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Abstract
Mathematical cell models are effective tools to understand cellular physiological functions

precisely. For detailed analysis of model dynamics in order to investigate how much each

component affects cellular behaviour, mathematical approaches are essential. This article

presents a numerical analysis technique, which is applicable to any complicated cell model

formulated as a system of ordinary differential equations, to quantitatively evaluate contribu-

tions of respective model components to the model dynamics in the intact situation. The

present technique employs a novel mathematical index for decomposed dynamics with re-

spect to each differential variable, along with a concept named instantaneous equilibrium

point, which represents the trend of a model variable at some instant. This article also illus-

trates applications of the method to comprehensive myocardial cell models for analysing in-

sights into the mechanisms of action potential generation and calcium transient. The

analysis results exhibit quantitative contributions of individual channel gating mechanisms

and ion exchanger activities to membrane repolarization and of calcium fluxes and buffers

to raising and descending of the cytosolic calcium level. These analyses quantitatively expli-

cate principle of the model, which leads to a better understanding of cellular dynamics.

Introduction
Mathematical modelling has been an effective method in physiology for precise and compre-
hensive understanding of the dynamic behaviour of cells. A number of mathematical cell mod-
els have been developed, and recent models of cardiac cells [1–5] have been more detailed and
thereby complicated by including multiple cellular functions to explain new experimental find-
ings. Conventionally, these models have been used to simulate wet experiments. In contrast
with wet experiments, an accurate and more complete set of experimental data can be obtained
by numerical simulation. Additionally, mathematical models enable simulation experiments
that are otherwise impracticable, such as a pure and complete blockade of an ion channel or a
perfect control of the intracellular composition. Despite the success of simulation, such
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conventional simulation is insufficient to achieve the full potential of mathematical cell models.
Since the whole mechanisms of each model dynamics are explicitly defined in mathematical
expressions, models potentially enable quantitative clarification of their detailed behaviour,
which leads to a better understanding of cellular dynamics.

Each of mathematical cell models is generally formulated as a system of ordinary differential
equations (ODE) with respect to time. The ODE model variables interact with each other either
directly or indirectly and vary simultaneously. In order to elucidate the causes and results of
this interaction, inspection of model equations is essential but difficult for detailed models due
to complicated interdependences of variables. To overcome this difficulty, mathematical ap-
proaches are required. One such approach applicable to mathematical cell models is bifurca-
tion analysis, which is used to investigate qualitative changes in a system of equations by
smooth changes in parameter values. More specifically, the bifurcation analysis can determine
whether a model converges, diverges, or oscillates depending on the parameter values. For in-
stance, Kurata and his collaborators [6–12] have applied the bifurcation analysis to mathemati-
cal models for understanding the oscillatory phenomena in ventricular and sinoatrial node
cells. The singular perturbation method of asymptotic analysis is a method for inspection of
the dynamic behaviour of mathematical models. In this method, variables are divided into fast
and slow ones, and steady states of a model in regarding the slow variables as parameters are
traced in time. Analysis based on this method can explain dynamic change in characteristics,
e.g. membrane excitability of cardiac cells [13–16]. These methods can answer why a model
has its behaviour.

Another fundamental question in model dynamics is how much each model component af-
fects the model behaviour. In physiological experiments, the most conventional approach for
examining contribution of a cellular component is activation or inhibition of a target function
using agonists, blockers or knockout of the corresponding gene. The same kinds of methods
have been also applied to many simulation studies by altering the corresponding parameter val-
ues. However, the interpretation of results of these methods for estimating contribution of a
component in physiological condition is extremely difficult in most cases. Since a modification
to a component secondarily causes changes in other components which also affect the target
function, the resultant change in the function cannot be considered as a sole effect of the mod-
ulated component but a mixed effect of the other components. To overcome this difficulty,
Clewley et al. [17, 18] have developed ‘dominant scale method’, and Cha et al. [19] ‘lead poten-
tial analysis’. However, their methods are limited to analyses of cellular membrane potential.

In this study, a numerical method is introduced for quantitatively decomposing dynamics
of mathematical cell models. This method is applicable to analysis of every model variables,
and able to evaluate contributions of individual model components to the dynamics of a vari-
able. Firstly, the mathematical definition of the proposed method is presented in this article.
Then, applications of the method to action potential and calcium transient of ventricular myo-
cyte models are illustrated.

Method
This section provides the mathematical definition of a novel index for decomposed dynamics
of an object variable in an ODE model, following to introduction of a concept ‘instantaneous
equilibrium point.’ For a time-dependent variable v, v(t) denotes the value of v at t, and _v de-
notes the first derivative of v with respect to t, i.e., dv/dt. A variable v is called a differential vari-
able if _v is explicitly defined in a model.

Quantitative Decomposition of Dynamics of Mathematical Cell Models
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Consider the dynamics of an object differential variable x. Let the derivative of x

_x ¼ f ðx;yÞ; ð1Þ

where y is a vector of all the other differential variables.

