing the `2,1-norm regularization. Note that, we add
the non-negativity constraint X ≥ 0, since the input binary
partition matrix L is non-negative.

The rank constraint in Eq. (1) is non-convex, and we use
the nuclear norm as a convex surrogate of the rank function.
The nuclear norm is defined as

‖X‖∗ = tr
(
(X>X)1/2

)
=

min(N,K)∑
i=1

σi,

where σi is the singular values of X . Since the nuclear norm
is defined as the sum of singular values, it can be regarded as
the `1 regularization of singular values. Thus, by imposing
the nuclear norm, we can obtain low-rank estimation.

We then reformulate the objective function as the follow-
ing:

min
X≥0
‖L−X‖2F + λ‖X‖∗ + β‖X‖2,1,

where λ ≥ 0 is a regularization parameter.
Due to the non-differentiability of the nuclear norm, we

consider the Schatten-p norm as a uniform smooth approxi-
mation to the nuclear norm [Mohan and Fazel, 2012]. The
smooth Schatten-p function is given as

fp(X) = tr
(
(XTX + γI)p/2

)
=

min(N,K)∑
i=1

(σ2
i (X) + γ)p/2,

The fp(X) is differentiable for p > 0 and convex for p ≥ 1.
With γ = 0, f1(X) = ‖X‖∗, which is also known as the
Schatten-1 norm [Mohan and Fazel, 2012].

Using the Schatten-1 norm as a smooth approximation to
the nuclear norm, our objective function becomes

min
X≥0
‖L−X‖2F + λtr

(
(XTX + γI)1/2

)
+ β‖X‖2,1, (2)

where I ∈ RK×K denotes the identity matrix. Eq. (2) is a
convex optimization problem with respect to X .

After obtaining the assignment matrix X , we apply the
normalize cuts method (Ncut) [Shi and Malik, 2000] on the
linear kernel of X to obtain the final clustering results.

4.2 Optimization
We propose an iterative algorithm to solve Eq. (2). We first
rewrite Eq. (2) as

J(X) = tr(XTX − 2LTX) + λtr
(
(XTX + γI)1/2

)
+β

K∑
j=1

‖X.j‖2 − tr(∆XT ), (3)

where Lagrangian multipliers ∆ ∈ RN×K enforce the non-
negativity constraints X ≥ 0.

The derivative of Eq. (3) with respect to X is given as

∂J(X)

∂X
= 2X−2L+λX(XTX+γI)−1/2+βXD−∆

= 2X+βXD+λXH+−λXH−−2L−∆,

where Dii =
1

‖X.i‖2
1, H+ = (|H|+H)/2, H− = (|H| −

H)/2, and H = (XTX + γI)−1/2.
From the Karush–Kuhn–Tucker (KKT) conditions,

[∂J(X)
∂X ]ijXij = 0 and ∆ijXij = 0,∀i, j, we have

[2X + βXD + λXH+ − λXH− − 2L]ijXij = 0. (4)

This is a fixed point equation that the solution must satisfy
when converged.

Next, we show that the following updating rule satisfies the
KKT condition of Eq. (4):

X
(t+1)
ij ←X

(t)
ij

√
[2L+ λX(t)H−(t)]ij

[2X(t)+βX(t)D(t)+λX(t)H+(t)]ij
. (5)

The limiting solution of updating rule of Eq. (5) makes
the rule to satisfy the fixed point equation: when converged,
X(∞) = X(t+1) = X(t) = X where t → ∞. Then, the
updating rule of Eq. (5) reduces

Xij←Xij

√
[2L+ λXH−]ij

[2X + βXD + λXH+]ij
. (6)

From Eq. (6), we get the following equations:

[2X + βXD + λXH+ − λXH− − 2L]ijX
2
ij = 0. (7)

Eq. (7) is identical to Eq. (4). Hence if Eq. (7) holds,
Eq. (4) also holds and vice versa. So we have proved that the
limiting solution of the updating rule of Eq. (5) satisfies the
KKT condition.

The pseudo-code of our optimization process is presented
in Algorithm 1.

Complexity Analysis: The complexity of computing H is
O(K3), because of matrix inversion. Thus, the entire com-
plexity for updating X isO(T (K3 +NK2)), while the time
complexity of INA is O(c2NKT ) (c and T are the number
of clusters and iterations, respectively.). In reality, since K
is the order of hundreds and K � N , the complexity of the
proposed method is practically feasible.

1When ‖X.i‖2 = 0, we cannot set Dii. Thus we use (‖X.i‖2+
ς) which approximates ‖X.i‖2, when ς → 0.



