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1 Introduction

Three dimensional vector model gauged by Chern-Simons interaction (Chern-Simons vec-

tor model) has turned out to be an intersection of various subjects in theoretical physics.

An initiative study was done in [1, 2], where it was conjectured that Chern-Simons vector

model inherits large N solubility of vector model in the ’t Hooft large N limit and be-

comes a conformal field theory (CFT) dual to parity-violated higher-spin gravity theory in

AdS4 [3] by extending the conjecture of vector model/higher-spin theory [4]. (See [5] for

its supersymmetric extension.)

Large N exact computations of three point correlation functions in Chern-Simons

vector models were done [6, 7] in accordance with general study of correlators including

parity non-invariant contact terms of the class of three dimensional CFT [8–10]. (See

also [11, 12].) Analysis of correlation functions indicated that there exists a bosonization

duality between a pair of a bosonic Chern-Simons vector model and a fermionic one as a

generalization of level-rank duality known in pure Chern-Simons theory by including vector

matter fields. This novel duality was confirmed from the large N thermal free energy of

Chern-Simons vector models [13–17]. (See also [1, 18–21].) Evidence for this duality to

hold in the renormalization group (RG) flow was provided in [15, 17, 22], which indicated

that this bosonization duality in three dimensions is obtained by continuous deformation

from supersymmetric duality known as the Seiberg-like duality [23, 24]. (See also [25–29]

for studies of other aspects.)
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Three dimensional bosonization duality was uncovered from large N exact results of

scattering amplitudes at the level of elementary particles [30, 31]. (See also [32].) It turned

out that the scattering amplitude in the S-channel computed from Euclidean theory via

Wick rotation becomes non-unitary [30], which was also observed in the original Aharonov-

Bohm scattering. The non-unitarity problem in the non-relativistic case was resolved by

carefully taking into account the singular contribution in forward scattering [33]. The

resolution of non-unitarity puzzle in the relativistic case was similarly developed by taking

care of the forward scattering so as to restore unitarity [30]. Then it was shown that the

improved S-matrix exhibits bosonization duality, which just exchanges bosonic particles in

one theory with fermionic ones in the dual one. By combining this with the fact that a

bosonic or fermionic particle interacting with a Chern-Simons gauge field acquires anyon

statistics [34, 35], the bosonization in three dimensions can be naturally understood as a

duality between two theories of anyons.

Along these lines this paper aims at performing the exact largeN calculation of scatter-

ing amplitudes and confirming the duality in a general Chern-Simons vector model, which

includes the double and triple trace terms in the bosonic Chern-Simons vector model or

quadratic and cubic ones of the auxiliary field in the fermionic one. The bosonization dual-

ity is expected to hold for general Chern-Simons vector models since these models connect

the regular Chern-Simons vector models and the critical ones by the RG flow. Indeed the

duality in the general case was confirmed in an exact large N calculation of the thermal

free energy [17]. The calculation of the S-matrix on the bosonic side is straightforward by

adding the contribution of the triple trace coupling into that in [30], while the calculation in

the fermionic side is rather non-trivial since the interaction of the auxiliary field generates

ultra-violet (UV) divergent integrals as fermion loops in the Gross-Neveu model [36, 37],

which are non-renormalizable in the sense of a weak coupling expansion and have to be

regularized suitably in the 1/N expansion.

The rest of this paper is organized as follows. In section 2 we set up the system

and perform some preliminary large N analysis. In section 3 we compute the four point

function of the fermionic field exactly in the light-cone gauge with a specific momentum

frame. By applying the LSZ formula to the four point function we determine the S-matrix

in the T-channel in section 4.1, and that in S-channels with taking account of non-analytic

contribution in the forward scattering in section 4. Section 5 is devoted to conclusion and

discussion. In appendix we provide details about the regularization A, construct asymptotic

states of scattering process B, and give a brief derivation of scattering amplitudes in general

Chern-Simons bosonic vector models C.

2 General Chern-Simons fermion vector model

In this section we perform preliminary analysis on general U(N)kF Chern-Simons fermion

vector model in the ’t Hooft large N limit, N, kF → ∞ with λ := N/kF fixed.1 Lagrangian

1We basically use the same convention adopted in [17]. Under the convention the ’t Hooft coupling

constant is bounded so that |λ| ≤ 1. Especially upon encountering divergent integrals we regularize them

by dimensional regularization in the way described in [18].
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Figure 1. Feynman rule involving the auxiliary field σF is depicted. The solid and dotted lines

represent the fermion and the auxiliary field, respectively. From the left, the diagrams describe

tadpole, tree-level propagator, Yukawa interaction with fermion, and cubic self-interaction.

of general U(N)kF Chern-Simons fermion vector model is defined by using an auxiliary

field σF as

LF = iεµνρ
kF
4π

Tr

(
Aµ∂νAρ −

2i

3
AµAνAρ

)
+ ψ̄γµD

µψ

+ σF

(
ψ̄ψ − kF

4π
y22

)
− kF

4π
y4σ

2
F +

kF
4π

y6σ
3
F

(2.1)

where

Dµψ = (∂µ − iAµ)ψ, Dµψ̄ = (∂µψ̄ + iψ̄Aµ). (2.2)