By introducing an auxiliary time-dependent function f̂ ðtÞ such that f̂ ðtÞðxÞ ¼ f ðx;yðtÞÞ at t
for any value of x, for simplicity, Eq 1 at a certain time tc can be written as

_x ¼ f̂ ðtcÞðxÞ ¼ f ðx;yðtcÞÞ: ð2Þ

By linearizing Eq 2 with the first-order Taylor series of f̂ ðtcÞðxÞ at x(tc),
_x � _x ðtcÞ þ f ðtcÞx � ðx � xðtcÞÞ ¼ � f ðtcÞx �ð�x ðtcÞ � xÞ; ð3Þ

�x≜x � _x=fx; ð4Þ

where f ðtcÞx stands for the partial derivative of f with respect to x at (x(tc), y(tc)). Eq 3 expresses the

tangent line to f̂ ðtcÞðxÞ at x(tc), or to f(x, y) at the current value of x in assuming that y is constant
with its value at tc. The x-intercept of the tangent line is �x ðtcÞ. Consequently, the linearized Eq 1
at tc with respect to x is obtained:

_x ¼ �f ðtcÞx �ð�x ðtcÞ � xÞ: ð5Þ

Thus, �x ðtcÞ is the fixed point of Eq 5, which is stable if f ðtcÞx is negative or unstable if positive.

Namely, x is naively attracted to or repelled from �x ðtcÞ. Hence, �x is referred to as the instanta-
neous equilibrium point of x, which represents the trend in x at some instant. Since �x is time-
dependent, the orbit of x in Eq 1 is additionally affected by temporal change in �x . Therefore,
temporal change in �x can be regarded as representing active dynamics of x.

To decompose the active dynamics of x, consider an effect of temporal change in a variable
y of y on a variation in �x at a certain moment. A sensitivity kx,y of the rate of change in �x to the
rate of change in y is mathematically expressed as

kx;y ¼
@ _�x
@ _y

¼ @�x
@y

¼ fxy _x � fx fy
ðfxÞ2

; ð6Þ

where fxy stands for the second-order mixed derivative of f with respect to x and y, and fy for
the partial derivative of f with respect to y. Here, y dynamic of x is defined by the sensitivity kx,y
weighted by _y , the current rate of change in y at the moment:

cx;y≜kx;y _y ¼ @ _�x
@ _y

_y ¼ @�x
@y

_y ¼ fxy _x � fx fy
ðfxÞ2

_y: ð7Þ

Similarly, x dynamic of x itself is defined:

cx;x≜
@�x
@x

_x ¼ fxx
ðfxÞ2

_x2; ð8Þ

where fxx stands for the second-order partial derivative of f with respect to x.
For the chain rule,

_�x ¼ @�x
@x

_x þ
X

y2y

@�x
@y

_y ¼ cx;x þ
X

y2y
cx;y: ð9Þ

Consequently, cx,y is _y component of the rate of change in �x , that is, the decomposed dynamics
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of x. The sign of cx,y, which is determined by the both signs of kx,y and _y , indicates whether a
temporal change in y induces x to increase in the positive case or decrease in the negative case.

Note that cx,x represents an effect of the nonlinearity of f̂ ðxÞ.

Application

Models and Methods
The present method is demonstrated using the two mathematical ventricular myocyte models.
One is a guinea pig model proposed by Takeuchi et al. [1], which represents membrane excita-
tion, ion homeostasis, excitation-contraction coupling, volume regulation, and the balance of
ATP production and consumption. This model formulates the spermine block and the magne-
sium block of IK1, which is a major outward current of ventricular myocytes. In the original
model, while the open probability y of the spermine block is expressed as a differential equa-
tion, the open probability fO of the magnesium block is defined as a steady-state expression.
For that expression a differential equation is substituted in this application (see S1 Appendix),
in order to evaluate the contributions of IK1 through both the magnesium and spermine blocks.
As a result, the number of differential variables of the modified model is 51. The other is a
human ventricular myocyte model published by Priebe and Beuckelmann [5], which includes
action potential generation and calcium dynamics. The number of its differential variables
is 22.

A simulation program is coded in C to invoke an ODE solver, CVODE (Lawrence Liver-
more National Laboratory, Livermore, CA), in which backward differentiation formulae are
used and the time step is adaptively controlled. The first-order partial derivatives of the deriva-
tive functions of differential variables are obtained with automatic formula differentiation. The
second-order partial derivatives are calculated with numerical differentiation. The stimulation
protocol applied to each model follows the corresponding original paper [1, 5]. For the Takeu-
chi model, the stimulation current is injected for 2 ms at 50 ms after the start of the simulation.
For the Priebe model, the stimulation is applied for 3 ms at 0 ms. The values of parameters and
initial values of variables used in the simulation are identical to the original models.

