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1 Introduction

There are two complementary formulation of superstring field theories: the Wess-Zumino-

Witten (WZW)-like formulation [1–5], and the algebraic formulation in terms of the

A∞/L∞ structure [6, 7]. The gauge invariant actions for the Neveu-Schwarz (NS) sector

(or the NS-NS sector for the type II superstring) in the former can be written in a closed

form as WZW-like actions utilizing the large Hilbert space. The corresponding actions in

the latter are constructed in the small Hilbert space using the string products satisfying

the A∞/L∞ relations, whose explicit form is obtained by solving a differential equation

iteratively. Now it has been clarified that two formulations for the open superstring field

theory are interrelated by a partial gauge fixing [8]. In spite of this success, it had been

difficult to complete the action so as to include the Ramond (R) string in covariant way

for a long time.
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However an important progress was recently made in the WZW-like open superstring

field theory: a complete gauge invariant action was constructed [9]. Soon afterwards,

a similar action realizing a cyclic A∞ structure was also constructed [10, 11], and the

relation between two was elucidated [10]. These actions contain both the NS sector and

R sector, describing space-time bosons and fermions, respectively, and completely specify

their interactions. Therefore we are now in a position to study various off-shell aspects of

open superstring theory.1 The purpose of this paper is to extend this progress to the case

of the heterotic string field theory.

Although it has been difficult to construct a complete action, including the R sector,

for heterotic string field theory, the equations of motion was already constructed both in the

WZW-like formulation [14, 15] and in the algebraic formulation [16]. In contrast to those in

the open superstring field theory [9, 17], these equations of motion are nonpolynomial not

only in the NS string field but also in the R string field. Therefore it is natural to consider

that the complete action has also to be nonpolynomial in both the NS and R string fields.

This is also expected from the simple consideration on general amplitudes with external

fermions. We need proper interactions, described by the restricted polyhedra [18, 19],2

including arbitrary (even) number of R string fields to fill the complete integration region

of the moduli space of such amplitudes. This makes more difficult to construct a complete

gauge invariant action for the heterotic string field theory. We attempt to construct a gauge

invariant action order by order in the number of R string, and obtain it up to quartic order.

This paper is organized as follows. In section 2 we will first briefly summarize the

results for the open superstring field theory given in [9]. Several important ingredients to

construct the complete action, which can be straightforwardly extended to the heterotic

string field theory, is introduced. Then we will explain some basics of the heterotic string

field theory in section 3. We will introduce a dual formulation [22] exchanging the role

of η and Q, which is useful for our aim. Section 4 is the main part of the paper. After

introducing R string field in the restricted Hilbert space, we will attempt to construct a

complete action order by order, first in the coupling constant and then in the R string

field. A gauge invariant action will be obtained at the quadratic and quartic order in the

R string field, each of which is exact in the NS string field. In section 5, we will summarize

our results, and provide a few hints to construct a complete action at all order in R string.

In the appendix A, we gives an explicit construction of the dual string products. The

appendix B is added to illustrate how the on-shell physical amplitudes are reproduced

from the constructed action.

2 Complete action for open superstring field theory

In this section we summarize the results given in [9] without going into detail. Let us focus

on a few key points necessary to construct a gauge invariant action of the heterotic string

field theory.

1A closely related approach to the heterotic and type II superstring field theory has been developed by

Sen [12, 13].
2See also [20, 21].
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To begin with, we note that there are two alternative expressions of the WZW-like

action for the NS sector. The original expression given in [3] is

S =

∫ 1

0
dt 〈Ãt(t), ηÃQ(t)〉, (2.1)

where η is the zero mode of η(z) and Ãt and ÃQ are the left-invariant forms

Ãt(t) = g−1(t)∂tg(t), ÃQ(t) = g−1(t)Qg(t), (2.2)

with g(t) = eΦ(t). The NS string field Φ and its one-parameter extension Φ(t) are related

through the boundary conditions, Φ(1) = Φ, Φ(0) = 0.

One can easily see that the action (2.1) can also be written in the dual form in which

the role of η and Q is exchanged:

S = −
∫ 1

0
dt 〈At(t), QAη(t)〉, (2.3)

where At(t) and Aη(t) are the right-invariant forms

At(t) = (∂tg(t))g−1(t), Aη(t) = (ηg(t))g−1(t). (2.4)

As we will see shortly, the latter expression is more suitable for the complete action, in

which the Aη plays a special role. This is not only suitable but essential in the heterotic

string field theory in which two operators η and Q do not appear symmetrically but act

differently on the closed string products.

In order to include the Ramond sector, an important key point is to restrict the Ramond

string field Ψ by the conditions3

ηΨ = 0, XYΨ = Ψ, (2.5)

where X and Y are the picture changing operators acting on states in the small Hilbert

space at picture number −3/2 and −1/2, respectively:

X = −δ(β0) G0 + δ′(β0) b0, Y = −c0 δ
′(γ0). (2.6)

They satisfy the relations

XYX = X, Y XY = Y, (2.7)

implying the operator XY is a projector:

(XY )2 = XY. (2.8)

The former constraint imposes that Ψ is in the small Hilbert space, and the latter restricts

the form of Ψ expanded in the ghost zero-modes as

Ψ = φ+ (γ0 + c0G)ψ . (2.9)

This restricted form was already known to be enough to construct consistent free super-

string field theory [23–25].

3In this paper we use the same symbol Ψ to denote the string field in the Ramond sector both for

the open superstring and for the heterotic string field. We will not confuse them since two cases never

appear simultaneously.
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Note here that the operator X is BRST exact in the large Hilbert space:

X = {Q,Θ(β0)}, (2.10)

where Θ(x) is the Heaviside step function satisfying Θ(x)′ = δ(x). More generally, we

introduce the following operator Ξ which is more suitable for use in the large Hilbert

space [10]:

Ξ = ξ0 + (Θ(β0)ηξ0 − ξ0)P−3/2 + (ξ0ηΘ(β0)− ξ0)P−1/2 , (2.11)

where Pn is the projector onto states at picture number n. The anti-commutator {Q,Ξ} is

not identical to X, but equal to X if it acts on a state in the small Hilbert space at picture

number −3/2. In other words, we can use the relation X = {Q,Ξ} on a state in the small

Hilbert space at picture number −3/2. Using this Ξ, we can define an important linear

operator F (t) as

F (t) =
1

1 + Ξ(Dη(t)− η)
= 1 +

∞∑
n=1

(−Ξ(Dη(t)− η))n, (2.12)

where

Dη(t)A ≡ ηA−Aη(t)A+ (−1)AAAη(t), (2.13)

on an arbitrary Ramond string field A. This linear operator F (t) satisfies the relation

Dη(t)F (t) = F (t)η, (2.14)

and thus the dressed Ramond string field F (t)Ψ with the Ramond string field Ψ restricted

by the constraints (2.5) is annihilated by Dη(t).

Now a complete gauge invariant action is given by

S = −1

2
〈〈Ψ, Y QΨ〉〉 −

∫ 1

0
dt〈At(t), QAη(t) + (F (t)Ψ)2〉, (2.15)

where 〈〈·, ·〉〉 is the BPZ inner product in the small Hilbert space. We can show that this is

invariant under the gauge transformations [9]:

Aδ = QΛ +DηΩ + {FΨ, FΞ({FΨ,Λ} − λ)}, (2.16)

δΨ = Qλ+XηFΞDη({FΨ,Λ} − λ), (2.17)

where Λ and Ω are gauge parameters in the NS sector and λ is a gauge parameter in the

Ramond sector satisfying

ηλ = 0, XY λ = 0. (2.18)

3 The NS sector of heterotic string field theory

Next we summarize in this section the known results in the NS sector of the heterotic

string field theory [2, 3]. In particular, we provide a dual formulation [22] which plays a

significant role when we will include the Ramond sector in the next section.
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3.1 Basic ingredients

In the heterotic string, the holomorphic sector and anti-holomorphic sector are described

by superconformal field theory and conformal field theory, respectively. The conformal field

theory for anti-holomorphic sector consists of the matter sector with c = 26, and the repa-

rameterization ghosts, (b̃(z̄),c̃(z̄)). The superconformal field theory for holomorphic sector

consists of the matter sector with c = 15, the reparameterization ghosts, (b(z), c(z)), and

the superconformal ghosts, (β(z), γ(z)). An alternative description using (ξ(z), η(z), φ(z))

is known for the superconformal ghost sector [27], related through the bosonization relation:

β(z) = ∂ξ(z)e−φ(z), γ(z) = eφ(z)η(z). (3.1)

Therefore, we can consider two Hilbert spaces for describing the superconformal ghost

sector. One is called the large Hilbert space, constructed as the Fock space of ξ(z), η(z),

and φ(z). The other called the small Hilbert space can be defined as a subspace annihilated

by the zero mode of η(z), which is equivalent to the Hilbert space constructed as the Fock

space of β(z) and γ(z). Note that any η-exact state belongs to the small Hilbert space due

to the nilpotency η2 = 0.

Let V1 and V2 be a pair of heterotic string states which satisfy the closed string con-

straints

b0Vi = 0, L−0 Vi = 0, (i = 1, 2), (3.2)

and belong to the large Hilbert space. The inner product of them is given by

〈V1, V2〉 = 〈V1|c−0 |V2〉, (3.3)

where 〈V1| denotes the BPZ conjugate of |V1〉. It is non-vanishing when the sums of the

ghost number g and the picture number p of the two input states are (g, p) = (4,−1).

It satisfies

〈V1, V2〉 = (−1)(V1+1)(V2+1)〈V2, V1〉, (3.4)

and

〈QV1, V2〉 = (−1)V1〈V1, QV2〉, 〈ηV1, V2〉 = (−1)V1〈V1, ηV2〉. (3.5)

The interactions of closed strings are described using the string products provided

in [21]

Q, [ · , · ], [ · , · , · ], · · · . (3.6)

The n-string product carries ghost number −2n + 3 (and picture number 0). The string

products are graded symmetric upon the interchange of the arguments

[Vσ(1), . . . , Vσ(k)] = (−1)σ({V })[V1, . . . , Vk], (3.7)

and cyclic with respect to the inner product:

〈V1, [V2, . . . , Vn+1]〉 = (−1)V1+V2+...+Vn〈[V1, V2, . . . , Vn], Vn+1〉 , (3.8)
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Here σ denotes the permutation from {1, . . . , n} to {σ(1), . . . , σ(n)}, and the factor

(−1)σ({V }) is the sign factor of the permutation from {V1, . . . , Vn} to {Vσ(1), . . . , Vσ(n)}.
Defining [V ] = QV , the string products satisfy the following relations called

the L∞-relations :

0 =
∑
σ

n∑
m=1

(−1)σ({V }) 1

m!(n−m)!
[ [Vσ(1), . . . , Vσ(m)], Vσ(m+1), . . . , Vσ(n)] . (3.9)

They describe an infinite number of relations, the first few of which is given by

0 = Q2, (3.10)

0 = Q[V1, V2] + [QV1, V2] + (−1)V1 [V1, QV2], (3.11)

0 = Q[V1, V2, V3] + [QV1, V2, V3] + (−1)V1 [V1, QV2, V3] + (−1)V1+V2 [V1, V2, QV3]

+ [[V1, V2], V3] + (−1)V1(V2+V3)[[V2, V3], V1] + (−1)V3(V1+V2)[[V3, V1], V2] . (3.12)

The operator η acts as a derivation on the string products:

η
[
V1, . . . , Vn

]
=

n−1∑
i=1

(−1)1+V1+···+Vk−1
[
V1, . . . , ηVk, . . . , Vn

]
. (3.13)

It is useful to introduce new string products [· · · ]B,

[V1, · · · , Vn]B ≡
∞∑
m=0

κm

m!
[Bm, V1, · · · , Vn], (n ≥ 1), (3.14)

shifted by a Grassmann even NS string field B with ghost number 2 and picture number 0.

If B satisfies the Maurer-Cartan equation

QB +
∞∑
n=2

κn−1

n!
[Bn] = 0, (3.15)

the shifted string products (3.14) satisfy the identical L∞ relation to (3.9):

0 =
∑
σ

n∑
m=1

(−1)σ({V }) 1

m!(n−m)!
[ [Vσ(1), . . . , Vσ(m)]B, Vσ(m+1), . . . , Vσ(n)]B . (3.16)

In particular, setting n = 1, this relation provides the nilpotency of the shifted BRST

charge, (QB)2 = 0, defined by

QBV ≡ [V ]B = QV +
∞∑
m=1

κm

m!
[Bm, V ] . (3.17)

3.2 WZW-like action

On the basis of the WZW-like formulation, a gauge invariant action for the NS sector

of heterotic string field theory was provided in [3] by an extension of the Berkovits open

superstring field theory. We use a heterotic string field Ṽ in the large Hilbert space for the
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NS sector, which is a Grassmann-odd, and has ghost number 1 and picture number 0.4 It

also satisfies the closed string constraints

b−0 Ṽ = 0 , L−0 Ṽ = 0 . (3.18)

We introduce a one-parameter extension Ṽ (t) satisfying Ṽ (0) = 0 and Ṽ (1) = Ṽ . The

operators ∂t and δ as well as η act as derivations on the string products:

X[Ṽ1(t), . . . , Ṽn(t)] =
n∑
k=1

(−1)X(1+Ṽ1+···+Ṽk−1)[Ṽ1(t), . . . ,XṼk(t), . . . , Ṽn(t)], (3.19)

where X = η, ∂t or δ. A key ingredient in the WZW-like action is the pure-gauge string

field G(Ṽ (t)), which is a Grassmann even functional of Ṽ (t) with ghost number 2 and

picture number 0 satisfying the Maurer-Cartan equation (3.15):

QG(Ṽ ) +

∞∑
n=2

κn−1

n!
[G(Ṽ )n] = 0 . (3.20)

It was shown in [3] that such a functional G(Ṽ ) can be obtained by solving the differential

equation

∂τG(τ Ṽ ) =

∞∑
m=0

κm

m!
[G(τ Ṽ )m, Ṽ ] = Q

G(τṼ )
Ṽ , (3.21)

iteratively with the initial condition, G = 0 at τ = 0, and set τ = 1.