Algorithm 1 The RCEC algorithm
Input: S ∈ Rd×N , the number of clusters c
Output: X ∈ RN×K , consensus partition

1: Generate input partitions P from S using clustering al-
gorithms, and construct the binary assignment matrix L.
2: Initialize X(0) randomly.
3: repeat
4: Compute D(t) = 1

‖X(t)‖2
H(t) = (XT (t)X(t) + γI)−1/2

5: Optimize X by solving Eq. (5).
6: until converges
7: Return the final clustering result as :
consensus partition = Ncut(XXT , c)
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Figure 2: Examples of input partitions (10 clusters). (a)
True cluster assignments; (b) Normal partition; (c) Anoma-
lous partition; (d) Extremely anomalous partition. Each color
corresponds to a cluster assignment.

5 Experiments
In this section, we first examine the proposed method us-
ing synthetic data sets, and then compare the performance
of RCEC with five ensemble clustering algorithms HBGF,
ECMC, NMFC, WCC, and INA using real-world data sets.
For a fair comparison, the true number of clusters is given as
a priori parameter to all methods. The performance is evalu-
ated by normalized mutual information (NMI), a widely used
information theoretic measure for evaluating clustering meth-
ods [Ana and Jain, 2003; Chen and Cai, 2011].

5.1 Synthetic Dataset
In this experiment, we first generate a true partition vector
p∗ ∈ R100, which consists of 10 clusters, and each cluster
has 10 instances (Figure 2 (a))2. Then, we generate 10 nor-
mal partitions {pm}10m=1 based on the true partition p∗ (Fig-
ure 2 (b)). A normal partition pm consists of 5 normal clus-
ters and 5 anomalous clusters. In a normal cluster, only 20%
of instances are randomly permuted to other clusters, while

2In Figure 2, The y-axis indicates instances, and different colors
correspond to different clusters. The normal partition includes more
normal clusters than the anomalous partitions which consist of a few
normal clusters and many anomalous clusters.

Table 1: Data sets used in the experiments . N is the number
of instances, c is the number of clusters, d is the number of
feature and N LC (N SC) is the number of instances in the
largest (smallest) cluster.

Datasets N c d N LC N SC

Tr11 [Karypis, 2002] 414 9 6429 132 6
K1b [Karypis, 2002] 2340 6 13879 1389 60
ORL [Cai et al., 2006] 400 40 1024 10 10

in an anomalous cluster, 80% of instances are randomly per-
muted to other clusters. Moreover, we prepare some anoma-
lous partitions and extremely anomalous partitions. As shown
in Figure 2 (c), each anomalous partition p′m consists of 10
anomalous clusters. We use the pooled normal and anoma-
lous partitions {pm}10m=1 ∪ {p′m}n

′

m=1 as the input. We vary
the number of (extremely) anomalous partitions n′ and report
the average NMI score. Note that the extremely anomalous
partition (Figure 2 (d)) contains one true cluster and nine ex-
tremely anomalous clusters, where all instances scatter in dif-
ferent true clusters.

Figure 3 (a) and (b) show the results of Ave3, HBGF,
ECMC, NMFC, WCC, INA and RCEC when adding anoma-
lous partitions and extremely anomalous partitions, respec-
tively. As shown in these figures, the performance of existing
methods significantly decreased by adding anomalous clus-
ters, while RCEC was more robust against anomalous clus-
ters.

Furthermore, we checked whether the RCEC algorithm can
safely get rid of anomalous clusters. To this end, we de-
fine two indicators (normalized magnitude) lj/maxj(lj) and
xj/maxj(xj), where lj =

∑N
i=1 Lij , xj =

∑N
i=1 Xij , j =

1, 2, . . . ,K. Please note when lj/maxj(lj) is large and
xj/maxj(xj) is small (possibly zero), the cluster would be
likely to be an anomalous cluster. Figure 4 (a) and (b) show
the indicators of L and X when n′ = 5 and extremely
anomalous partitions are added. From the figures, we can
see that clusters 101 to 150 correspond to extremely anoma-
lous clusters, and blue and red regions correspond to normal
and anomalous clusters, respectively. We can then clearly see
that RCEC could retain normal clusters (blue) and filter out
anomalous clusters (red).

5.2 Real-world Data sets
We evaluated the RCEC algorithm using two text and one
image data sets, which are summarized in Table 1.