In order to analyse the mechanisms of action potential generation and calcium transient,
which are central functions in ventricular myocyte, object variables in the present analysis are
the membrane potential and the intracellular calcium concentration. For the Takeuchi model,
the amount of cytosolic calcium n(Ca)i replaces the intracellular calcium concentration, be-
cause the concentration is not a differential variable but defined as n(Ca)i divided by the cellu-
lar volume. For the Takeuchi model, simulated time courses of the membrane potential Vm

and n(Ca)i to be analysed are shown with black lines in Figs 1 and 2, respectively. The Takeuchi
model reproduces a typical ventricular action potential with a long plateau, which is formed by
inward and outward ion currents through cellular membrane. The major inward currents are
INa, ICaL, ICaT and INaCa, and the outward currents are IK1 and Il(Ca). An intracellular calcium
transient is determined in the Takeuchi model by transmembrane Ca2+ currents (ICaL, ICaT and
INaCa) and Ca

2+ fluxes across the sarcoplasmic reticulum (SR) membrane (IRyR and ISERCA).
These ion currents and fluxes are shown with black areas in Fig 3. Differential variables for
open probabilities of channel gates, state variables of transporters, and calcium concentration
in SR are also plotted with solid lines. In a similar manner, for the Priebe model, simulated
time courses of the membrane potential V and the intracellular calcium concentration [Ca2+]i
are plotted with black lines in Figs 4 and 5, respectively. All the time courses of model differen-
tial variables are identical to those in [1] and [5].
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Fig 1. Time course of membrane potential (black) and its instantaneous equilibrium point (red) of
Takeuchi model.

doi:10.1371/journal.pone.0124970.g001

Fig 2. Time course of amount of cytosolic calcium (black) and its instantaneous equilibrium point
(red) of Takeuchi model.

doi:10.1371/journal.pone.0124970.g002
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Fig 3. Major currents and differential variables simulated using Takeuchi model. (A) INa, fast sodium current; INa p(AP), open probability of INa voltage
gate. (B) IK1, inward rectifier potassium current; IK1 fO, open probability of IK1 magnesium gate; IK1 y, open probability of IK1 polyamine gate. (C) ICaL, L-type
calcium current; ICaL p(AP), open probability of ICaL voltage-dependent gate; ICaL p(U), open probability of ICaL calcium gate; ICaL y, open probability of ICaL
ultra-slow gate. (D) ICaT, T-type calcium current; ICaT y1, open probability of ICaT activation gate. (E) INaCa, Na

+/Ca2+ exchange current. (F) Il(Ca),
Ca2+-activated background cation current. (G) IRyR, ryanodine receptor channel current; IRyR p(Open), open probability of IRyR gate. (H) ISERCA, SR Ca2+

pump current; ISERCA y, probability of the conformation state with the Ca2+-binding sites onto the SR side. (I) [Ca2+]rel, calcium concentration in SR release
site.

doi:10.1371/journal.pone.0124970.g003
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Fig 4. Time course of membrane potential (black) and its stable and unstable instantaneous
equilibrium point (red and blue, respectively) of Priebe model.

doi:10.1371/journal.pone.0124970.g004

Fig 5. Time course of intracellular calcium concentration (black) and its instantaneous equilibrium
point (red) of Priebe model.

doi:10.1371/journal.pone.0124970.g005
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Dynamics of Action Potential
For the Takeuchi model, a red line in Fig 1 represents the instantaneous equilibrium point

(IEP) of Vm at each time defined in Eq 4, where Vm, _Vm and the partial derivative of _Vm func-
tion with respect to Vm are substituted for x, _x and fx, respectively. Specifically, the IEP of Vm,

Vm is expressed as

Vm ¼ Vm � _Vm=
@ _Vm

@Vm

: ð10Þ

The IEP is higher than Vm during depolarization phase but lower during repolarization phase,
that is, Vm is always attracted to its IEP, because the IEP is stable or fx in Eq 5 is negative
throughout the simulation period. The orbit of the IEP intersects with the time course of Vm

exactly at the peak of Vm (* 53 ms) for Eq 5. Note that IEP during 50–52 ms is not effective to
analysis due to the external current injection. Along with Vm time course and its IEP on the
same time base in the upper panel, each variable dynamic of Vm with a significant value is plot-
ted in the lower panels of Fig 6, separated into four sequential phases of the cardiac action po-
tential; the last 0.5 ms of rising phase of the action potential after termination of the triggering
current injection (phase 0, Fig 6A), the initial repolarizing phase of 4 ms (phase 1, Fig 6B), the
major plateau phase (phase 2, Fig 6C), and the final repolarization (phase 3, Fig 6D). Note that,

for a differential variable v, v dynamic of Vm is expressed as @Vm=@v � dv=dt corresponding to
Eq 7. Similarly for the Priebe model, a red line in Fig 4 represents the stable IEP of V, and a
blue line during 323–365 ms represents the unstable IEP of V. Each variable dynamic of V with
a significant value is plotted in the lower panels of Fig 7, separated into four sequential phases;
the period including the V peak of 2 ms after termination of the triggering current injection
(phase 0, Fig 7A), the initial repolarizing phase (phase 1, Fig 7B), the major plateau phase
(phase 2, Fig 7C), and the final repolarization (phase 3, Fig 7D). IEP during 0–3 ms is not ana-
lysable due to the stimulation current.