Acting a derivation operator X = η, ∂t, or δ on (3.20), we have

QG(XG) = 0 . (3.22)

Here QG is nilpotent due to (3.20). Since its cohomology is trivial in the large Hilbert

space, one can find that XG is QG-exact and can define a functional ΨX(Ṽ ), which we call

an associated field, satisfying

XG(Ṽ ) = (−1)XQ
G(Ṽ )

ΨX(Ṽ ). (3.23)

We denote Ψt(Ṽ ) for Ψ∂t(Ṽ ) for simplicity. The associated field Ψη(Ṽ ) is Grassmann-

even and carries ghost number 2 and picture number −1. The associated fields Ψt(Ṽ )

and Ψδ(Ṽ ) are Grassmann-odd and carry ghost number 1 and picture number 0. These

associated fields can also be obtained by iteratively solving the differential equations

∂τΨX(τ Ṽ ) = XṼ + κ
[
Ṽ ,ΨX(τ Ṽ )

]
G(τṼ )

, (3.24)

with the initial condition, ΨX = 0 at τ = 0, and set τ = 1.

4We put˜on the field V to distinguish it from the field in the dual formulation introduced in the next

subsection. Two fields Ṽ and V are identical at the leading order in the coupling constant κ, but different

at order κ2 [22].
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Utilizing these functionals G and ΨX, a gauge-invariant action can be written in the

WZW-like form:

SWZW = −
∫ 1

0
dt〈Ψt(t), ηG(t)〉, (3.25)

with ΨX(t) ≡ ΨX(Ṽ (t)) and G(t) ≡ G(Ṽ (t)). One can show that the variation of the

integrand becomes a total derivative in t

δ
〈
Ψt(t), ηG(t)

〉
= ∂t

〈
Ψδ(t), ηG(t)

〉
, (3.26)

and thus the variation of the action is given by

δSWZW = −〈Ψδ(Ṽ ), ηG(Ṽ )〉, (3.27)

since Ṽ (0) = 0, and ΨX(0) = G(0) = 0. From (3.27) we find that the equation of motion

is given by

ηG(Ṽ ) = 0, (3.28)

and the action (3.25) is invariant under the gauge transformations5

Ψδ = QGΛ̃ + ηΩ̃, (3.29)

where the gauge parameters Λ̃ and Ω̃ are Grassmann even with ghost number 0, and carry

picture number 0 and 1, respectively. The gauge invariance follows from the nilpotency of

QG and η, and one of the relations (3.23): ηG = −QGΨη.

3.3 Dual formulation

Then we provide a dual formulation for the heterotic string field theory given in [22],

which is suitable and useful to include the Ramond sector. It is dual in the sense that

the role of η and Q is exchanged, and natural extension of (2.3) and (2.4) for the open

superstring field theory, on the basis of which a complete action in [9] is constructed. An

explicit construction and more detailed discussion on the dual formulation is explained in

appendix A.

In the dual formulation, an L∞-structure starting with η plays a central role. Note

that, in the case of the open string, a set of products {η,−∗} satisfy the A∞-relations: η

is nilpotent, η acts as a derivation on the star product, and the star product is associative.

As a natural extension of {η,−∗}, we introduce a set of products satisfying L∞-relations,

which we call the dual sting products :

η, [ · , · ]η, [ · , · , · ]η, · · · . (3.30)

The dual string products are graded commutative upon the interchange of the input string

field, and cyclic:

[Vσ(1), . . . , Vσ(k)]
η = (−1)σ({V })[V1, . . . , Vk]

η, (3.31)

〈V1, [V2, · · · , Vn+1]η〉 = (−1)V1+V2+···+Vn〈[V1, · · · , Vn]η, Vn+1〉 . (3.32)

5Note that Ψδ is invertible as a function of δṼ . See also [3] and [28].
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They satisfy the L∞ relations:

∑
σ

n∑
k=1

1

k!(n− k)!
(−1)σ({V })[[Vσ(1), . . . , Vσ(k)]

η, Vσ(k+1), . . . , Vσ(n)

]η
= 0, (3.33)

where we denote ηVi as [Vi]
η. The sign factor (−1)σ({V }) is that of the permutation from

{V1, . . . , Vn} to {Vσ(1), . . . , Vσ(n)}. The n-th dual string product carries ghost number 3−2n

and picture number n− 2. We also require that the BRST operator Q acts as a derivation

on the dual string products:

Q
[
V1, . . . , Vn

]η
+

n∑
k=1

(−1)V1+···+Vk−1
[
V1, . . . , QVk, . . . , Vn

]η
= 0. (3.34)

We can actually construct such dual string products from the well-known string products,

ξ0 and the picture changing operator X0 = {Q, ξ0}, details of which is given in [22] or

appendix A. For later use, we introduce a one parameter extension V (t) satisfying V (0) = 0

and V (1) = V . The operators X = Q, ∂t, or δ acts as a derivation on the dual string pro-

ducts:

X[V1, . . . , Vn]η =

n∑
k=1

(−1)X(1+V1+···+Vk−1)[V1, . . . ,XVk, . . . , Vn]η . (3.35)

Utilizing the dual string products, we can provide an alternative gauge-invariant action

in the dual manner to that for the WZW-like action reviewed in the previous subsection.

In the dual formulation, we denote the NS string field as V , which is a Grassmann-odd

state in the large Hilbert space with ghost number 1 and picture number 0. It satisfies the

closed string constraint:

b−0 V = 0 , L−0 V = 0 . (3.36)

Pure-gauge string field Gη(V ) in the dual formulation is defined as a functional of V (t)

with ghost number 2 and picture number −1 satisfying the Maurer-Cartan equation dual

to (3.20):

0 = ηGη(V ) +
∞∑
n=2

κn−1

n!
[Gη(V )n]η. (3.37)

As with G satisfying (3.20), Gη can be obtained by solving the differential equation

∂τGη(τV ) =
∞∑
m=0

κm

m!
[Gη(τV )m, V ]η, (3.38)

iteratively with Gη(0) = 0, and setting τ = 1. We define the shifted products of dual string

products as

[V1, V2, · · · , Vn ]ηGη ≡
∞∑
m=0

κm

m!
[(Gη)

m, V1, V2, · · · , Vn]η, (n ≥ 1), (3.39)
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which are also graded commutative and cyclic. In particular, it is useful to define the

shifted η-operator Dη as the shifted one-string product [ · ]ηGη :

DηV ≡ [V ]ηGη =

∞∑
m=0

κm

m!
[(Gη)

m, V ]η

= ηV +

∞∑
m=1

κm

m!
[(Gη)

m, V ]η . (3.40)

The shifted dual string products satisfy the L∞ relation:∑
σ

n∑
k=1

1

k!(n− k)!
(−1)σ({V })[[Vσ(1), . . . , Vσ(k)]

η
Gη
, Vσ(k+1), . . . , Vσ(n)

]η
Gη

= 0 . (3.41)

Their lowest two relations represent that Dη is nilpotent and acts as a derivation on the

dual shifted two string products:

(Dη)
2V1 = 0, (3.42)

Dη[V1, V2]ηGη = −[DηV1, V2]ηGη − (−1)V1 [V1, DηV2]ηGη . (3.43)

The operator X = Q, ∂t, or δ acts on the shifted dual products as

X[V1, . . . , Vn]ηGη =
n∑
k=1

(−1)X(V1+···+Vk−1+1)[V1, . . . ,XVk, . . . , Vn]ηGη

+ (−1)Xκ[XGη, V1, . . . , Vn]ηGη . (3.44)

In particular,

XDηV1 = (−1)XDηXV1 + (−1)Xκ[XGη, V1]ηGη . (3.45)

Acting X on the Maurer-Cartan equation (3.37) we have

DηXGη(V ) = 0 . (3.46)

Thus, since Dη cohomology is trivial, XGη(V ) is Dη-exact and can be written as

XGη(V ) = (−1)XDηBX(V ), (3.47)

by introducing associated fields BX(V ). The associated field BQ is Grassmann-even and

carries ghost number 2 and picture number 0, and Bt (≡ B∂t) and Bδ are Grassmann-

odd and carry ghost number 1 and picture number 0. They are obtained by solving the

differential equations

∂τBX(τV ) = XV + κ
[
V,BX(τV )

]η
Gη(τV )

, (3.48)

iteratively with BX = 0 at τ = 0, and then set τ = 1. By multiplying 0 = XY− (−1)XYYX
to Gη for X,Y = Q, ∂t, or δ, we can show that the identity

Dη

(
XBY − (−1)XYYBX − (−1)Xκ[BX, BY]ηGη

)
= 0 , (3.49)
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which is useful later, holds using (3.47), (3.45), and (3.43). We can also show

〈DηV1, V2〉 = (−1)V1〈V1, DηV2〉, (3.50)

from the definition (3.40).

An alternative gauge invariant action, which we call the dual WZW-like action, is given

using these functionals Gη(V ) and Bt(V ) by

S =

∫ 1

0
dt 〈Bt(t), QGη(t)〉 , (3.51)

with Bt(t) ≡ Bt(V (t)) and Gη(t) ≡ Gη(V (t)). The variation of the action can be calcu-

lated as

δS = 〈Bδ(V ), QGη(V )〉 , (3.52)

in a completely parallel manner with the original formulation in [3]. Thus the equation of

motion is given by

QGη(V ) = 0 , (3.53)

and the action is invariant under the gauge transformation

Bδ = QΛ +DηΩ . (3.54)

The gauge parameters Λ and Ω having ghost number 0 carry picture number 0 and 1,

respectively. The gauge invariance follows from the nilpotency (Dη)
2 = Q2 = 0, and

QGη = −DηBQ.

Another important property of the dual string products is their Q-exactness. The

dual n-string products for n ≥ 3 themselves written as a BRST variation of some products

(· · · )η which we call the dual gauge products :

[V1, · · · , Vn]η = Q(V1, · · · , Vn)η −
n∑
k=1

(−1)V1+···+Vk−1(V1, · · · , QVk, · · · , Vn)η, (n ≥ 3) ,

(3.55)

which is consistent with the fact that Q acts as a derivation on the dual string products.

Since the dual string products are Grassmann odd, the dual gauge products are Grassmann-

even. The n-th dual gauge product carries ghost number −2n+2 and picture number n−2,

and is commutative and cyclic:

(Vσ(1), · · · , Vσ(n))
η = (−1)σ({V })(V1, · · · , Vn)η, (3.56)

〈V1, (V2, · · · , Vn+1)η〉 = (−1)V2+···+Vn+1〈(V1, · · · , Vn)η, Vn+1〉 , (3.57)

where (−1)σ({V }) is the sign factor of the permutation from {V1, . . . , Vn} to

{Vσ(1), . . . , Vσ(n)}. Two operators X = ∂t, or δ act as a derivation also on this product,

X(V1, · · · , Vn)η =

n−1∑
i=1

(−1)(V1+···+Vi−1)(V1, · · · ,XVi, · · · , Vn)η . (3.58)
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It is useful again to define the shifted dual gauge products (· · · )ηGη by

(V1, · · · , Vn)ηGη =
∞∑
m=0

κm

m!
((Gη)

m, V1, · · · , Vn)η , (n ≥ 3). (3.59)

Note that the n-th shifted dual product contains all the dual products higher than n. The

shifted dual products are cyclic, which follows from the cyclicity of the dual products:

〈V1, (V2, · · · , Vn+1)ηGη〉 = (−1)V2+···+Vn+1〈(V1, · · · , Vn)ηGη , Vn+1〉. (3.60)

They are related to the shifted dual products [V1, . . . , Vn]ηGη as follows.

[V1, · · · , Vn]ηGη =

∞∑
m=0

κm

m!
[(Gη)

m, · · · , V1, · · · , Vn]η

=
∞∑
m=0

κm

m!

(
Q((Gη)

m, V1, · · · , Vn)η −m((Gη)
m−1, QGη, V1, · · · , Vn)η

−
n∑
k=1

(−1)V1+...+Vk−1((Gη)
m, V1, · · · , QVk, · · · , Vn)η

)
= Q(V1, · · · , Vn)ηGη −

n∑
k=1

(−1)V1+···+Vk−1(V1, · · · , QVk, · · · , Vn)ηGη

− κ(QGη, V1, · · · , Vn)ηGη . (3.61)

Due to the shift, the operators X = ∂t, or δ do not act as a derivation on the shifted dual

gauge product but satisfies the relation

X(V1, · · · , Vn)ηGη =
n∑
k=1

(V1, · · · ,XVk, · · · , Vn)ηGη + κ(XGη, V1, · · · , Vn)ηGη . (3.62)

4 Inclusion of the Ramond sector

Now let us include the Ramond sector. In this section, after introducing the Ramond string

field constrained into the restricted Hilbert space, we attempt to construct a gauge invariant

action order by order in the coupling constant κ. The result can easily be extended to the

full order for the part of the action quadratic in fermion, which has the form of a natural

extension of the complete action for the open superstring field theory. In the heterotic string

case, however, it is not gauge invariant, and necessary to include the interactions containing

arbitrary even number of Ramond string fields. We determine the quartic term explicitly.

4.1 Ramond string field and restricted Hilbert space

Following the case of the open superstring field theory [9], we introduce a string field Ψ

constrained in the restricted Hilbert space,

ηΨ = 0, XYΨ = Ψ, (4.1)
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for the Ramond sector. It is a Grassmann even state with the ghost number 2 and the

picture number −1/2, and satisfies the closed string constraint

b−0 Ψ = L−0 Ψ = 0. (4.2)

The picture changing operators X and Y are defined by

X = −δ(β0)G0 + δ′(β0)b0, Y = −2c+
0 δ
′(γ0), (4.3)

which act on states in the small Hilbert space with the picture number −3/2 and −1/2,

respectively. These operators are inverse each other in the sense that they satisfy

XYX = X, Y XY = Y , (4.4)

which make the operator XY a projector:

(XY )2 = XY. (4.5)

In addition, X is commutative with the BRST charge Q, [Q,X] = 0. These are enough

to guarantee the compatibility of the restriction with the BRST cohomology, that is, if

XYΨ1 = Ψ1 then XYQΨ1 = QΨ1, which can be shown as

XYQΨ1 = XYQXYΨ1 = XYXQYΨ1 = XQYΨ1 = QXYΨ1 = QΨ1. (4.6)

The operator Y is chosen to be commutative with b−0 so that all the constraints in (4.1)

and (4.2) are consistent. Expanding the ghost zero modes, the restricted Ramond string

field has the form

Ψ = φ+ (γ0 + 2c+
0 G)ψ, (4.7)

with

L−0 φ = b±0 φ = β0φ = 0, L−0 ψ = b±0 ψ = β0ψ = 0, (4.8)

where G = G0 + 2b0γ0.

The appropriate inner product in the restricted Hilbert space is given by6

〈〈Ψ1, YΨ2〉〉, (4.9)

using the BPZ inner product 〈〈A,B〉〉 in the small Hilbert space restricted by (4.2):

〈〈A,B〉〉 = 〈〈A|c−0 |B〉〉. (4.10)

The state 〈〈A| is the BPZ conjugate of |A〉〉. Using this inner product we take the free

action for the Ramond sector to be

S0 = − 1

2
〈〈Ψ, Y QΨ〉〉, (4.11)

which is invariant under the gauge transformation

δΨ = Qλ . (4.12)
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field V Ψ Λ Ω λ

Grassmann odd even even even odd

(g,p) (1, 0) (2,−1/2) (0, 0) (0, 1) (1,−1/2)

Table 1. Properties of the string fields and the gauge parameters with the ghost number g and

the picture number p.