For the text data sets, we used the TFIDF [Manning et al.,
2008] features. We randomly chose 60%, 70%, . . . , 100% of
the entire features for experiments. In this experiment, 30
partitions estimated by k-means were used as the input. We
repeated the experiment 10 times by changing the random
seed and reported the average NMI values. We used λ = 0.1,
γ = 0.01, and β = {0.01, 1, 2, 4, 6, . . . , 20}. For NMF-based
ensemble methods (including NMFC, WCC, and INA), we
ran those algorithms five times with different initial parame-
ter values and averaged over the clustering results. This is a

3“Ave” is the average NMI values of all input partitions (cluster-
ing algorithms).
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Figure 3: Performance comparison on the synthetic data sets when (a) anomalous partitions and (b) extremely anomalous
partitions are added.
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Figure 5: Results on the real-world data sets. (a) Performance with changing the number of input partitions on the Tr11 data
set; (b) Objective function value of RCEC with respect to the number of iterations on the Tr11 data set; (c) Performance and
computation time of INA and RCEC with respect to the number of initializations.

common heuristic to stabilize the ensemble clustering algo-
rithms.

Tables 2, 3 and 4 show the performance of different algo-
rithms in terms of NMI. We could not include WCC, since

WCC is computationally too expensive. The three tables
clearly indicate that RCEC outperformed existing methods,
being statistically significant.
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Figure 6: (a) Performance of RCEC with changing parameter β; (b) Performance of RCEC with changing parameter λ.

Table 2: NMI values on the Tr11 data set. We compared
the best method having the highest mean NMI with all other
methods using paired t-test. The best method at the signifi-
cance level 5% is highlighted in boldface.

Ratio (%) Ave HBGF ECMC NMFC INA Proposed

60 0.6298 0.6651 0.7002 0.6898 0.7007 0.7154
70 0.6408 0.6823 0.7076 0.7041 0.7115 0.7292
80 0.6523 0.6808 0.7055 0.6988 0.7057 0.7299
90 0.6589 0.6790 0.7066 0.7055 0.7117 0.7225
100 0.6674 0.7002 0.7147 0.7120 0.7150 0.7307

Table 3: NMI values on the K1b data set.
Ratio (%) Ave HBGF ECMC NMFC INA Proposed

60 0.5916 0.6315 0.6478 0.6159 0.6675 0.6735
70 0.5994 0.6346 0.6532 0.6129 0.6723 0.6764
80 0.5948 0.6347 0.6511 0.6083 0.6617 0.6686
90 0.6016 0.6402 0.6653 0.6003 0.6620 0.6714
100 0.6061 0.6560 0.6687 0.6118 0.6697 0.6813

Table 4: NMI values on the ORL data set.
Ratio (%) Ave HBGF ECMC NMFC INA Proposed

60 0.7560 0.7743 0.6825 0.7776 0.7588 0.7812
70 0.7538 0.7733 0.6815 0.7790 0.7612 0.7830
80 0.7577 0.7747 0.6835 0.7806 0.7685 0.7888
90 0.7565 0.7737 0.6960 0.7818 0.7717 0.7853
100 0.7600 0.7786 0.6980 0.7893 0.7695 0.7881

Number of Partitions and Parameters: We evaluated the
clustering performance as a function of the number of input
partitions. The process of generating input partitions was re-
peated 10 times. In the experiments, we used 60% of input
features, γ = 0.01, and λ = 0.1. Figure 5 (a) shows the re-
sults with changing the number of input partitions on the Tr11
data set. RCEC outperformed other methods through all the
numbers of input partitions.

RCEC has two essential parameters β and λ. Figure 6
shows how the performance of RCEC varied with the param-
eter values of β and λ. From the results, the performance of
RCEC could be kept consistently when β is within [10, 16]
and λ in [10−6, 100].

Convergence and Computation: Figure 5 (b) shows the
speed of convergence of the proposed algorithm on the Tr11
data set. We can see that the multiplicative updating rule con-
verged very quickly, usually within 20 iterations. We also
compared the computation time of the proposed method with
INA (Figure 5 (c)). In this experiment, since INA is a non-
convex method, we ran INA several times with different ini-
tializations and averaged over those clustering results to ob-
tain a stable result. From the results, we can see that the clus-
tering performance of INA were better by increasing a larger
number of initializations, which however results in a larger
amount of computation time. On the other hand, RCEC can
find the global minimum, by which we just need to run RCEC
only once. Hence RCEC runs faster than INA in practice,
which makes the performance of RCEC higher.

6 Conclusion

We have proposed a new method for ensemble clustering
which we call Robust Convex Ensemble Clustering (RCEC).
The key idea of RCEC is to use the nuclear norm to han-
dle the low-rank structure of the cluster assignment matrix
and the group norm to detect anomalous clusters. The for-
mulation has the convex property, which allows to obtain the
global minimum, for which we have presented a simple yet
effective multiplicative updating rule. Extensive experiments
on synthetic and real data sets showed the effectiveness and
efficiency of our approach comparing to the state-of-the-art
ensemble clustering methods.
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