An increase in the IEP of the membrane potential prompts an increase in the membrane po-
tential, and vice versa. Therefore, a variable v induces a membrane depolarization if the v dy-
namic of Vm (or V) is positive, or a repolarization if negative. The sign of the v dynamic of Vm

is determined by both kVm,v = @Vm/@v and the derivative of v. Since an inward current itself in-
duces an increase in Vm, kVm,v for an open probability of an inward current is positive. There-
fore, a decrease in the open probability, or its negative derivative, induces a decrease in the IEP
of Vm and contributes to repolarization, while an increase in the probability contributes to de-
polarization. For an outward current, the effect is opposite.

For the Takeuchi model, Fig 6A shows that the fast depolarization in phase 0 is exclusively
attributed to the Vm dynamics of Vm itself. The details are explained later. In phase 1 shown in
Fig 6B, INa p(AP), the open fraction of INa voltage gates is the dominant negative dynamic of
Vm. On the other hand, as shown in Fig 7A for the Priebe model, the IEP of V is already de-
scending at the termination time of the stimulation current, and V simply increases towards
the IEP. After the intersection of V and its IEP (* 3.5 ms), V decreases in pursuit of the IEP
until 10 ms (Fig 7B). The main contributor to the decrease in the IEP ism, the activation gate
of INa (Fig 7A). These results for both models agree with an accepted view that inactivation of
INa voltage gate mainly causes the initial negative shift in Vm. The reason for the large negative
dynamic is that the open fraction is decreasing due to rapid inactivation while the reversal po-
tential of INa is more positive than the IEP. For the Priebe model, V increases again after its ini-
tial negative shift, because the IEP exceeds V again (Fig 7B). The major contributors to the
increase of the IEP are r and t, the activation gate and the inactivation gate of Ito, respectively.
This also agrees with a physiological view.

Quantitative Decomposition of Dynamics of Mathematical Cell Models
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Fig 6. Dynamics of the membrane potential Vm of Takeuchi Model after stimulus offset at different phases (A–D) with different scales, together
with Vm (black) and the instantaneous equilibrium point (red) at the top of each figure on the same time base. INaCa denotes the sum of INaCa p(E1total),
p(I1) and p(I2) dynamics of Vm. A notch of Vm dynamic around 185 ms and a tiny fluctuation of INa p(AP) dynamic around 235 ms in D are errors associated
with division by nearly zero in numerical differentiation.

doi:10.1371/journal.pone.0124970.g006
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Fig 7. Dynamics of the membrane potential V of Priebemodel after stimulus offset at different phases (A–D) with different scales, together with V
(black) and the instantaneous equilibrium point (red) at the top of each figure on the same time base.

doi:10.1371/journal.pone.0124970.g007
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In phase 2 shown in Fig 6C for the Takeuchi model, the major contributors to membrane
repolarization are ICaL p(U) (open probability of ICaL calcium gates), and n(Ca)i subsequently
replaced by INaCa (Na

+/Ca2+ exchange current). ICaL p(U) dynamic of Vm is negative for all
phase 2 and least during 65–110 ms. Decreasing of ICaL p(U) (Fig 3C) by gradual Ca

2+--
dependent inactivation results in a reduction of ICaL, which provides a significant inward cur-
rent. This analysis shows explicitly that an inward current, which has been generally thought to
induce depolarization, contributes to a repolarization when its open probability is decreasing.
Two other variables in ICaL, voltage-dependent inactivation (ICaL p(AP)) and ultra-slow inacti-
vation (ICaL y), also have negative dynamic values. Therefore, closing of ICaL gates induces the
repolarization in phase 2. From the opposite side, this is consistent with a physiological view
that ICaL has major contribution to forming the plateau phase of action potential. The same is
true for the Priebe model. As shown in Fig 7C, f, the inactivation gate of ICa has negative and
least dynamic of V until 175 ms. For the Takeuchi model, the n(Ca)i dynamic of Vm is least
during the early period of the phase 2 about 58–66 ms, but becomes positive after the peak of n
(Ca)i shown in Fig 2. These indicate that the rise in n(Ca)i has a large repolarizing effect on the
Takeuchi model. It is mainly attributable to an activation of Il(Ca) (Fig 3F). Since Il(Ca) is defined
as directly depending on Vm and n(Ca)i without any state variables in the model, its effect on
the dynamics of Vm is not explicitly shown, and included in n(Ca)i dynamics of Vm in this
method. In Fig 7C for the Priebe model, Xs and Xr, the activation gate of IKs and IKr respective-
ly, have relatively small negative dynamics of V. In Fig 6C for the Takeuchi model, dynamics of
Vm relating to IKs or IKr are not shown, because they are negligibly small. These results indicate
that IKs and IKr make effects on the level of membrane potential in phase 2 but rather small dy-
namic effects to induce repolarization.