The gauge parameter λ also satisfies the same constraints as Ψ:

b−0 λ = L−0 λ = ηλ = 0, XY λ = λ. (4.13)

The properties of string fields and gauge parameters are summarized in table 1.

In order to prove the gauge invariance of the action, we need to note that the operator

X is BRST trivial in the large Hilbert space [26]:

X = {Q,Θ(β0)}, (4.14)

with the Heaviside step function Θ(x). More general operator Ξ suitable in the large

Hilbert space is defined by [10]

Ξ = ξ + (Θ(β0)ηξ − ξ)P−3/2 + (ξηΘ(β0)− ξ)P−1/2 , (4.15)

where Pn is a projector onto the states with picture number n. We can show that this

operator Ξ is BPZ even for the BPZ inner product in the large Hilbert space (3.3):

〈ΞV1, V2〉 = (−1)V1+1〈V1,ΞV2〉. (4.16)

Then we generalize the operator X to the one given by

X = {Q,Ξ} , (4.17)

which is identical to X in (4.3) on states in the small Hilbert space with the picture number

−3/2. Hereafter we only use the new operator, so we denote it by the same symbol X for

simplicity. The operator X is BPZ even with respect to the inner product in the small

Hilbert space:

〈〈XV1, V2〉〉 = 〈〈V1, XV2〉〉. (4.18)

4.2 Perturbative construction

A complete action including interactions between the NS sector and the Ramond sector

can be expanded in powers of fermion:

S =
∞∑
n=0

S(2n). (4.19)

For the NS sector, SNS ≡ S(0), we adopt the dual WZW-like action defined in (3.51). The

remaining part, SR ≡
∑∞

n=1 S
(2n), contains the kinetic term of the Ramond sector (4.11)

6We assume that both Ψ1 and Ψ2 have picture number −1/2, which is enough to define the action (4.11).
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and interaction terms between two sectors. We can further expand the action in the

coupling constant κ:

SNS = S
(0)
0 + κS

(0)
1 + κ2S

(0)
2 +O

(
κ3
)
, (4.20)

SR = S
(2)
0 + κS

(2)
1 + κ2

(
S

(2)
2 + S

(4)
2

)
+O

(
κ3
)
. (4.21)

The gauge transformations can also be expanded in κ as

δΛV = δΛV
(0)

0 + κδΛV
(0)

1 + κ2
(
δΛV

(0)
2 + δΛV

(2)
2

)
+O(κ3), (4.22)

δΛΨ = δΛΨ
(1)
0 + κδΛΨ

(1)
1 + κ2δΛΨ

(1)
2 +O(κ3), (4.23)

with

δΛV
(0)

0 = QΛ, δΛΨ
(1)
0 = 0, (4.24)

where Λ is a gauge parameter in the NS sector,

δΩV = δΩV
(0)

0 + κδΩV
(0)

1 + κ2
(
δΩV

(0)
2 + δΩV

(2)
2

)
+O(κ3), (4.25)

δΩΨ = δΩΨ
(1)
0 + κδΩΨ

(1)
1 + κ2δΩΨ

(1)
2 +O(κ3), (4.26)

with

δΩV
(0)

0 = ηΩ, δΩΨ
(1)
0 = 0, (4.27)

where Ω is another gauge parameter in the NS sector, and

δλV = δλV
(2)

0 + κδλV
(2)

1 + κ2δλV
(2)

2 +O(κ3), (4.28)

δλΨ = δλΨ
(1)
0 + κδλΨ

(1)
1 + κ2

(
δλΨ

(1)
2 + δλΨ

(3)
2

)
+O(κ3), (4.29)

with

δλV
(2)

0 = 0, δλΨ
(1)
0 = Qλ, (4.30)

where λ is a gauge parameter in the Ramond sector. The number in the parentheses in the

superscript of gauge transformations denotes the number of fields in the Ramond sector

included. Starting from the kinetic terms

S
(0)
0 =

1

2
〈V,QηV 〉, (4.31)

S
(2)
0 = −1

2
〈〈Ψ, Y QΨ〉〉, (4.32)

let us first attempt to construct the action S, and simultaneously the gauge transformations,

order by order in κ by requiring the gauge invariance.

For the NS sector, we can obtain the cubic and quartic terms simply by expanding the

action (3.51):

S
(0)
1 =

1

3!
〈V,Q[V, ηV ]η〉, (4.33a)

S
(0)
2 =

1

4!
〈V,Q[V, (ηV )2]η〉+

1

4!
〈V,Q[V, [V, ηV ]η]η〉. (4.33b)
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Expanding the gauge transformation (3.54), one can also obtain

δΛV
(0)

1 = −1

2
[V,QΛ]η, δΛV

(0)
2 = −1

3
[V, ηV,QΛ]η +

1

12
[V, [V,QΛ]], (4.34)

δΩV
(0)

1 =
1

2
[V, ηΩ]η, δΩV

(0)
2 =

1

3!
[V, ηV, ηΩ]η +

1

12
[V, [V, ηΩ]], (4.35)

which keep the action (4.33) invariant at each order in κ:

(δΛ)
(0)
0 S

(0)
1 + (δΛ)

(0)
1 S

(0)
0 = 0, (δΛ)

(0)
0 S

(0)
2 + (δΛ)

(0)
1 S

(0)
1 + (δΛ)

(0)
2 S

(0)
0 = 0, (4.36)

(δΩ)
(0)
0 S

(0)
1 + (δΩ)

(0)
1 S

(0)
0 = 0, (δΩ)

(0)
0 S

(0)
2 + (δΩ)

(0)
1 S

(0)
1 + (δΩ)

(0)
2 S

(0)
0 = 0. (4.37)

The number in the parentheses in the superscript of δ denotes the difference of the number

of the Ramond field after and before the transformation: (# of R fields after transforma-

tion) − (# of R fields before transformation).

4.2.1 Cubic interaction in SR

Let us consider the cubic interaction in the Ramond action SR. We start from a natural

candidate of cubic interaction term given by

S
(2)
1 = α1〈Ψ, [V,Ψ]η〉, (4.38)

with a constant α1 to be determined, and find δV
(2)

1 (= δ
(2)
1 V ) and δΨ

(1)
1 (= δ

(0)
1 Ψ) requiring

the gauge invariances in this order

δ
(0)
0 S

(2)
1 + δ

(0)
1 S

(2)
0 + δ

(2)
1 S

(0)
0 = 0 . (4.39)

Note that δ
(2)
0 does not appear and that δ

(2)
1 appear only for the transformation with λ,

which follows from just the counting of the Ramond fields. The variation of S
(2)
1 under the

gauge transformation δΛV
(0)

0 in (4.24) is calculated as

(δΛ)
(0)
0 S

(2)
1 = α1〈QΛ, [Ψ2]η〉 = −2α1〈Λ, [Ψ, QΨ]η〉 = −2α1〈[Ψ,Λ]η, QΨ〉. (4.40)

This can be cancelled by (δΛ)
(0)
1 S

(2)
0 if we take

δΛΨ
(1)
1 = −2α1Xη[Ψ,Λ]η, (4.41)

in a similar manner given in [9]. Similarly, the variation of S
(2)
1 under the gauge transfor-

mation δΩV
(0)

0 in (4.27) is given by

(δΩ)
(0)
0 S

(2)
1 = α1〈ηΩ, [Ψ2]η〉 = −2α1〈Ω, [Ψ, ηΨ]η〉 = 0, (4.42)

because of ηΨ = 0, and so we have

δΩΨ
(1)
1 = 0 . (4.43)

Under the gauge transformation δλΨ
(1)
0 in (4.30), the variation of S

(2)
1 is given by

(δλ)
(0)
0 S

(2)
1 = 2α1〈Qλ, [V,Ψ]η〉

= 2α1〈λ, [QV,Ψ]η〉 − 2α1〈λ, [V,QΨ]η〉
= 2α1〈Ξλ, [QηV,Ψ]η〉+ 2α1〈Ξλ, [ηV,QΨ]η〉
= 2α1〈[Ψ,Ξλ]η, QηV 〉+ 2α1〈[ηV,Ξλ]η, QΨ〉, (4.44)
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where we used the fact that a relation,

〈λ,B〉 = 〈ηΞλ,B〉 = 〈Ξλ, ηB〉, (4.45)

holds for general string field B since the parameter λ is in the small Hilbert space. This

variation (4.44) can be canceled by (δλ)
(2)
1 S

(0)
0 + (δλ)

(0)
1 S

(2)
0 with

δλV
(2)

1 = −2α1[Ψ,Ξλ]η, δλΨ
(1)
1 = 2α1Xη[ηV,Ξλ]η. (4.46)

4.2.2 Quartic interaction in SR

Let us move to the next order. In order to narrow down the form of quartic interaction

terms, let us first consider the variation of S
(2)
1 under the gauge transformations δΛV

(0)
1

and δΛΨ
(1)
1 , which is calculated as

(δΛ)
(0)
1 S

(2)
1 = −α1

2
〈[V,QΛ]η, [Ψ2]η〉 − 4α2

1〈Xη[Ψ,Λ]η, [V,Ψ]η〉

=
α1

2
〈QΛ, [V, [Ψ2]η]η〉 − 4α2

1〈[Ψ,Λ]η, X[ηV,Ψ]η〉 . (4.47)

Using X = {Q,Ξ}, we further calculate the second term 〈[Ψ,Λ]η, X[ηV,Ψ]η〉 as follows:

〈[Ψ,Λ]η, X[ηV,Ψ]η〉 = 〈[Ψ,Λ]η, {Q,Ξ}[ηV,Ψ]η〉
= 〈[QΨ,Λ]η,Ξ[ηV,Ψ]η〉+ 〈[Ψ, QΛ]η,Ξ[ηV,Ψ]η〉
− 〈Ξ[Ψ,Λ]η, [QηV,Ψ]η〉 − 〈Ξ[Ψ,Λ]η, [ηV,QΨ]η〉

= −〈[Ξ[ηV,Ψ]η,Λ]η, QΨ〉 − 〈QΛ, [Ψ,Ξ[ηV,Ψ]η]η〉
− 〈[Ψ,Ξ[Ψ,Λ]η]η, QηV 〉 − 〈[ηV,Ξ[Ψ,Λ]η]η, QΨ〉 . (4.48)

Then we find

(δΛ)
(0)
1 S

(2)
1 =

α1

2
〈QΛ, [V, [Ψ2]η]η〉+ 4α2

1〈QΛ, [Ψ,Ξ[ηV,Ψ]η]η〉

+ 4α2
1〈[Ψ,Ξ[Ψ,Λ]η]η, QηV 〉

+ 4α2
1〈[Ξ[ηV,Ψ]η,Λ]η, QΨ〉+ 4α2

1〈[ηV,Ξ[Ψ,Λ]η]η, QΨ〉 . (4.49)

In order to cancel the first two terms on the right hand side, we introduce quartic interaction

terms with two Ramond strings as

S
(2)
2 = α2〈Ψ, [V, ηV,Ψ]η〉+ α3〈Ψ, [V,Ξ[ηV,Ψ]η]η〉, (4.50)

with constants α2 and α3 to be determined. The first term is a genuine four-string inter-

action filling a missing region in, for example, the moduli space of four-string amplitude

with two fermions. The variation of S
(2)
2 under the gauge transformation (δΛ)

(0)
0 V can be

straightforwardly calculated as follows. The variation of the first term is given by

(δΛ)
(0)
0 (α2〈Ψ, [V, ηV,Ψ]η〉) = α2〈Ψ, [QΛ, ηV,Ψ]η〉+ α2〈Ψ, [V, ηQΛ,Ψ]η〉

= α2〈QΛ, [ηV,Ψ2]η〉+ α2〈ηQΛ, [V,Ψ2]η〉
= 2α2〈QΛ, [ηV,Ψ2]η〉 − α2〈QΛ, [V, [Ψ2]η]η〉

+ 2α2〈QΛ, [Ψ, [V,Ψ]η]η〉
= −α2〈QΛ, [V, [Ψ2]η]η〉+ 2α2〈QΛ, [Ψ, [V,Ψ]η]η〉
− 2α2〈[Ψ2,Λ]η, QηV 〉 − 4α2〈[ηV,Ψ,Λ]η, QΨ〉 . (4.51)
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The variation of the second term in S
(2)
2 can similarly be calculated as

(δΛ)
(0)
0 (α3〈Ψ, [V,Ξ[ηV,Ψ]η]η〉) = α3〈QΛ, [Ψ,Ξ[ηV,Ψ]η]η〉+ α3〈Ψ, [V,Ξ[ηQΛ,Ψ]η]η〉,

= α3〈QΛ, [Ψ, [V,Ψ]η]η〉+ 2α3〈QΛ, [Ψ,Ξ[ηV,Ψ]η]η〉. (4.52)

Therefore, in total, we have

(δΛ)
(0)
0 S

(2)
2 = −α2〈QΛ, [V, [Ψ2]η]η〉+ (2α2 + α3)〈QΛ, [Ψ, [V,Ψ]η]η〉

+ 2α3〈QΛ, [Ψ,Ξ[ηV,Ψ]η]η〉
− 2α2〈[Ψ2,Λ]η, QηV 〉 − 4α2〈[ηV,Ψ,Λ]η, QΨ〉. (4.53)

From (4.49) and (4.53), we find that the constants α1, α2 and α3 should be chosen to be

α1 =
1

2
, α2 =

1

4
, α3 = − 1

2
. (4.54)

Then we have

(δΛ)
(0)
1 S

(2)
1 + (δΛ)

(0)
0 S

(2)
2 = −1

2
〈[Ψ2,Λ]η, QηV 〉+ 〈[Ψ,Ξ[Ψ,Λ]η]η, QηV 〉

− 〈[ηV,Ψ,Λ]η, QΨ〉+ 〈[ηV,Ξ[Ψ,Λ]η]η, QΨ〉
+ 〈[Ξ[ηV,Ψ]η,Λ]η, QΨ〉 . (4.55)

These terms can be cancelled by (δΛ)
(2)
2 S

(0)
0 and (δΛ)

(0)
2 S

(2)
0 if we choose

δΛV
(2)

2 =
1

2
[Ψ2,Λ]η − [Ψ,Ξ[Ψ,Λ]η]η, (4.56)

δΛΨ
(1)
2 = −Xη[ηV,Ψ,Λ]η +Xη[ηV,Ξ[Ψ,Λ]η]η +Xη[Ξ[ηV,Ψ]η,Λ]η. (4.57)

Note that δΛV
(2)

2 = (δΛ)
(2)
2 V and δΛΨ

(1)
2 = (δΛ)

(0)
2 Ψ. Thus the gauge invariance under

transformation with the parameter Λ in this order holds:

(δΛ)
(0)
1 S

(2)
1 + (δΛ)

(0)
0 S

(2)
2 + (δΛ)

(2)
2 S

(0)
0 + (δΛ)

(0)
2 S

(2)
0 = 0 . (4.58)

Then the variation under the gauge transformations with the parameter Ω at this order

can easily be calculated as

(δΩ)
(0)
1 S

(2)
1 =

1

4
〈[Ψ2]η, [V, ηΩ]η〉 = −1

4
〈ηΩ, [V, [Ψ2]η]η〉 = −1

4
〈Ω, [ηV, [Ψ2]η]η〉 , (4.59)

(δΩ)
(0)
0 S

(2)
2 =

1

4
〈ηΩ, [ηV,Ψ2]η〉 − 1

2
〈ηΩ, [Ψ,Ξ[ηV,Ψ]η]η〉 =

1

4
〈Ω, [ηV, [Ψ2]η]η〉 , (4.60)

and hence

(δΩ)
(0)
1 S

(2)
1 + (δΩ)

(0)
0 S

(2)
2 = 0 . (4.61)

The correction at this order is not necessary:

δΩV
(2)

2 = 0 , δΩΨ
(1)
2 = 0 . (4.62)
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Let us finally calculate variations of the action under the gauge transformation with

the parameter λ. The variations (δλ)
(2)
1 S

(0)
1 and (δλ)

(0)
1 S

(2)
1 are calculated as

(δλ)
(2)
1 S

(0)
1 = −1

2
〈[QV, ηV ]η, (δλ)

(2)
1 V 〉 =

1

2
〈Ξλ, [Ψ, [QV, ηV ]η]η〉 , (4.63)

and

(δλ)
(0)
1 S

(2)
1 = −〈[V,Ψ]η, Xη[ηV,Ξλ]η〉 = 〈Ξλ, [ηV,X[ηV,Ψ]η]η〉, (4.64)

respectively, where we used a relation

〈A,XηB〉 = 〈ΞηA,XηB〉 = 〈〈ηA,XηB〉〉
= 〈〈XηA, ηB〉〉 = 〈ΞXηA, ηB〉
= (−1)A〈XηA,B〉 . (4.65)

The variation (δλ)
(0)
0 S

(2)
2 is given by

(δλ)
(0)
0 S

(2)
2 =

1

2
〈Qλ, [V, ηV,Ψ]η〉 − 1

2
〈Qλ, [V,Ξ[ηV,Ψ]η]η〉 − 1

2
〈Qλ, [ηV,Ξ[V,Ψ]η]η〉 . (4.66)

Substituting the relation Qλ = QηΞλ, this can further be calculated as

(δλ)
(0)
0 S

(2)
2 = −1

2
〈Ξλ, [Ψ, [QV, ηV ]η]η〉 − 〈Ξλ, [ηV,X[ηV,Ψ]η]η〉

+ 〈[ηV,Ψ,Ξλ]η, QηV 〉 − 1

2
〈[V, [Ψ,Ξλ]η]η, QηV 〉 − 〈[Ξ[ηV,Ψ]η,Ξλ]η, QηV 〉

+
1

2
〈[(ηV )2,Ξλ]η, QΨ〉 − 〈[ηV,Ξ[ηV,Ξλ]η]η, QΨ〉 − 〈[Ψ,Ξ[ηV,Ξλ]η]η, QηV 〉

+
1

2
〈[[V, ηV ]η,Ξλ]η, QΨ〉. (4.67)

In total we have

(δλ)
(2)
1 S

(0)
1 +(δλ)

(0)
1 S

(2)
1 + (δλ)

(0)
0 S

(2)
2

= 〈[ηV,Ψ,Ξλ]η, QηV 〉 − 1

2
〈[V, [Ψ,Ξλ]η]η, QηV 〉 − 〈[Ψ,Ξ[ηV,Ξλ]η]η, QηV 〉

− 〈[Ξ[ηV,Ψ]η,Ξλ]η, QηV 〉+
1

2
〈[(ηV )2,Ξλ]η, QΨ〉 − 〈[ηV,Ξ[ηV,Ξλ]η]η, QΨ〉

+
1

2
〈[[V, ηV ]η,Ξλ]η, QΨ〉 . (4.68)

This can be cancelled by (δλ)
(2)
2 S

(0)
0 and (δλ)

(0)
2 S

(2)
0 if we take (δλ)

(2)
2 V and (δλ)

(0)
2 Ψ as

δλV
(2)

2 = −[ηV,Ψ,Ξλ]η +
1

2
[V, [Ψ,Ξλ]η]η + [Ψ,Ξ[ηV,Ξλ]η]η + [Ξ[ηV,Ψ]η,Ξλ]η, (4.69)

δλΨ
(1)
2 =

1

2
Xη[(ηV )2,Ξλ]η −Xη[ηV,Ξ[ηV,Ξλ]η]η +

1

2
Xη[[V, ηV ]η,Ξλ]η. (4.70)

So far so good: in this way the gauge invariance with the parameter λ holds at quadratic

order in both coupling constant and the Ramond fields:

(δλ)
(2)
1 S

(0)
1 + (δλ)

(0)
1 S

(2)
1 + (δλ)

(0)
0 S

(2)
2 + (δλ)

(2)
2 S

(0)
0 + (δλ)

(0)
2 S

(2)
0 = 0 . (4.71)

– 19 –



J
H
E
P
1
2
(
2
0
1
6
)
1
5
7

Let us move to the quartic order in the Ramond string field. The non-trivial contri-

bution absent in the open superstring field theory comes from (δλ)
(2)
1 S

(2)
1 given by

(δλ)
(2)
1 S

(2)
1 =

1

2
〈[Ψ2]η, δV

(2)
1 〉 = −1

2
〈Ξλ, [Ψ, [Ψ2]η]η〉 =

1

6
〈λ, [Ψ3]η〉, (4.72)

which requires to add Ψ4 interaction S
(4)
2 to the action. Note that δλΨ

(3)
1 (= (δλ)

(2)
1 Ψ)

never appears. Let us consider (4.72) in further detail. As was given in (3.55), [Ψ3]η can

be written in a BRST exact form as,

[Ψ3]η = Q(Ψ3)η − 3(Ψ2, QΨ)η, (4.73)

with the dual gauge product (· · · )η given in (A.30). Using this relation, (4.72) can be

rewritten as

(δλ)
(2)
1 S

(2)
1 =

1

6
〈λ,Q(Ψ3)η〉 − 1

2
〈λ, (Ψ2, QΨ)η〉

= −1

6
〈Qλ, (Ψ3)η〉+

1

2
〈(Ψ2, λ)η, QΨ〉. (4.74)

From the form of the first term, we can suppose that S
(4)
2 have the form

S
(4)
2 = α4〈Ψ, (Ψ3)η〉, (4.75)

with a constant α4, whose variation under δλΨ
(1)
0 becomes

(δλ)
(0)
0 S

(4)
2 = 4α4〈Qλ, (Ψ3)η〉 . (4.76)

Then we have

(δλ)
(2)
1 S

(2)
1 + (δλ)

(0)
0 S

(4)
2 =

1

2
〈(Ψ2, λ)η, QΨ〉 , (4.77)

by setting

α4 =
1

4!
. (4.78)

The remaining terms can be cancelled by (δλ)
(2)
2 S

(2)
0 if we take

δλΨ
(3)
2 =

1

2
Xη(Ψ2, λ)η. (4.79)

That is, the gauge invariance at this order holds:

(δλ)
(2)
1 S

(2)
1 + (δλ)

(0)
0 S

(4)
2 + (δλ)

(2)
2 S

(2)
0 = 0 . (4.80)

Let us summarize the results up to this order. The action in the NS sector is given by

SNS = S(0)

= S
(0)
0 + κS

(0)
1 + κ2S

(0)
2 +O(κ3), (4.81)
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where

S
(0)
0 = −1

2
〈QV, ηV 〉, (4.82)

S
(0)
1 = − 1

3!
〈QV, [V, ηV ]η〉, (4.83)

S
(0)
2 = − 1

4!
〈QV, [V, ηV, ηV ]η〉 − 1

4!
〈QV, [V, [V, ηV ]η]η〉. (4.84)

The action in the Ramond sector is given by

SR = S
(2)
0 + κS

(2)
1 + κ2(S

(2)
2 + S

(4)
2 ) +O(κ3), (4.85)

where

S
(2)
0 = −1

2
〈〈Ψ, Y QΨ〉〉 , (4.86)

S
(2)
1 =

1

2
〈Ψ, [V,Ψ]η〉 , (4.87)

S
(2)
2 =

1

4
〈Ψ, [V, ηV,Ψ]η〉 − 1

2
〈Ψ, [V,Ξ[ηV,Ψ]η]η〉 ,

S
(4)
2 =

1

4!
〈Ψ, (Ψ3)η〉 . (4.88)

The gauge transformation with the gauge parameter for Λ in the NS sector is given by

δΛV = δΛV
(0)

0 + κδΛV
(0)

1 + κ2
(
δΛV

(0)
2 + δΛV

(2)
2

)
+O(κ3) , (4.89)

δΛΨ = δΛΨ
(1)
0 + κδΛΨ

(1)
1 + κ2δΛΨ

(1)
2 +O(κ3) , (4.90)

where

δΛV
(0)

0 = QΛ , (4.91)

δΛV
(0)

1 = −1

2
[V,QΛ]η , (4.92)

δΛV
(0)

2 = −1

3
[V, ηV,QΛ]η +

1

12
[V, [V,QΛ]η]η , (4.93)

δΛV
(2)

2 =
1

2
[Ψ,Ψ,Λ]η − [Ψ,Ξ[Ψ,Λ]η]η , (4.94)

δΛΨ
(1)
0 = 0 , (4.95)

δΛΨ
(1)
1 = −Xη[Ψ,Λ]η , (4.96)

δΛΨ
(1)
2 = −Xη[ηV,Ψ,Λ]η +Xη[ηV,Ξ[Ψ,Λ]η]η +Xη[Ξ[ηV,Ψ]η,Λ]η . (4.97)

The gauge transformation with the gauge parameter Ω in the NS sector is given by

δΩV = δΩV
(0)

0 + κδΩV
(0)

1 + κ2δΩV
(0)

2 +O(κ3) , (4.98)

δΩΨ = δΩΨ
(1)
0 + κδΩΨ

(1)
1 + κ2δΩΨ

(1)
2 +O(κ3) , (4.99)
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where

δΩV
(0)

0 = ηΩ , (4.100)

δΩV
(0)

1 =
1

2
[V, ηΩ]η , (4.101)

δΩV
(0)

2 =
1

6
[V, ηV, ηΩ]η +

1

12
[V, [V, ηΩ]η]η , (4.102)

δΩΨ
(1)
0 = 0 , (4.103)

δΩΨ
(1)
1 = 0 , (4.104)

δΩΨ
(1)
2 = 0 . (4.105)

The gauge transformation with the gauge parameter λ in the Ramond sector is given by

δλV = δλV
(2)

0 + κδλV
(2)

1 + κ2δλV
(2)

2 +O(κ3) , (4.106)

δλΨ = δλΨ
(1)
0 + κδλΨ

(1)
1 + κ2

(
δλΨ

(1)
2 + δλΨ

(3)
2

)
+O(κ3) , (4.107)

where

δλV
(2)

0 = 0 , (4.108)

δλV
(2)

1 = −[Ψ,Ξλ]η , (4.109)

δλV
(2)

2 = −[ηV,Ψ,Ξλ]η +
1

2
[V, [Ψ,Ξλ]η]η + [Ψ,Ξ[ηV,Ξλ]η]η + [Ξ[ηV,Ψ]η,Ξλ]η , (4.110)

δλΨ
(1)
0 = Qλ , (4.111)

δλΨ
(1)
1 = Xη[ηV,Ξλ]η , (4.112)

δλΨ
(1)
2 =

1

2
Xη[ηV, ηV,Ξλ]η −Xη[ηV,Ξ[ηV,Ξλ]η]η +

1

2
Xη[[V, ηV ]η,Ξλ]η , (4.113)

δλΨ
(3)
2 =

1

2
Xη(Ψ2, λ)η . (4.114)

4.3 Fermion expansion

As a next step to the complete action let us consider the fermion expansion. We extend the

above results to all order in the NS string field at each order in the Ramond string field.

Suppose that an arbitrary variation of S(2n), the action at O(Ψ2n), has the form

δS(2n) = −〈〈δΨ, Y E(2n−1)〉〉+ 〈Bδ, E(2n)〉 . (4.115)

The equations of motion are therefore given by

E(0) + E(2) + E(4) + · · · = 0 , (4.116)

E(1) + E(3) + E(5) + · · · = 0 , (4.117)

for the NS and the Ramond string fields, respectively. We can also expand the gauge

transformation in powers of the Ramond string field as

Bδ = B
(0)
δ +B

(2)
δ +B

(4)
δ + · · · , (4.118)

δΨ = δΨ(1) + δΨ(3) + δΨ(5) + · · · . (4.119)
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Note that the superscript also counts the Ramond gauge parameter λ. We will determine

the action and the gauge transformations order by order in the Ramond string field by

requiring the gauge-invariance at each order:

0 = −
n∑
k=1

〈〈δΨ(2n−2k+1), Y E(2k−1)〉〉+
n∑
k=0

〈B(2n−2k)
δ , E(2k)〉 . (4.120)

In particular, at the lowest order in fermion, corresponding to n = 0, it reduces

0 = 〈B(0)
δ , E(0)〉. (4.121)

For the dual WZW-like action (3.51), E(0) = QGη(V ), and (4.121) requires B
(0)
δ = QΛ +

DηΩ as summarized in the previous section.