In the classical view, final repolarization towards the resting potential in phase 3 is mainly
attributable to increase in IK1, decrease in ICaL, and deactivation of INaCa. The results in Fig 6D
show general agreement with the view, and give additional insights into the Takeuchi model.
Voltage-dependent removal of Mg2+ block of IK1 (IK1 fO) induces the repolarization, whereas
closing of voltage-dependent gates (IK1 y) prevent it slightly at late phase 3. Similarly, deactiva-
tion of ICaL voltage gates (ICaL p(AP)) induces the repolarization and opening of Ca2+--
dependent gates (ICaL p(U)) hinders it. Finally, the negative INaCa dynamic of Vm indicates a
repolarizing effect of INaCa, contrary to the fact that its inward current is increasing
until* 225 ms (Fig 3E). The negative INaCa dynamic, which denotes the sum of INaCa p
(E1total), p(I1) and p(I2) dynamics, results from a rearrangement of molecular states of the ex-
changer to decelerate the exchange of intracellular Ca2+ for extracellular Na+. On the other
hand, an inward current of INaCa is determined not only by the molecular states but also by
driving force of Ca2+ influx through the exchanger, which is enlarged by membrane repolariza-
tion. Thus, INaCa affects the repolarization and is affected by it at the same time. The present
method can discriminate the former active effect from the latter passive effect (see Discussion).

As shown in Fig 6A for the Takeuchi model, the Vm dynamic of Vm itself is dominant in
phase 0. It indicates that the increase in Vm induces further depolarization. In this period, mas-
sive INa, which is formulated with Goldman-Hodgkin-Katz flux equation, gives high nonlinear-
ity to the derivative function of Vm. For an instance, the derivative of Vm at 52.05 ms is shown
in Fig 8. Due to the nonlinearity, a positive change in Vm simply shifts the x-intercept, or the
IEP of Vm, in the positive direction. In Fig 7D for the Priebe model, the V dynamic of V itself is
dominant after 310 ms of the final repolarization phase. Fig 9 shows the derivatives of V at 257
ms and 340 ms. When V is greater than the local maximum of the derivative (Fig 9A), V is
headed for its stable IEP, and a negative perturbation to Vmakes the IEP less because of the
nonlinearity of the derivative. The IEP approaches to infinity as V gets close to the local maxi-
mum. When V exists between the local maximum and minimum (Fig 9B), V tends to move in
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Fig 8. Derivative function of Vm of Takeuchi model at 52.05 ms (thick curve) assuming that all the
other differential variables are constant. × is the instantaneous equilibrium point of Vm, which is the x-
intercept of the tangent line (thin line) at the value of Vm at that time (+).

doi:10.1371/journal.pone.0124970.g008

Fig 9. Derivative function of V of Priebe model at 257 ms and 340ms (thick curve in A and B, respectively) assuming that all the other differential
variables are constant. × is the instantaneous equilibrium point of V, which is the x-intercept of the tangent line (thin line) at the value of V at that time (+).

doi:10.1371/journal.pone.0124970.g009
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the opposite direction of its unstable IEP, and a negative change in V shifts its IEP in the nega-
tive direction. Therefore, a reduction in V decreases the IEP, and this induces repolarization
automatically in this phase. Note that enormous negative and positive dynamics of V balances
around switching points of the stability of the IEP of V, because the derivative of the IEP is ex-
tremely large (Eq 9).

Dynamics of Calcium Transient
Another practice of the present method is on calcium transient, which is a transient elevation
of intracellular Ca2+ concentration. For the Takeuchi model, the amount of cytosolic calcium n
(Ca)i and its IEP are plotted with a black and red lines in Fig 2, respectively. The IEP leads the
time course of n(Ca)i because the IEP is stable throughout the simulation period. In the Takeu-
chi model, the calcium transient is determined by balance among three mechanisms; (1) the
net Ca2+ flux across the surface membrane via L-type and T-type Ca2+ channels (ICaL, ICaT),
Na+/Ca2+ exchangers (INaCa) and plasma membrane calcium pumps (IPMCA), (2) the net Ca

2+

flux across the SR membrane via ryanodine receptors (IRyR) and calcium pumps (ISERCA), and
(3) Ca2+-binding to cytosolic Ca2+ buffer proteins. For measuring contributions of these fac-
tors, each variable dynamic of n(Ca)i with a significant value are plotted along with total dy-
namics, the sum of all the dynamics, in two periods; rising and plateau phases of n(Ca)i in Fig
10A, and falling phase in Fig 10B. The total dynamics of n(Ca)i is equivalent to the derivative
of the IEP of n(Ca)i for Eq 9. For the Priebe model also, intracellular calcium concentration
[Ca2+]i and its stable IEP are plotted with a black and red lines in Fig 5, respectively. Individual
dynamics of [Ca2+]i and the total dynamics are shown in two phases; upward phase of [Ca2+]i
in Fig 11A, and downward phase in Fig 11B. Similarly to the analysis of the membrane poten-
tial, a positive dynamic of n(Ca)i or [Ca

2+]i indicates an effect to vary the IEP in the positive di-
rection, and vice versa.