4.3.1 Quadratic in fermion

We first provide the action S(2) and the gauge transformation B
(2)
δ and δΨ(1) so that the

action is gauge invariant at quadratic order in the Ramond string field:

0 = −〈〈δΨ(1), Y E(1)〉〉+ 〈B(2)
δ , E(0)〉+ 〈B(0)

δ , E(2)〉. (4.122)

From the results in the perturbative expansion, we can deduce that the action S(2) is given

by the same form of that for the open superstring (2.15):

S(2) = −1

2
〈〈Ψ, Y QΨ〉〉+

κ

2

∫ 1

0
dt
〈
Bt(t), [F (t)Ψ, F (t)Ψ]ηGη(t)

〉
, (4.123)

where F (t) is the linear operator defined by

F (t) =
1

1 + Ξ(Dη(t)− η)
= 1 +

∞∑
n=1

(
− Ξ(Dη(t)− η)

)n
. (4.124)

We should note that this has the same form as (2.12) but Dη defined in (3.40) contains

infinite number of terms with arbitrary power of Gη. In what follows, we show that the

variation of the action S(2) becomes

δS(2) = −〈〈δΨ, Y (E(1))〉〉+
〈
Bδ, E

(2)
〉

= −〈〈δΨ, Y (QΨ +XηFΨ)〉〉+
κ

2

〈
Bδ, [FΨ, FΨ]ηGη

〉
, (4.125)

and prove that the action S(0) + S(2) is invariant at quadratic order in the Ramond string

field under the following gauge transformations at this order

B
(2)
δ =

κ2

2
[FΨ, FΨ,Λ]ηGη − κ

2[FΨ, FΞ[FΨ,Λ]ηGη ]ηGη − κ[FΨ, FΞλ]ηGη , (4.126)

δΨ(1) = −κXηFΞDη[FΨ,Λ]ηGη +Qλ−XηFλ . (4.127)

Let us first summarize the properties of F (t), we will use. The linear map F (t) satisfies

F (0) = 1 since it depends on t only through Gη(t) and Gη(0) = 0. It is invertible and

F−1(t) = 1 + Ξ(Dη(t)− η) = ηΞ + ΞDη(t) . (4.128)

– 23 –



J
H
E
P
1
2
(
2
0
1
6
)
1
5
7

Multiplying it by η from the left or by Dη from the right, we have

ηF−1(t) = F−1(t)Dη(t) = ηΞDη(t) , (4.129)

We further have

F (t)η = Dη(t)F (t) , {Dη(t), F (t)Ξ} = 1 . (4.130)

The former can be obtained by multiplying the first equation in (4.129) by F(t) from both

left and right and using η2 = Dη(t)
2 = 0. Then the latter can be derived as

Dη(t)F (t)Ξ + F (t)ΞDη(t) = F (t)ηΞ + F (t)ΞDη(t)

= F (t)
(
1 + Ξ(Dη(t)− η)

)
= 1 . (4.131)

It is also shown

〈F (t)ΞV1, V2〉 = (−1)V1+1〈V1, F (t)ΞV2〉 , (4.132)

from the definition (4.124) and the BPZ properties (3.5), (3.50), and (4.16). The commu-

tator of F (t) and the derivation X = Q, ∂t, or δ on the dual string products is given by

[X, F (t)]V1 = −F (t)[X, F−1(t)]F (t)V1

= −F (t)(XΞ− (−1)XΞX)(Dη(t)− η)F (t)V1

− κF (t)Ξ[XGη(t), F (t)V1]ηGη(t) . (4.133)

We also summarize the properties of F (t)Ψ for later use. Since F (t)η = Dη(t)F (t) and

ηΨ = 0, F (t)Ψ is Dη(t)-exact:

F (t)Ψ = F (t){η,Ξ}Ψ = Dη(t)F (t)ΞΨ. (4.134)

Acting with QF (t) on Ψ, (4.133) leads to

QF (t)Ψ = F (t)
(
QΨ +XηF (t)Ψ

)
− κF (t)Ξ[QGη(t), F (t)Ψ]ηGη(t)

= Dη(t)FΞ(QΨ +XηF (t)Ψ)− κF (t)Ξ[QGη(t), F (t)Ψ]ηGη(t). (4.135)

For X = ∂t, or δ, which commute with Ξ, XF (t)Ψ can be transformed into the follo-

wing form:

XF (t)Ψ = F (t)XΨ + (−1)XκF (t)ΞDη(t)[BX(t), F (t)Ψ]ηGη(t) (4.136)

= F (t)XΨ + (−1)Xκ[BX(t), F (t)Ψ]ηGη(t)

− (−1)XκDη(t)F (t)Ξ[BX(t), F (t)Ψ]ηGη(t), (4.137)

where we used XGη(t) = (−1)XDη(t)BX(t) and {Dη(t), F (t)Ξ} = 1.

Now let us consider the variation of S(2):

δS(2) = −〈〈δΨ, Y QΨ〉〉+
κ

2

∫ 1

0
dt δ〈Bt(t), [F (t)Ψ, F (t)Ψ]ηGη(t)〉. (4.138)
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From here to (4.143), we omit the t-dependence for notational brevity. The variation of

the integrand of the interaction term,

κ

2
δ
〈
Bt, [FΨ, FΨ]ηGη

〉
=
κ

2

〈
δBt, [FΨ, FΨ]ηGη

〉
+ κ
〈
Bt, [δFΨ, FΨ]ηGη

〉
+
κ2

2

〈
Bt, [δGη, FΨ, FΨ]ηGη

〉
, (4.139)

can be calculated as follows. Since [FΨ, FΨ]ηGη is Dη-exact, we can use (3.49) for the first

term, and obtain

κ

2

〈
δBt, [FΨ, FΨ]ηGη

〉
=
κ

2

〈
∂tBδ + κ[Bδ, Bt]

η
Gη
, [FΨ, FΨ]ηGη

〉
=
κ

2

〈
∂tBδ, [FΨ, FΨ]ηGη

〉
+
κ2

2

〈
Bδ, [Bt, [FΨ, FΨ]ηGη ]ηGη

〉
. (4.140)

For the second term, utilizing (4.137), we find

κ
〈
Bt, [δFΨ, FΨ]ηGη

〉
= −κ

〈
[Bt, FΨ]ηGη , F δΨ + κ[Bδ, FΨ]ηGη − κDηFΞ[Bδ, FΨ]ηGη

〉
= −κ

〈
[Bt, FΨ]ηGη , κ[Bδ, FΨ]ηGη +DηFΞ

(
δΨ− κ[Bδ, FΨ]ηGη

) 〉
= −κ2

〈
[Bt, FΨ]ηGη , [Bδ, FΨ]ηGη

〉
−
〈
∂tFΨ, δΨ− κ[Bδ, FΨ]ηGη

〉
= −κ2

〈
Bδ, [FΨ, [Bt, FΨ]ηGη ]ηGη

〉
+
〈
δΨ, ∂tFΨ

〉
+ κ
〈
Bδ, [∂tFΨ, FΨ]ηGη

〉
. (4.141)

For the third term, utilizing the L∞-relation of Gη-shifted dual string products, we obtain

κ2

2

〈
Bt, [δGη, FΨ, FΨ]ηGη

〉
=
κ2

2

〈
Bt, [DηBδ, FΨ, FΨ]ηGη

〉
=
κ2

2

〈
Bt,
(
−Dη[Bδ, FΨ, FΨ]ηGη + [Bδ, [FΨ, FΨ]ηGη ]ηGη

− 2[FΨ, [Bδ, FΨ]ηGη ]ηGη

)〉
=
κ2

2

〈
Bδ, [∂tGη, FΨ, FΨ]ηGη

〉
− κ2

2

〈
Bδ, [Bt, [FΨ, FΨ]ηGη ]ηGη

〉
+ κ2

〈
Bδ, [FΨ, [Bt, FΨ]ηGη ]ηGη

〉
. (4.142)

Then the total variation is given by

κ

2
δ
〈
Bt, [FΨ, FΨ]ηGη

〉
=
κ

2

〈
∂tBδ, [FΨ, FΨ]ηGη

〉
+
κ2

2

〈
Bδ, [∂tGη, FΨ, FΨ]ηGη

〉
+κ
〈
Bδ, [∂tFΨ, FΨ]ηGη

〉
+
〈
δΨ, ∂tFΨ

〉
= ∂t

(
−
〈
〈δΨ, Y XηFΨ

〉
〉+κ

2

〈
Bδ, [FΨ, FΨ]ηGη

〉)
, (4.143)

where we assumed that δΨ also satisfies the constraints (4.1). Using Bδ(0) = 0 and

ηF (0)Ψ = ηΨ = 0, we eventually find

δS(2) = −〈〈δΨ, Y (QΨ +XηFΨ)〉〉+
κ

2
〈Bδ, [FΨ, FΨ]ηGη〉 , (4.144)
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and hence

E(1) = QΨ +XηFΨ , E(2) =
κ

2
[FΨ, FΨ]ηGη . (4.145)

By requiring (4.122), let us determine δΨ(1) and B
(2)
δ for each of gauge transforma-

tions with the parameters Λ, Ω and λ. Let us first consider the invariance under the

transformation with the parameter Λ:

0 = −〈〈δΛΨ(1), Y E(1)〉〉+
〈
B

(0)
δΛ
, E(2)

〉
+
〈
B

(2)
δΛ
, E(0)

〉
. (4.146)

Here the second term is already known. Recalling (4.135) (at t = 1),

QFΨ = DηFΞE(1) − κFΞ[E(0), FΨ]ηGη , (4.147)

it can be calculated as〈
B

(0)
δΛ
, E(2)

〉
=
κ

2

〈
QΛ, [FΨ, FΨ]ηGη

〉
= 〈
(
− κ2

2
[FΨ, FΨ,Λ]ηGη + κ2[FΨ, FΞ[FΨ,Λ]ηGη ]ηGη

)
, E(0)〉

− κ〈FΞDη[FΨ,Λ]ηGη , E
(1)〉 . (4.148)

If we note that E(1) satisfies the constraints (4.1), (4.146) holds by taking

B
(2)
δΛ

=
κ2

2
[FΨ, FΨ,Λ]ηGη − κ

2[FΨ, FΞ[FΨ,Λ]ηGη ]ηGη , (4.149)

δΛΨ(1) = −κXηFΞDη[FΨ,Λ]ηGη . (4.150)

The invariance under the transformation with the parameter Ω requires

0 = −〈〈δΩΨ(1), Y E(1)〉〉+
〈
B

(0)
δΩ
, E(2)

〉
+
〈
B

(2)
δΩ
, E(0)

〉
. (4.151)

Since the second term is again known and calculated as

〈B(0)
δΩ
, E(2)〉 = 〈DηΩ, E

(2)〉 = 〈Ω, DηE
(2)〉 = 0 , (4.152)

we conclude that

B
(2)
δΩ

= 0, δΩΨ(1) = 0 . (4.153)

Finally, for the invariance under the transformation with λ:

0 = −〈〈δλΨ(1), Y E(1)〉〉+
〈
B

(2)
δλ
, E(0)

〉
= −〈〈δλΨ

(1)
0 , Y E(1)〉〉 − 〈〈δ̃λΨ(1), Y E(1)〉〉+

〈
B

(2)
δλ
, E(0)

〉
, (4.154)

where we decomposed δλΨ(1) into the free part (4.30) and remaining: δλΨ(1) = δλΨ
(1)
0 +

δ̃λΨ(1). The known part in this case is the first term, which is calculated as

−〈〈δλΨ
(1)
0 , Y E(1)〉〉 = −〈〈Qλ, Y (QΨ +XηFΨ)〉〉 =

〈
Qλ,FΨ

〉
= κ〈[FΨ, FΞλ]ηGη , E

(0)〉 − 〈FΞDηλ,E
(1)〉 . (4.155)

The invariance (4.154) holds if we take

B
(2)
δλ

= −κ[FΨ, FΞλ]ηGη , (4.156)

δ̃λΨ(1) = −XηFΞDηλ = XηFλ . (4.157)

Thus, in total, the gauge transformation at this order becomes (4.127).
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4.3.2 Quartic in fermion

So far we have determined the complete action at the quadratic order in fermion (4.123),

which has the same form as that of the open superstring field theory, and thus is its

straightforward extension. For the heterotic string field theory, however, this is not the end

of story. At the next order in the fermion expansion, the gauge invariance further requires

0 = −
〈〈
δΨ(1), Y E(3)

〉〉
−
〈〈
δΨ(3), Y E(1)

〉〉
+
〈
B

(0)
δ , E(4)

〉
+
〈
B

(2)
δ , E(2)

〉
+
〈
B

(4)
δ , E(0)

〉
,

(4.158)

in which, in particular, we find

〈B(2)
δ , E(2)〉 6= 0 . (4.159)

Thus it is necessary to add the action S(4) quartic in fermion, and determine B
(4)
δ and

δΨ(3) so that the equation (4.158) is satisfied.

Let us begin with considering the transformation with the parameter λ, which is the

most efficient way to find out S(4) as shown in the following. From (4.145) and (4.157)

we have

〈B(2)
δλ
, E(2)〉 =

κ2

6
〈FΞλ,Dη[FΨ, FΨ, FΨ]ηGη〉

=
κ2

6
〈Fλ, [FΨ, FΨ, FΨ]ηGη〉 . (4.160)

Here, from the Q-exactness of the dual string products (3.61), we can rewrite

[FΨ, FΨ, FΨ]ηGη = Q(FΨ, FΨ, FΨ)ηGη − 3(FΨ, FΨ, QFΨ)ηGη

− κ(QGη, FΨ, FΨ, FΨ)ηGη , (4.161)

and thus

〈B(2)
δλ
, E(2)〉 =

κ2

6
〈Fλ,Q(FΨ, FΨ, FΨ)ηGη〉 −

κ2

2
〈Fλ, (FΨ, FΨ, QFΨ)ηGη〉

− κ3

6
〈Fλ, (QGη, FΨ, FΨ, FΨ)ηGη〉

= −κ
2

6
〈QFλ, (FΨ, FΨ, FΨ)ηGη〉+

κ2

2
〈(FΨ, FΨ, Fλ)ηGη , QFΨ〉

+
κ3

6
〈(FΨ, FΨ, FΨ, Fλ)ηGη , QGη〉 . (4.162)

Using (4.133), the first and second terms can further be calculated as

−κ
2

6
〈QFλ, (FΨ, FΨ, FΨ)ηGη〉 =

κ2

6
〈〈(Qλ+XηFλ), Y XηFΞDη(FΨ, FΨ, FΨ)ηGη〉〉

− κ3

6
〈[FΞ(FΨ, FΨ, FΨ)ηGη , Fλ]ηGη , QGη〉 , (4.163)

and

κ2

2
〈(FΨ, FΨ, Fλ)ηGη , QFΨ〉 =

κ2

2
〈〈XηFΞDη(FΨ, FΨ, Fλ)ηGη , Y (QΨ +XηFΨ)〉〉

− κ3

2
〈[FΨ, FΞ(FΨ, FΨ, Fλ)ηGη ]ηGη , QGη〉 , (4.164)
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respectively, and we eventually have

〈B(2)
δλ
, E(2)〉 =

κ2

6
〈〈δλΨ(1), Y XηFΞDη(FΨ, FΨ, FΨ)ηGη〉〉

+
κ2

2
〈〈XηFΞDη(FΨ, FΨ, Fλ)ηGη , Y E

(1)〉〉

+ 〈
(κ3

6
(FΨ, FΨ, FΨ, Fλ)ηGη −

κ3

2
[FΨ, FΞ(FΨ, FΨ, Fλ)ηGη ]ηGη

− κ3

6
[FΞ(FΨ, FΨ, FΨ)ηGη , Fλ]ηGη

)
, E(0)〉 . (4.165)

Substituting this into (4.158), and taking into account B
(0)
δλ

= 0, we obtain

E(3) =
κ2

6
XηFΞDη(FΨ, FΨ, FΨ)ηGη , (4.166)

B
(4)
δλ

= −κ
3

6
(FΨ, FΨ, FΨ, Fλ)ηGη +

κ3

6
[FΞ(FΨ, FΨ, FΨ)ηGη , Fλ]ηGη

+
κ3

2
[FΨ, FΞ(FΨ, FΨ, Fλ)ηGη ]ηGη , (4.167)

δλΨ(3) =
κ2

2
XηFΞDη(FΨ, FΨ, Fλ)ηGη . (4.168)

From this form of E(3), the action S(4) has to satisfy

δS(4) = −〈〈δΨ, Y E(3)〉〉

= −κ
2

6

〈〈
δΨ, Y XηFΞDη(FΨ, FΨ, FΨ)ηGη

〉〉
=
κ2

6

〈
FδΨ, (FΨ, FΨ, FΨ)ηGη

〉
, (4.169)

under an arbitrary variation of Ψ, where we used δΨ satisfies the constraint (4.1) and

therefore DηFΞδΨ = FηΞδΨ = FδΨ. Since the shifted dual gauge products are cyclic, we

can integrate it, and obtain

S(4) =
κ2

24

〈
FΨ, (FΨ, FΨ, FΨ)ηGη

〉
. (4.170)

We further consider the gauge transformations in the NS sector. Under an arbitrary

variation of the NS string field, we have

δS(4) =
κ3

6

〈
− FΞ[δGη, FΨ]ηGη , (FΨ, FΨ, FΨ)ηGη

〉
+
κ3

24

〈
FΨ, (δGη, FΨ, FΨ, FΨ)ηGη

〉
=
κ3

6

〈
Bδ, Dη[FΨ, FΞ(FΨ, FΨ, FΨ)ηGη ]ηGη

〉
− κ3

24

〈
Bδ, Dη(FΨ, FΨ, FΨ, FΨ)ηGη

〉
,

(4.171)

where we used (4.133), the cyclicity of the shifted dual string product, and δGη = DηBδ.

Thus we obtain

E(4) = −κ
3

24
Dη(FΨ, FΨ, FΨ, FΨ)ηGη +

κ3

6
Dη[FΨ, FΞ(FΨ, FΨ, FΨ)ηGη ]ηGη . (4.172)
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Let us consider the invariance under the parameter Ω first. The action is invariant if we

can determine B
(4)
δΩ

and δΩΨ(3) so that they satisfy

0 = −
〈〈
δΩΨ(3), Y (QΨ +XηFΨ)

〉〉
+
〈
DηΩ, E

(4)
〉

+
〈
B

(4)
δΩ
, QGη

〉
. (4.173)

However, since the second term vanishes,

〈DηΩ, E
(4)〉 = 〈Ω, DηE

(4)〉 = 0 , (4.174)

we can consistently take

B
(4)
δΩ

= 0 , δΩΨ(3) = 0 . (4.175)

Finally, let us consider the gauge invariances under the transformation with Λ. We show

that one can determine δΛΨ(3) and B
(4)
δΛ

so that the condition (4.120) at quartic order,

0 = −
〈〈
δΛΨ(1), Y E(3)

〉〉
+
〈
B

(0)
δΛ
, E(4)

〉
+
〈
B

(2)
δΛ
, E(2)

〉
−
〈〈
δΛΨ(3), Y E(1)

〉〉
+
〈
B

(4)
δΛ
, E(0)

〉
(4.176)

holds, where the first three terms are already determined. What we have to show is that

these terms vanishes up to terms containing E(1) = QΨ +XηFΨ and E(0) = QGη, which

can be compensated by appropriately determining δΛΨ(3) and B
(4)
δλ

, respectively:

0 ∼=
〈
B

(0)
δΛ
, E(4)

〉
+
〈
B

(2)
δΛ
, E(2)

〉
−
〈〈
δΛΨ(1), Y E(3)

〉〉
, (4.177)

where A ∼= B denotes that A equals to B except for terms containing E(1) and E(0). It is

useful to note that

QFΨ ∼= 0 , (4.178)

Q[B1, . . . , Bn]ηGη
∼=

n∑
k=1

(−1)1+B1+...+Bk−1 [B1, . . . , QBk, . . . , Bn]ηGη , (4.179)

{Q,Dη} ∼= 0 , (4.180)

Q(FΨ, . . . , FΨ)ηGη
∼= [FΨ, . . . , FΨ]ηGη . (4.181)

Utilizing them, we have

−〈〈δΛΨ(1), Y E(3)〉〉 =
κ3

6

〈
FΞDη[FΨ,Λ]ηGη , XηFΞDη(FΨ, FΨ, FΨ)ηGη

〉
=
κ3

6

〈
[FΨ,Λ]ηGη , DηFΞQFΞDη(FΨ, FΨ, FΨ)ηGη

〉
∼=
κ3

6

〈
[FΨ,Λ]ηGη , DηFΞ[FΨ, FΨ, FΨ]ηGη

〉
− κ3

6

〈
[FΨ,Λ]ηGη , QDηFΞ(FΨ, FΨ, FΨ)ηGη

〉
=
κ3

6

〈
Λ, [FΨ, [FΨ, FΨ, FΨ]ηGη ]ηGη

〉
− κ3

6

〈
FΞ[FΨ,Λ]ηGη , Dη[FΨ, FΨ, FΨ]ηGη

〉
− κ3

6

〈
Λ, [FΨ, QDηFΞ(FΨ, FΨ, FΨ)ηGη ]ηGη

〉
, (4.182)
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where we used DηFΞQDηFΞ = (1 − FΞDη)QDηFΞ ∼= QDηFΞ, and Ξ2 = 0. Similarly,

one can show that the remaining two terms become

〈B(0)
δΛ
, E(4)〉 ∼=

κ3

6

〈
Λ, [FΨ, QDηFΞ(FΨ, FΨ, FΨ)ηGη ]ηGη

〉
+
κ3

24

〈
Λ, Dη[FΨ, FΨ, FΨ, FΨ]ηGη

〉
, (4.183)

〈B(2)
δΛ
, E(2)〉 ∼=

κ3

4

〈
Λ, [FΨ, FΨ, [FΨ, FΨ]ηGη ]ηGη

〉
− κ3

2

〈
FΞ[FΨ,Λ]ηGη , [FΨ, [FΨ, FΨ]ηGη ]ηGη

〉
. (4.184)

Then we find (4.177) holds by the L∞-relations of Gη-shifted dual products:

κ3

24

〈
Λ,
(
Dη[FΨ, FΨ, FΨ, FΨ]ηGη+4[FΨ, [FΨ, FΨ, FΨ]ηGη ]ηGη+6[FΨ, FΨ, [FΨ, FΨ]ηGη ]ηGη

)〉
− κ3

6

〈
FΞ[FΨ,Λ]ηGη ,

(
Dη[FΨ, FΨ, FΨ]ηGη+3[FΨ, [FΨ, FΨ]ηGη ]ηGη

)〉
= 0 . (4.185)

By picking up the terms with E(1) and E(0), the transformations δΛΨ(3) and B
(4)
δΛ

can be

explicitly determined as

B
(4)
δΛ

= −κ
4

24
[(FΨ, FΨ, FΨ, FΨ)ηGη ,Λ]ηGη +

κ4

6
[[FΨ, FΞ(FΨ, FΨ, FΨ)ηGη ]ηGη ,Λ]ηGη

+
κ4

24
(FΨ, FΨ, FΨ, FΨ, DηΛ)ηGη −

κ4

6
(FΨ, FΨ, FΨ, FΞ[FΨ, DηΛ]ηGη)ηGη

− κ4

6
[FΨ, FΞ(FΨ, FΨ, FΨ, DηΛ)ηGη ]ηGη −

κ4

6
[FΞ(FΨ, FΨ, FΨ)ηGη , FΨ, DηΛ]ηGη

+
κ4

2
[FΨ, FΞ(FΨ, FΨ, FΞ[FΨ, DηΛ]ηGη)ηGη ]ηGη

+
κ4

6
[FΨ, FΞ[FΞ(FΨ, FΨ, FΨ)ηGη , DηΛ]ηGη ]ηGη

+
κ4

6
[FΞ(FΨ, FΨ, FΨ)ηGη , FΞ[FΨ, DηΛ]ηGη ]ηGη , (4.186)

δΛΨ(3) = −κ
3

6
XηFΞDη(FΨ, FΨ, FΨ, DηΛ)ηGη+

κ3

2
XηFΞDη(FΞ[FΨ, DηΛ]ηGη , FΨ, FΨ)ηGη

+
κ3

6
XηFΞDη[FΞ(FΨ, FΨ, FΨ)ηGη , DηΛ]ηGη . (4.187)

5 Summary and discussion

Using the expansion in the number of the Ramond string field, we have constructed in

this paper a gauge invariant action of heterotic string field theory at the quadratic and

quartic order:

S = −1

2
〈〈Ψ, Y QΨ〉〉+

∫ 1

0
dt
〈
Bt(t), QGη(t) +

κ

2
[F (t)Ψ, F (t)Ψ]ηGη(t)

〉
+
κ2

24
〈FΨ, (FΨ, FΨ, FΨ)ηGη〉+O(Ψ6). (5.1)
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This is invariant under the gauge transformations with the parameter Λ,

BδΛ = QΛ +
κ2

2
[FΨ, FΨ,Λ]ηGη − κ

2[FΨ, FΞ[FΨ,Λ]ηGη ]ηGη

− κ4

24
[(FΨ, FΨ, FΨ, FΨ)ηGη ,Λ]ηGη +

κ4

6
[[FΨ, FΞ(FΨ, FΨ, FΨ)ηGη ]ηGη ,Λ]ηGη

+
κ4

24
(FΨ, FΨ, FΨ, FΨ, DηΛ)ηGη −

κ4

6
(FΨ, FΨ, FΨ, FΞ[FΨ, DηΛ]ηGη)ηGη

− κ4

6
[FΨ, FΞ(FΨ, FΨ, FΨ, DηΛ)ηGη ]ηGη −

κ4

6
[FΞ(FΨ, FΨ, FΨ)ηGη , FΨ, DηΛ]ηGη

+
κ4

2
[FΨ, FΞ(FΨ, FΨ, FΞ[FΨ, DηΛ]ηGη)ηGη ]ηGη

+
κ4

6
[FΨ, FΞ[FΞ(FΨ, FΨ, FΨ)ηGη , DηΛ]ηGη ]ηGη

+
κ4

6
[FΞ(FΨ, FΨ, FΨ)ηGη , FΞ[FΨ, DηΛ]ηGη ]ηGη +O(Ψ6), (5.2)

δΛΨ = −κXηFΞDη[FΨ,Λ]ηGη

− κ3

6
XηFΞDη(FΨ, FΨ, FΨ, DηΛ)ηGη +

κ3

2
XηFΞDη(FΨ, FΨ, FΞ[FΨ, DηΛ]ηGη)ηGη

+
κ3

6
XηFΞDη[FΞ(FΨ, FΨ, FΨ)ηGη , DηΛ]ηGη +O(Ψ5), (5.3)

with the parameter Ω,

BδΩ = DηΩ +O(Ψ6), (5.4)

δΩΨ = O(Ψ5), (5.5)

and with the parameter λ,

Bδλ = −κ[FΨ, FΞλ]ηGη −
κ3

6
(FΨ, FΨ, FΨ, Fλ)ηGη +

κ3

6
[FΞ(FΨ, FΨ, FΨ)ηGη , Fλ]ηGη

+
κ3

2
[FΨ, FΞ(FΨ, FΨ, Fλ)ηGη ]ηGη +O(Ψ6), (5.6)

δλΨ = Qλ+XηFλ+
κ2

2
XηFΞDη(FΨ, FΨ, Fλ)ηGη +O(Ψ5), (5.7)

except for the higher order in the Ramond string field. The equations of motion derived

from this action are

ENS = QGη +
κ

2
[FΨ, FΨ]ηGη

− κ3

24
Dη

(
(FΨ, FΨ, FΨ, FΨ)ηGη − 4[FΨ, FΞ(FΨ, FΨ, FΨ)ηGη ]ηGη

)
+O(Ψ6), (5.8)

ER = QΨ +XηFΨ +
κ2

6
XηFΞDη(FΨ, FΨ, FΨ)ηGη +O(Ψ5). (5.9)

Note that all of these results include all order terms in the coupling constant κ at each

order in the Ramond string field. We can also confirm that the action (5.1) reproduces the

four-point amplitudes with external fermions as given in the appendix B.
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The most important remaining task is to give a complete action and gauge transforma-

tion. We finally discuss two observations which may provide clues to achieve it. The first

observation is a relation between the equations of motion and the gauge transformations.

At the beginning, it is natural to assume that the NS string field V appears in the higher

order action only in the form of Gη, since the corresponding ansatz is true for the case

of the equations of motion in the dual formulation [14, 15]. If we assume this ansatz the

gauge transformation with the parameter Ω does not subject to change any more. One can

find that the gauge transformations δΛΨ, DηBδλ and δλΨ are obtained by replacing fields

in the equations of motion with gauge parameters:7(
(DηΛ)

δ

δGη

)
E(2k) = DηB

(2k)
δΛ

+ κ[E(2k),Λ]ηGη , for k = 0, 1, 2 , (5.10)(
(DηΛ)

δ

δGη

)
E(2k+1) = δΛΨ(2k+1), for k = 0, 1 , (5.11)

−
(
λ
δ

δΨ

)
E(2k) = DηB

(2k)
δλ

, for k = 1, 2 , (5.12)

−
(
λ
δ

δΨ

)
E(2k+1) = δλΨ(2k+1), for k = 0, 1 . (5.13)

These relations might be an appearance of an L∞-structure, or equivalently a Batalin-

Vilkovisky structure of the action: in formulations based on the L∞-products, the gauge

transformation is given by a functional differentiation of the equation of motion. To eluci-

date the role of theses relations in detail remains as future work which may provide a hint

to complete an action to all orders.