In the general physiological view, the rising phase of the cytosolic calcium level is attribut-
able to calcium-induced calcium release (CICR), in which a slight increase in intracellular Ca2+

by the activation of ICaL and ICaT further triggers a massive Ca2+ release from sarcoplasmic re-
ticula into cytosol through ryanodine receptors (RyRs). In Fig 10A for the Takeuchi model, the
total dynamics of n(Ca)i has the first very brief positive peak during rapid depolarization of the
cellular membrane. This peak is formed by ICaL p(AP) dynamic and ICaT y1 dynamic of n(Ca)i
and additionally by the first sharp peak of IRyR p(Open) dynamic, which is caused by an activa-
tion of RyRs proportional to Ca2+ flux through ICaL. These positive dynamics drive n(Ca)i in
the positive direction slightly. The second wave of the total dynamics is mainly attributed to
IRyR p(Open) via an increase in cytosolic Ca2+ itself caused by the first peak of the total dynam-
ics. These analysis results of the Takeuchi model are in good agreement with the view of the
CICR mechanism. However, subsequent results reveal an important difference. IRyR p(Open)
begins to decrease at 57.8 ms (Fig 3G) during the rise in the IEP of n(Ca)i due to time--
dependent closure of RyRs. This decrease makes IRyR p(Open) dynamic negative and hinders
the rise in n(Ca)i. In addition, the Ca2+ release via RyRs rapidly decreases [Ca2+]rel, total calci-
um concentration in SR release site (Fig 3I). This decrease also hampers the increase in n(Ca)i
via reduction in the Ca2+ concentration gradient across the SR membrane to drive IRyR, as indi-
cated by negative [Ca2+]rel dynamic in Fig 10A. Alternatively, the prominent contributor in the
Tekeuchi model to the increase in the IEP of n(Ca)i after 55 ms is ISERCA, which is to reduce n
(Ca)i by pumping cytosolic Ca2+ into SR though. In a rough explanation, deactivation of ISERCA
decreases Ca2+ flux from cytosol to SR and so induce to increase n(Ca)i. To be precise, ISERCA y
is the fraction of carrier proteins exposing their Ca2+-binding sites toward SR lumens and nega-
tively represents a capability of ISERCA to transfer calcium ions from cytosol. ISERCA y dynamic
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is positive after 52 ms until 77 ms because of the increase in ISERCA y, although ISERCA is in-
creasing until 56 ms and decreasing still after 77ms (Fig 3H) due to passive dependency of
ISERCA on cytosolic Ca2+ concentration. Additionally, the results show that troponin, which is a
cytoplasmic calcium buffer protein, partially contributes to the rise in the IEP of n(Ca)i until
104 ms (Fig 10A and 10B) by a decrease in concentration of calcium-free troponin, or Ca2+

binding sites.
The negative total dynamics of n(Ca)i shown in Fig 10B facilitates the last calcium decrease.

IRyR p(Open) dynamic is continuously negative since the late rising phase until 162 ms. Addi-
tionally, negative ISERCA y dynamic via a decline in ISERCA y and negative troponin dynamic by
the opposite of the aforementioned effect account for a large portion of the total dynamics of n
(Ca)i. In contrast, INaCa dynamic of n(Ca)i is positive due to increased proportion of inactive
conformation states of the exchanger, whereas an inward current of INaCa (Fig 3E) to carry
Ca2+ out of cell is increasing until the end of action potential (* 225 ms) because of an increase
in the voltage-dependent transport rate of INaCa. An effect of the voltage-dependency on n(Ca)i
is represented by a major part of negative Vm dynamic. Therefore, overall contribution of INaCa
to dynamic changes of cytosolic calcium level is relatively small.