The second observation is the expression of the equations of motion obtained as a dual

form of the first-order equations of motion obtained in [15]:

(η +Q)B̃ +

∞∑
m=2

1

m!
[B̃m]η = 0, (5.14)

where B̃ =
∑∞

n=0 B̃(n−2)/2. Expanding this in the picture number, the first two equations

with the picture number P = −2 and −3/2,

ηB̃−1 +

∞∑
m=2

κm−1

m!
[B̃m
−1]η = 0 , (5.15)

DηB̃−1/2 = 0 , (5.16)

can be solved as

B̃−1 = Gη , B̃−1/2 = FΨ . (5.17)

The next two with p = −1 and −1/2,

QGη +
κ

2
[B̃−1/2, B̃−1/2]ηGη +DηB̃0 = 0 , (5.18)

QB̃−1/2 + κ[B̃0, B̃−1/2]ηGη +
κ2

3!
[B̃−1/2, B̃−1/2, B̃−1/2]ηGη +DηB̃1/2 = 0 , (5.19)

7One can see that similar relations hold exactly for the open superstring field theory.
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can be interpreted as equations of motion with the infinitely many subsidiary equations

determining the infinitely many “auxiliary fields”, B̃n/2 (n ≥ 0). In the original formulation

in [15], we can iteratively solve these subsidiary conditions in the fermion expansion, and

obtain the equations of motion. We similarly assume here that the terms in the auxiliary

fields with the lowest order in fermion are B̃n/2 = O(Ψn+4). Then the subsidiary equations

simply become

QB̃n/2 +
κn+3

(n+ 4)!
[FΨ, FΨ, · · · , FΨ︸ ︷︷ ︸

n+4

]ηGη = 0 , (5.20)

which can be solved as

B̃
(n+4)
n/2 = − κn+3

(n+ 4)!
(FΨ, FΨ, · · · , FΨ︸ ︷︷ ︸

n+4

)ηGη , (5.21)

except for the terms proportional to the lowest order equations of motion

QGη +
κ

2
[FΨ, FΨ]ηGη = 0 , (5.22)

QFΨ = 0 , (5.23)

obtained from (5.18) and (5.19), respectively. Unfortunately, however, the next order

equations of motion obtained by substituting (5.21) into (5.18) and (5.19) are not equivalent

to our equations of motion (5.9). Although this difference can be filled by assuming that

B̃−1/2 contains the terms with the higher order in fermion as

B̃−1/2 = FΨ− κ2

3!
DηFΞ(FΨ, FΨ, FΨ)ηGη +O(Ψ5), (5.24)

we cannot determine it without further assumption. Although this can be absorbed in the

redefinition of the Ramond string field Ψ, we have to find a way to reproduce the higher

order terms in the equations of motion derived from the action, which may provides a clue

for constructing a complete gauge invariant action.
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A Construction of the dual gauge product

In order to make this paper self-contained, we give in this appendix a construction of the

dual string products. We follow the convention and notation of [22].

We first introduce the coalgebraic expression of string products, which is convenient

to focus on their algebraic properties [7]. The product of n closed strings is described by

a multilinear map dn : H∧n → H, where ∧ is the symmetrized tensor product satisfying

Φ1 ∧ Φ2 = (−1)Φ1Φ2Φ2 ∧ Φ1. This naturally induces a map from the symmetrized tensor
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algebra S(H) = H∧0⊕H∧1⊕H∧2⊕· · · to S(H) itself called a coderivation. A coderivation

dn : S(H)→ S(H) is naturally derived from a map dn : H∧n → H as

dn(Φ1 ∧ · · · ∧ ΦN ) = (dn ∧ IN−n)(Φ1 ∧ · · · ∧ ΦN )

=
∑
σ

(−1)σ

n!(N − n)!
dn(Φσ(1), · · · ,Φσ(n)) ∧ Φσ(n+1) ∧ · · · ∧ Φσ(N) , (A.1)

for Φ1 ∧ · · · ∧ ΦN ∈ H∧N≥n ⊂ S(H), and it vanishes when acting on H∧N<n. The graded

commutator of two coderivations bn and cm, [[bn, cm]], is a coderivation derived from the

map [[bn, cm]] : H∧n+m−1 → H which is defined by

[[bn, cm]] = bn(cm ∧ In−1)− (−1)deg(bn)deg(cm)cm(bn ∧ Im−1) . (A.2)

Then the L∞-relation can be written as

[[L,L]] = 0 , (A.3)

where L = L1 + L2 + L3 + · · · and Lk is a coderivation derived from the k-string product.

We introduce another map on the symmetrized tensor algebra, which is called a co-

homomorphism. From a set of multilinear maps {fn : H∧n → H′}∞n=0, one can naturally

define a cohomomorphism f̂ : S(H)→ S(H′), which acts on Φ1∧· · ·∧Φn ∈ H∧n ⊂ S(H) as

f̂(Φ1 ∧ · · · ∧ Φn) =
∑
i≤n

∑
k1<···<ki=n

e∧f0 ∧ fk1(Φ1, . . . ,Φk1) ∧ fk2−k1(Φk1+1, . . . ,Φk2)∧

· · · ∧ fki−ki−1
(Φki−1+1, . . . ,Φn) . (A.4)

We also introduce a projector π1 from the symmetrized tensor algebra to the single-state

space, S(H)→ H, as

π1

(
Φ0 + Φ1 ∧ Φ2 + Φ3 ∧ Φ4 ∧ Φ5 + . . .

)
= Φ0 . (A.5)

The NS string products for heterotic string field theory, LNS(τ) =
∑∞

p=0 τ
pLp+1, had

been constructed in [7]. They satisfy the L∞-relation [[LNS(τ),LNS(τ)]] = 0, cyclicity, and

(graded) commutativity with η: [[η,LNS(τ)]] = 0. The (p + 1)-product LNS
p+1 carries the

ghost number 1− 2p and the picture number p. The whole string product LNS(τ) is given

by a similarity transformation of the BRST operator Q as

LNS(τ) = Ĝ−1(τ)QĜ(τ) , (A.6)

where Ĝ(τ) is an invertible cohomomorphism given by the path-ordered exponential map:

Ĝ(τ) =
←
P exp

(∫ τ

0
dτ ′λ[0](τ ′)

)
, Ĝ−1(τ) =

→
P exp

(
−
∫ τ

0
dτ ′λ[0](τ ′)

)
, (A.7)

where λ[0](τ) =
∑∞

p=0 τ
pλ

[0]
p+2, called gauge products, can be determined iteratively. The

arrow ← (→) on P denotes that the operator at later time acts from the right (left). The
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(p+ 2)-gauge product λ
[0]
p+2 carries ghost number −2(p+ 1) and picture number p+ 1. The

cohomomorphisms Ĝ(τ) and Ĝ−1(τ) satisfy

∂τĜ(τ) = Ĝ(τ)λ[0](τ) , ∂τĜ
−1(τ) = −λ[0](τ)Ĝ−1(τ) . (A.8)

The L∞-relations are followed from the nilpotency of Q as

[[LNS(τ),LNS(τ)]] = 2
(
LNS(τ)

)2
= 2Ĝ−1(τ)Q2Ĝ(τ) = 0 . (A.9)

The cyclicity and commutativity [[η,LNS(τ)]] = 0, is realized by a suitable choice of an

initial gauge product λ[0], whose explicit example is given in [7].

Under these preparations, we summarize the construction of the dual string products

given in [22]. We introduce a coderivation Lη(τ) =
∑∞

p=0 τ
pLηp+1 which provides a set of

the dual string products by

[V1, V2, . . . , Vn]η = π1L
η
n(V1 ∧ V2 ∧ . . . ∧ Vn) . (A.10)

This n-th dual product Lηn carries ghost number 3 − 2n and picture number n − 2 as

expected. The whole coderivation Lη(τ) is degree odd, and can be constructed using the

cohomomorphism Ĝ(τ) appearing in the NS product LNS(τ) = Ĝ−1(τ)QĜ(τ) by

Lη(τ) = Ĝ(τ)ηĜ−1(τ) . (A.11)

By construction, they satisfy the L∞-relation

[[Lη(τ),Lη(τ)]] = 0 . (A.12)

The anti-commutativity [[Q,Lη(τ)]] = 0 follows from [[η,LNS(τ)]] = 0 as

[[Q,Lη(τ)]] = [[Q, Ĝ(τ)ηĜ−1(τ)]] = Ĝ(τ)[[LNS(τ),η]]Ĝ−1(τ) = 0 . (A.13)

The cyclicity of Lη(τ) again follows from that of the gauge product λ[0]. We can give an

explicit expression of the dual string product using the bosonic string product if necessary,

for example,

[V1, V2]η=−[V1, V2], (A.14)

[V1, V2, V3]η=−1

4

(
X0[V1, V2, V3]+[X0V1, V2, V3]+[V1, X0V2, V3]+[V1, V2, X0V3]

+ (−1)V1ξ0[V1, [V2, V3]]−(−1)V1 [ξ0V1, [V2, V3]]

+ [V1, [ξ0V2, V3]]+(−1)V2 [V1, [V2, ξ0V3]]

+ (−1)V1(V2+V3)
(

(−1)V2ξ0[V2, [V3, V1]]−(−1)V2 [ξ0V2, [V3, V1]]

+ [V2, [ξ0V3, V1]]+(−1)V3 [V2, [V3, ξ0V1]]
)

+ (−1)V3(V1+V2))
(

(−1)V3ξ0[V3, [V1, V2]]−(−1)V3 [ξ0V3, [V1, V2]]

+ [V3, [ξ0V1, V2]]+(−1)V1 [V3, [V1, ξ0V2]]
))

, (A.15)
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where X0 = {Q, ξ0}. These dual string products are defined on the basis of LNS(τ)

in the NS sector. However, we can extend it to include the Ramond sector simply by

considering Vi is either the NS string field or the Ramond string field, which preserves

the necessary properties, the L∞-relation, cyclicity and the commutativity with Q, to

construct the gauge invariant action. It should be emphasized here that it is not necessary

to introduce any special picture changing operator only for the Ramond sector to define

the dual string products.

The dual string product Lη is commutative with Q, and its second derivative with

respect to τ can be written as the commutator of Q and a product ρ:

∂2
τL

η(τ) = [[Q,ρ(τ)]] =

∞∑
n=0

τn[[Q,ρn+3]] . (A.16)

The dual gauge products can be read from ρ as

(V1, V2, . . . , Vn)η =
1

(n+ 1)(n+ 2)
π1ρn(V1 ∧ V2 ∧ . . . ∧ Vn) , (n ≥ 3) . (A.17)

In order to obtain an explicit expression of ρ, we introduce a coderivation L[1](τ) =∑∞
n=0 τ

nL
[1]
n+2 which is an intermediate products with deficit picture 1 given in [7]. It

is related to the gauge products λ[0](τ) as

[[η,λ[0](τ)]] = L[1](τ) , (A.18)

and satisfies L[1](τ = 0) = LB
2 , where LB

2 is a coderivation derived from the simple two-

string product for closed string without any insertion of superconformal ghost. We also

introduce a coderivation λ[1](τ) =
∑∞

n=0 τ
nλ

[1]
n+3 derived from a set of intermediate gauge

products with deficit picture 1 [7]. It satisfies the relation,

∂τL
[1](τ) = [[L[1](τ),λ[0](τ)]] + [[L[0](τ),λ[1](τ)]] , (A.19)

with L[0] = LNS . Then, utilizing these products and their path-ordered exponential maps,

we can rewrite Lη as

Lη(τ) = Ĝ(τ)ηĜ−1(τ)

= η + Ĝ(τ)[[η, Ĝ−1(τ)]]

= η−
∫ τ

0
dτ ′Ĝ(τ ′)L[1](τ ′)Ĝ−1(τ ′) . (A.20)

The integrand in the second term becomes

Ĝ(τ ′)L[1](τ ′)Ĝ−1(τ ′) = Ĝ(0)L[1](0)Ĝ−1(0) +

∫ τ ′

0
dτ ′′ ∂τ ′′

(
Ĝ(τ ′′)L[1](τ ′′)Ĝ−1(τ ′′)

)
= LB

2 +

∫ τ ′

0
dτ ′′[[Q, Ĝ(τ ′′)λ[1](τ ′′)Ĝ−1(τ ′′)]] , (A.21)
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where we used Ĝ(0) = I, L[1](0) = LB
2 , and

∂τ ′′
(
Ĝ(τ ′′)L[1](τ ′′)Ĝ−1(τ ′′)

)
= Ĝ(τ ′′)[[L[0](τ ′′),λ[1](τ ′′)]]Ĝ−1(τ ′′)

= [[Q, Ĝ(τ ′′)λ[1](τ ′′)Ĝ−1(τ ′′)]] , (A.22)

which follows from the differential equations (A.8) and (A.19), and (A.6) with L[0] = LNS .