Fig 10. Each dynamic and total dynamics of amount of cytosolic calcium, n(Ca)i of Takeuchi model after stimulus onset at two phases (A, B) with
different scales, together with n(Ca)i (black) and the instantaneous equilibrium point (red) at the top of each figure. INaCa stands for the sum of INaCa p
(E1total), p(I1) and p(I2) dynamics of n(Ca)i, and troponin stands for the sum of [T], [TCa], and [TCa*] dynamics of n(Ca)i.

doi:10.1371/journal.pone.0124970.g010
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For the Priebe model, the mechanism of calcium transient is rather simple, because the cal-
cium release and uptake of SR and INaCa are passively formulated without differential variables.
As shown in Fig 11, the elevation of [Ca2+]i triggerd by membrane depolarization is attributed
to d, the activation gate of ICa and partially V, as is the case in the Takeuchi model. Although
the IEP of [Ca2+]i descends after 12 ms caused by the deactivation of ICa (f), the IEP is suffi-
ciently high to raise [Ca2+]i. The time course of the IEP has a plateau around 200 ms, because d
and f dynamics of [Ca2+]i come to zero and balance with each other. Finally, the main contribu-
tors to a decrease in [Ca2+]i are closing of the activation gate of ICa (d) and voltage dependency
of the transmembrane calcium flux (V).

Summary of Analyses
Analysis results in Figs 6 and 7 confirm that the Takeuchi model and the Priebe model provide
generally good agreement with the classic qualitative view on the ionic mechanisms of the ac-
tion potential generation in ventricular myocytes. On the other hand, these analyses exhibit
that inward currents can contribute to the repolarization via their decrease, in contrast to a
classic physiological concept. In the plateau phase, inactivation of Ca2+ channels prompts the

Fig 11. Each dynamic and total dynamics of intracellular calcium concentration, [Ca2+]i of Priebe model after stimulus onset at two phases (A, B)
with different scales, together with [Ca2+]i (black) and the instantaneous equilibrium point (red) at the top of each figure.

doi:10.1371/journal.pone.0124970.g011
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repolarization. Additionally, these analyses provide quantitative insights into the contribution
of each gating mechanism and ion exchanger activity. For instance, IKs and IKr have only small
dynamic effects to induce membrane repolarization. In the last phase of membrane repolariza-
tion, Mg2+ block and voltage-dependent gates of IK1 contradictorily affect the repolarization.
These insights into the dynamic mechanisms of the action potential generation will be useful
for controlling the action potential.

Analyses on calcium transient of the Takeuchi model show good agreement with the general
physiological view of the CICR mechanism in the early phase of [Ca2+]i elevation, but also pro-
vide an important difference. [Ca2+]i rising in the late part is attributable to the reduced capa-
bility of SERCA to take calcium ions into SR. The analyses results also show that the decay
phase of calcium transient on the Takeuchi model is attributable to decrease in calcium release
from SR through IRyR initially and to ISERCA and troponin thereafter.

Discussion

Feature of the Proposed Method
This article presents a novel analytical method, which is applicable to a complicated mathemat-
ical cell model with many variables, for decomposing and quantifying contributions of individ-
ual variables to dynamic change in a variable of interest at each moment during simulations.
Toward this end, the method employs a representative point of the instantaneous trend in the
object variable, ‘instantaneous equilibrium point’, in which the temporal change characterises
dynamics of the object variable. The contributions of variables are evaluated with a quantitative
index, ‘dynamic of the object variable’, of which value is a variable component of a variation in
the instantaneous equilibrium point. Applications of the present method to a ventricular myo-
cyte model demonstrate its capability to mathematically quantify dynamic interactions among
variables of a mathematical model and thereby explicate principle of the model.

Comparison with Other Methods
A conventional method applied to mathematical cell models is sensitivity analysis. In a typical
application manner of sensitivity analysis, variations of simulated results are observed against
variations of model parameters. This analysis is useful for examining comprehensive influence
of chemical or genetic modifications to cellular components. However, estimating contribu-
tions of cellular components to cellular dynamic behaviour is difficult by using this analysis,
because a modification to a model parameter causes cascade effects on cellular dynamics. For
an instance, a decrease in a parameter for the amplitude of Ca2+ current results in not only a
decrease in the Ca2+ current but also a certain decrease in calcium level, and the decrease in cal-
cium level affects Ca2+-dependent processes, which make further effects. In contrast, the pres-
ent method is able to quantify contributions of cellular components to cellular dynamics in the
intact situation. This is a distinguishing feature of the present method.