Then eventually the dual string products Lη can be written as

Lη(τ) = η−
∫ τ

0
dτ ′
(
LB

2 +

∫ τ ′

0
dτ ′′[[Q, Ĝ(τ ′′)λ[1](τ ′′)Ĝ−1(τ ′′)]]

)
= η− τLB

2 −
∫ τ

0
dτ ′′(τ − τ ′′)[[Q, Ĝ(τ ′′)λ[1](τ ′′)Ĝ−1(τ ′′)]] . (A.23)

Here we used
∫ τ

0 dτ
′ ∫ τ ′

0 dτ ′′ =
∫ τ

0 dτ
′′ ∫ τ

τ ′′ dτ
′ and carried out τ ′-integral. In this expression,

the commutativity [[Q,Lη]] = 0 is manifest. Differentiating (A.23) with respect to τ ,

we obtain

∂τL
η(τ) = −LB

2 −
∫ τ

0
dτ ′′[[Q, Ĝ(τ ′′)λ[1](τ ′′)Ĝ−1(τ ′′)]] , (A.24)

∂2
τL

η(τ) = −[[Q, Ĝ(τ)λ[1](τ)Ĝ−1(τ)]] . (A.25)

Therefore we can define the product ρ by two gauge products λ[0] and λ[1] as

ρ(τ) = −G(τ)λ[1](τ)G−1(τ) . (A.26)

The cyclicity of ρ follows from that of λ[0] and λ[1]. Expanding (A.26) in powers of τ , we

obtain the following expressions for the first few orders:

ρ3 = −λ[1]
3 , (A.27)

ρ4 = −
(
λ

[1]
4 + [[λ

[0]
2 ,λ

[1]
3 ]]
)
, (A.28)

ρ5 = −
(
λ

[1]
5 + [[λ

[0]
2 ,λ

[1]
4 ]] +

1

2
[[λ

[0]
3 ,λ

[1]
3 ]] +

1

2
[[λ

[0]
2 , [[λ

[0]
2 ,λ

[1]
3 ]]]]

)
. (A.29)

The explicit form of three-string dual gauge product is, for example, given by

(V1, V2, V3)η = −1

4

(
ξ[V1, V2, V3]− [ξV1, V2, V3]

− (−1)V1 [V1, ξV2, V3]− (−1)V1+V2 [V1, V2, ξV3]
)
. (A.30)

B Four-point amplitudes with external fermions

In this appendix, we illustrate how the on-shell physical amplitudes with external fermions

are reproduced from the heterotic string field theory by concentrating on the case of four-

point amplitudes which can be calculated only from the action up to O(Ψ4) constructed

in this paper. We follow the notations and conventions in [29].
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B.1 Propagators and vertices

The kinetic terms of the NS string field V and the Ramond string field Ψ are obtained

from (3.51) and (4.123) as

S0 =
1

2
〈ηV,QV 〉 − 1

2
〈ξ0Ψ, Y QΨ〉 . (B.1)

This is invariant under the gauge transformations

δV = QΛ + ηΩ , δΨ = Qλ , (B.2)

which we fix here by gauge conditions

b+0 V = ξ0V = 0 , b+0 Ψ = 0 . (B.3)

Under these gauge conditions the propagators of the NS and the Ramond string fields can

be found as

|V 〉〈V | = ξ0
b−0 b

+
0

L+
0

δ(L−0 )

=

∫
d2T (ξ0b

−
0 b

+
0 ) e−TL

+
0 −iθL

−
0 ≡ ΠNS , (B.4)

|Ψ〉〈Ψ| = −b
−
0 b

+
0 Xη

L+
0

δ(L−0 )

= −
∫
d2T (b−0 b

+
0 Xη) e−TL

+
0 −iθL

−
0 ≡ ΠR , (B.5)

respectively, where
∫
d2T =

∫∞
0 dT

∫ 2π
0

dθ
2π . Notice that the Ramond propagator satisfies8

ηΠR = ΠRη = 0 , (B.6)

XYΠR = ΠR(ξ0Y Xη) = ΠR , (B.7)

which expresses that only the Ramond states satisfying the constraint (4.1) propagate.

The necessary interaction vertices can be read from (3.51), (4.123) and (4.170) by

expanding them in the coupling constant κ:

S
(0)
1 =

κ

3!
〈ηV, [V,QV ]〉 , (B.8)

S
(0)
2 =

κ2

4!
〈ηV, [V, (QV )2]〉+

κ2

4!
〈ηV, [V, [V,QV ]〉 , (B.9)

S
(2)
1 = −κ

2
〈Ψ, [V,Ψ]〉 , (B.10)

S
(2)
2 = −κ

2

16

(
〈ξ0Ψ, [QV, ηV,Ψ]〉+ 〈Ψ, [ξ0QV, ηV,Ψ]〉

+ 〈Ψ, [QV, ξ0ηV,Ψ]〉+ 〈Ψ, [QV, ηV, ξ0Ψ]〉
)
− κ2

2
〈Ξ[ηV,Ψ], [V,Ψ]〉 , (B.11)

S
(4)
2 =

κ2

4!
〈ξ0Ψ, [Ψ3]〉 . (B.12)

From these propagators and vertices, we can uniquely calculate the tree-level four-point

amplitudes including external fermions.

8The condition for the BPZ conjugate, the latter equation in (B.7), can be understood from the

inner product between restricted states |Ψ1〉 and |Ψ2〉 in the large Hilbert space: 〈Ψ1|ξ0Y |Ψ2〉 =

〈Ψ1|ξ0Y XY |Ψ2〉 = 〈Ψ1|(ξ0Y Xη)ξ0Y |Ψ2〉.
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B.2 Four-fermion amplitude

Let us first consider the amplitude with four external fermions in the Ramond sector. The

contributions to the four-fermion amplitude come from the four Feynman diagrams, the s-,

t-, u-channel diagrams and a contact type diagram containing a four-string vertex. Follow-

ing the convention in [29] we label each external string with A, B, C, and D, and denote

the s-, t-, and u-channel contributions as (AB|CD), (AC|BD), and (AD|BC), respectively.

Then the s-channel contribution can be calculated from the NS propagator (B.4) and the

three-string interaction (B.10) as

A(AB|CD)
F 4 = (−κ)2〈ΨAΨB V 〉〈V ΨCΨD〉

= κ2

∫
d2Ts〈ΨAΨB(ξ0b

−
0 b

+
0 )ΨCΨD〉Ws

= κ2

∫
d2Ts〈〈ΨAΨB(b−0 b

+
0 )ΨCΨD〉〉Ws , (B.13)

where we denoted the moduli of the s-channel propagator as (Ts, θs) and the correlation

〈· · · 〉Ws , or 〈〈· · ·〉〉Ws , is evaluated as the conformal field theory on the s-channel string

diagram depicted in [14]. The inserted ξ0 and b±0 are the zero mode with respect to the local

coordinate on the NS propagator.9 The symbols ΨA, · · · ,ΨD represent the wave functions

of the Ramond external states, which satisfy the constraints (4.1), gauge condition (B.3)

and the on-shell condition QΨ = 0 . They can be given by the specific vertex operators

if necessary.

In this notation the t- and u-channel contributions can similarly be calculated as

A(AC|BD)
F 4 = κ2

∫
d2Tt〈〈ΨAΨC(b−0 b

+
0 )ΨBΨD〉〉Wt , (B.14)

A(AD|BC)
F 4 = κ2

∫
d2Tu〈〈ΨAΨD(b−0 b

+
0 )ΨBΨC〉〉Wu . (B.15)

A contact type interaction (B.12) gives the other contribution, denoted (ABCD),

which fills the gap in the moduli integration [18]:

A(ABCD)
F 4 = κ2

∫
dθ1dθ2〈〈(bC1bC2)ΨAΨBΨCΨD〉〉W4 , (B.16)

where the integration parameters θ1 and θ2 determine the shape of a tetrahedron along

which four strings in the vertex (B.12) are glued, and bC1,2 denote the corresponding anti-

ghost insertions, the details of which are given in [20].

Summing up all these contributions the on-shell four-fermion amplitude becomes

AF 4 = A(AB|CD)
F 4 +A(AC|BD)

F 4 +A(AD|BC)
F 4 +A(ABCD)

F 4 (B.17)

= κ2

∫
d2Ts 〈〈ΨAΨB(b−0 b

+
0 )ΨCΨD〉〉Ws + κ2

∫
d2Tt 〈〈ΨAΨC(b−0 b

+
0 )ΨBΨD〉〉Wt

+ κ2

∫
d2Tu 〈〈ΨAΨD(b−0 b

+
0 )ΨBΨC〉〉Wu + κ2

∫
d2θ 〈〈(bC1bC2)ΨAΨBΨCΨD〉〉W4 .

9These are denoted ξc and b±c in [14].
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From the fact that the bosonic closed string field theory reproduces the correct perturbative

amplitudes, we can conclude that the amplitude (B.17) agrees with that obtained in the

first quantized formulation.

B.3 Two-fermion-two-boson amplitude

We can similarly calculate the two-fermion-two-boson amplitude. Suppose strings A and

B are fermions in the Ramond sector and strings C and D are bosons in the NS sector.

The s-channel contributions can be calculated using the NS propagator (B.4) and the

vertices (B.8) and (B.10):

A(AB|CD)
F 2B2 = −κ

2

2
〈ΨAΨB V 〉〈V

(
(QVC) (ηVD) + (ηVC) (QVD)

)
〉Ws

= −κ
2

2

∫
d2Ts 〈ΨAΨB(ξ0b

−
0 b

+
0 )
(
(QVC) (ηVD) + (ηVC) (QVD)

)
〉Ws

= −κ
2

2

∫
d2Ts 〈〈ΨAΨB(b−0 b

+
0 )
(
(X0ηVC) (ηVD) + (ηVC) (X0ηVD)

)
〉〉Ws , (B.18)

where VC and VD represent the wave functions of the NS external states, which satisfy the

gauge conditions (B.3) and the on-shell condition QηV = 0 . In the last equation, we used

QV = X0ηV for this wave function V .

The t-channel contribution in this case is calculated using the Ramond propaga-

tor (B.5) and the vertex (B.10):

A(AC|BD)
F 2B2 = −κ2〈ΨAVC Ψ〉〈Ψ ΨBVD〉

= −κ2

∫
d2Tt 〈ΨAVC(b−0 b

+
0 Xη)ΨBVD〉Wt . (B.19)

In order to smoothly connect the contributions of the four diagrams at their boundaries and

sum up them to the integration over the whole moduli space, we rearrange the integrand so

as to be the correlation function of the same external vertices, ΨA, ΨB, ((X0ηVC) (ηVD) +

(ηVC) (X0ηVD))/2, and the operator insertion (b−0 b
+
0 ) as those in (B.18). In particular we

move the picture changing operator X in the Ramond propagator, whose form is highly

depend on the coordinate system of the propagator, to an external state by using the

relation X = {Q,Ξ}. After a little manipulation, we obtain

A(AC|BD)
F 2B2 = −κ

2

2

∫
d2Tt

(
〈ΨAVC(b−0 b

+
0 X)ΨB (ηVD)〉Wt + 〈ΨA (ηVC)(b−0 b

+
0 X)ΨBVD〉Wt

)
= −κ

2

2

∫
d2Tt

(
〈〈ΨA (X0ηVC) (b−0 b

+
0 )ΨB (ηVD)〉〉Wt

+ 〈〈ΨA (ηVC) (b−0 b
+
0 ) ΨB (X0ηVD)〉〉Wt

)
(B.20)

− κ2

2

∮
dθt

(
〈ΨA VC(b−0 Ξ)ΨB (ηVD)〉Wt + 〈ΨA (ηVC)(b−0 Ξ)ΨB VD〉Wt

)∣∣∣
Tt=0

,

where we denoted
∮
dθ ≡

∫ 2π
0 dθ/2π for simplicity. Here the first line of the final expression

has the same form of the external states as those in (B.18), but the extra contribution in
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the second line appears from the boundary Tt = 0 by exchanging Q and b+0 using

{Q,
∫ ∞

0
dT b+0 e

−TL+
0 } =

∫ ∞
0

dT L+
0 e
−TL+

0 = 1 .

The contribution from the u-channel has the same structure and is calculated as

A(AD|BC)
F 2B2 = −κ2

∫
d2Tu 〈ΨAVD(b−0 b

+
0 Xη)ΨBVC〉Wu (B.21)

= −κ
2

2

∫
d2Tu

(
〈ΨA (QVD)(b−0 b

+
0 Ξ)ΨB (ηVC)〉Wu

+ 〈ΨA (ηVD)(b−0 b
+
0 Ξ)ΨB (QVC)〉Wu

)
− κ2

2

∮
dθu

(
〈ΨAVD(b−0 Ξ)ΨB (ηVC)〉Wu + 〈ΨA (ηVD)(b−0 Ξ)ΨBVC〉〉Wu

) ∣∣∣
Tu=0

= −κ
2

2

∫
d2Tu

(
〈〈ΨA (X0ηVD)(b−0 b

+
0 )ΨB (ηVC)〉〉Wu

+ 〈〈ΨA (ηVD)(b−0 b
+
0 )ΨB (X0ηVC)〉〉Wu

)
− κ2

2

∮
dθu

(
〈ΨAVD(b−0 Ξ)ΨB (ηVC)〉Wu + 〈ΨA (ηVD)(b−0 Ξ)ΨBVC〉Wu

) ∣∣∣
Tu=0

.

The contribution from the contact type diagram can be obtained using the ver-

tices (B.11):

A(ABCD)
F 2B2 = −κ

2

2

∫
dθ1dθ2〈(ξ0bC1bC2)ΨAΨB

(
(QVC) (ηVD) + (ηVC) (QVD)

)
〉W4

− κ2

2

∮
dθt

(
〈Ξb−0

(
ΨA (ηVC)

)
ΨB VD〉Wt〈Ξb−0

(
ΨB (ηVC)

)
ΨA VD〉Wt

)∣∣∣
Tt=0

− κ2

2

∮
dθu

(
〈Ξb−0

(
ΨA(ηVD)

)
ΨB VC〉Wu + 〈Ξb−0

(
ΨB(ηVD)

)
ΨA VC〉Wu

)∣∣∣
Tu=0

= −κ
2

2

∫
dθ1dθ2〈〈(bC1bC2)ΨAΨB

(
(X0ηVC) (ηVD) + (ηVC) (X0ηVD)

)
〉〉W4

+
κ2

2

∮
dθt

(
〈ΨA (ηVC)(b−0 Ξ)ΨBVD〉Wt+〈ΨAVC(b−0 Ξ)ΨB (ηVD)〉Wt

)∣∣∣
Tt=0

+
κ2

2

∮
dθu

(
〈ΨA (ηVD)(b−0 Ξ)ΨBVC〉Wu+〈ΨAVD(b−0 Ξ)ΨB (ηVC)〉Wu

)∣∣∣
Tu=0

.

(B.22)

The first line is the similar contribution to the one in the four-fermion amplitude (B.16),

coming from the proper four-string interaction defined by the three-string product [ · , · , ·].
Extra contribution in the second line comes from the vertices represented by the nested

two string products [ · , [ · , · ]], represented by the diagram with the collapsed-propagator,

the propagator with T = 0, integrated only over its angle. For the more details, see [29].

Summing up all these contributions, one can find that all the extra contributions

integrated only one parameter are cancelled out. The two-fermion-two-boson amplitude
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finally becomes

AF 2B2 = A(AB|CD)
F 2B2 +A(AC|BD)

F 2B2 +A(AD|BC)
F 2B2 +A(ABCD)

F 2B2

= −κ
2

2

∫
d2Ts

(
〈〈ΨAΨB(b−0 b

+
0 )
(
(X0ηVC) (ηVD) + (ηVC) (X0ηVD)

)
〉〉Ws

)
− κ2

2

∫
d2Tt

(
〈〈ΨA (X0ηVC) (b−0 b

+
0 )ΨB (ηVD)〉〉Wt

+ 〈〈ΨA (ηVC) (b−0 b
+
0 ) ΨB (X0ηVD)〉〉Wt

)
− κ2

2

∫
d2Tu

(
〈〈ΨA (X0ηVD)(b−0 b

+
0 )ΨB (ηVC)〉〉Wu

+ 〈〈ΨA (ηVD)(b−0 b
+
0 )ΨB (X0ηVC)〉〉Wu

)
− κ2

2

∫
dθ1dθ2 〈〈(bC1bC2)ΨAΨB

(
(X0ηVC) (ηVD) + (ηVC) (X0ηVD)

)
〉〉W4 . (B.23)

For the same reason as the four-fermion amplitude, this agrees with the result in the

first-quantized formulation.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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