A method developed to analyze contribution of current components to an action potential
is ‘lead potential analysis’ proposed by Cha et al [19]. The present method can be regarded as a
generalized version of the lead potential analysis. The lead potential (VL) in the Cha’s method
[19, 20] is almost equivalent to the instantaneous equilibrium point of the membrane potential,
and contribution (ci) or relative contribution (rc) corresponds to the dynamic of the membrane
potential. The results in Fig 6 of this article are similar to their analysis results of the Takeuchi
model in Fig. 5 in [19]. Compared to the lead potential analysis, the present method has im-
provements and advantages in several aspects. Firstly, the ci or rc in Cha’s method is procedur-
ally defined, in contrast to the mathematically well-defined present method. Next, the lead
potential analysis has a limitation on treatment of ion transporters as discussed in [19]. To
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calculate the lead potential, the membrane current system through ion channels and transport-
ers are approximately described with an equivalent electrical circuit. While each channel cur-
rent is straightforwardly expressed in the circuit as a pair of a battery for the corresponding
equilibrium potential and a variable conductance to express its dynamic gating, ion transport-
ers are approximated as current sources [19, 21, 22] or ohmic channels [20] depending on the
studies. As a result of the approximation, the contribution of a transporter includes not only ef-
fect of its activity on the membrane potential but also passive effect of the membrane potential
on the transporter. Since the present method mathematically properly processes all compo-
nents in the same manner, a dynamic of the membrane potential only expresses active effect.
For instance, the dynamic effect of conformational changes of INaCa on membrane potential is
successfully discriminated in INaCa dynamic of Vm in Fig 6, in contrast to rc of INaCa in Fig. 5 in
[19]. Finally, in the lead potential analysis, selection of current components of which rc are to
be calculated is arbitrary and demanding, because the components should be selected so that
the summation of rc of all the selected components is exactly 1. In the present method, a set of
variables whose dynamic are calculated is automatically and uniquely determined on the set of
all differential variables. For instance, Il(Ca) dynamic is not defined in the application of the
present method to the Takeuchi model because Il(Ca) is formulated with no state variable,
whereas results in [19] include the contribution of Il(Ca) to the membrane potential.

Another numerical method for analysis of action potential dynamics is ‘dominant scale
method’ proposed by Clewley et al [17]. with the main aim of model reduction. This method
introduces the instantaneous asymptotic target, x1 such that f(x1, y(tc)) = 0 at tc for
_x ¼ f ðx;yÞ, or a fixed point of Eq 2 in the present article. Then, @x1/@y is utilized as an index
of dominance, and j(@V1/@s)(ds/dt)j is referred to as the instantaneous rate of influence [18],
where V is the membrane potential and s is a gating variable. The dominant scale method is
identical to the application of the present method to the membrane potential if dV/dt is linear
with regard to V, as in the case of Hodgkin-Huxley model shown in [18]. The primary differ-
ence of the present method from the dominant scale method is linearization of the derivative
function around the current values of the object variable. Whereas the instantaneous asymptot-
ic target is a global fixed point of a system, the instantaneous equilibrium point is to represent
the instantaneous trend in an object variable as described in Method section. This is an advan-
tage of the present method. Fig 9A displays a situation where the instantaneous asymptotic tar-
get, which is the intersection of the derivative curve and the x-axis (* −75 mV), is far from the
instantaneous equilibrium point (* −44 mV). Although the derivative is zero at the instanta-
neous asymptotic target, the direction that V is heading in at that moment is the instantaneous
equilibrium point. Another advantage of the present method is the uniqueness of the instanta-
neous equilibrium point. There always exists a unique instantaneous equilibrium point of an
object variable of a system except if fx is exactly equal to zero, whereas there can exist no or
multiple instantaneous asymptotic targets. In fact, the derivative of V of the Priebe model has
three instantaneous asymptotic targets in the plateau phase.

Limitations and Applications
In the present method, objects of analysis are limited to differential variables. This property is
both an advantage and a disadvantage. Since the dynamics of an object variable are not defined
with respect to variables of which values are passively determined by other variables, passive
components are automatically excluded in analysis. However, in some models probabilities of
gate opening and conformation states are not formulated as differential equations but as regu-
lar equations assuming instantaneous equilibria for a reason such as computational simplicity
or numerical stability. In order to consider the corresponding dynamic effects in such cases,
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model equations require to be transformed into differential equations in the same manner as
IK1 fO of the Takeuchi model.

The present method is applicable to recent and complicated ventricular myocyte models
[23, 24], although rather simple models analysed in this paper are suitable for the initial dem-
onstration of the proposed method. Moreover, many computational models have been pub-
lished for various physiological phenomena such as electrical activity, signal transduction, and
metabolism. Applications of the present method are not limited to cardiac cell models but pos-
sible to any kind of models defined as a system of ordinary differential equations. On the other
hand, the present method is not applicable to models that utilize formalisms other than ODE,
such as cardiac cell models including detailed spatial-temporal expressions of calcium cycling.

The present method will be useful for analyses of transient phenomena and oscillatory phe-
nomena such as afterdepolarizations of cardiac myocytes, because individual dynamics can be
evaluated at any instant of a process. Control of arrhythmia is a potential application of the
present analysis approach. Furthermore, the present method can analyse dynamics of a vari-
able that contributes to dynamics of another variable successively. To take the application to
the Takeuchi model as an instance, since n(Ca)i has a primary effect on decrease in Vm during
the rising phase of n(Ca)i and ISERCA y is the main contributor to the rise in n(Ca)i, it is quanti-
tatively clarified that the activity of ISERCA indirectly affects the membrane repolarization. Such
consecutive analyses will help quantitative explanations of pathways of physiological
phenomena.

Supporting Information
S1 Appendix. Modified IK1 Magnesium Blockade Model.
(PDF)
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