Here we have dropped the gauge, spinor and space indices. For convenience we depict

Feynman rules involving the auxiliary field in figure 1. This theory is not renormalizable

in the weak coupling expansion whereas it is in the 1/N expansion. In particular, when

the cubic self-interaction of the auxiliary field vanishes this system is the same as the three

dimensional Gross-Neveu model [36] gauged with Chern-Simons interactions. In contrast

to the fact that the two dimensional Gross-Neveu model is asymptotically free, the three

dimensional one has an ultra-violet fixed point [37]. In the current setup the critical theory

is obtained by a limit such that y22, y4, y6 → 0. Note that the auxiliary field has odd parity

since the Gross-Neveu model is classically parity invariant.

The exact propagator of the fermionic field in the large N limit was already computed

in [17]. The result reads

〈
ψm(p)ψ̄n(−p′)

〉
= δmn (2π)3δ3(p− p′)αF (p), αF (p) =

1

iγµpµ +ΣF (p)
. (2.3)

Here −ΣF (p) is the fermion 1PI self energy given by

ΣF (p) = ΣI(p) + Σ+(p)γ
+,

ΣI(p) = λ
√
p2s + c2F + (sgn(λ)− λ)cF ,

Σ+(p) = ip+
c2F − ΣI(p)

2

p2s
,

(2.4)

where p± := p1±ip2√
2

, ps := 2p+p− and cF is the physical fermion mass determined by the

gap equation

(1− 3y6)(sgn(λ)− λ)2c2F + 2y4(sgn(λ)− λ)cF + y22 − c2F = 0. (2.5)

Note that we consider the cases where cF > 0.

– 3 –
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Figure 2. The bootstrap diagram for the exact tadpole is drawn. Here the black node represents

the exact fermion propagator and the gray node describes the exact tadpole diagram.

For later convenience we determine the exact tadpole diagram contribution. The tad-

pole diagram satisfies the bootstrap diagram depicted in figure 2, which reads

T =
kF
4π

y22 −N

∫
d3p

(2π)3

(
−tr

1

iγµpµ +ΣF (p)

)
− 3

kF
4π

y6 ×
(

1

−2kF
4π y4

T

)2

, (2.6)

where T is the contribution of the tadpole diagram. The equation (2.6) is quadratic so there

are in general two solutions. We restrict our interest to the region of coupling constants

where

sgn(y4) = sgn(y4 + 3cF y6(λ− sgn(λ))), (2.7)

whose physical implication will be discussed in the next section. We choose a solution

which has the correct perturbative continuation so that T → kF
4π y

2
2 with y6, λ → 0:

T =
−kF y

2
4

6πy6

(
1−

√
1 +

3y6
y24

(
c2F (|λ| − 2)|λ|+ y22

)
)

=
kF
2π

cF y4(λ− sgn(λ)), (2.8)

where in the second equality we used the gap equation (2.5) to remove y22.

3 Four point function of fermions

In this section we compute the fermion four point function in the large N limit. Since the

amputated connected four point function is equivalent to the four point vertex, we compute

the latter. In particular we compute the four point vertex of the large N form such that

− 1

2

∫
d3p

(2π)3
d3k

(2π)3
d3q

(2π)3
ψ̄α′,m(−p− q)ψβ′,m(p)Fα′

β′
β
α(p, k; q)ψ̄β,n(−k)ψα,n(k + q), (3.1)

where spinor indices, which are denoted by Greek letters, are explicitly restored. In the

large N limit the bootstrap diagram of the four point vertex is simplified to be self-

consistent without any other higher point vertices and given by the ladder diagram in

figure 3. From this figure the Schwinger-Dyson equation for the four point vertex reads

Fα′

β′
β
α(p, k; q) = F 0α′

β′
β
α(p, k; q) (3.2)

+N

∫
d3k′

(2π)3
F 0α′

β′
β′′

α′′(p, k′; q)αα′′

F α′′′(q + k′)αβ′′′

F β′′(k′)Fα′′′

β′′′
β
α(k

′, k; q),

where F 0 describes the contribution of the ladder piece given by

F 0α′

β′
β
α(p, k; q) = iγµββ′iγνα

′

αGνµ(−p+ k) +
2π

kF ỹ4
δα

′

β′ δβα (3.3)
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(a)

(b)

(c)

Figure 3. (a) shows the exact bootstrap diagram for the fermion four point function in the large N

limit. Here the black bubble with two or four lines represents the exact two or four point function,

respectively, and the striped bubble represents the ladder bar of this ladder diagram. (b) shows the

definition of the ladder bar, in which the striped bubble is given by summation of one gluon exchange

diagram and that with fermionic lines connected by the auxiliary fields with a gray bubble, which is

defined as the two point function whose 1PI diagram is given only by the tadpole as depicted in (c).

with

Gµν(p) =
2π

ikF p−
(δµ,+δν,3 − δµ,3δν,+), (3.4)

ỹ4 = y4 + 3cF y6(λ− sgn(λ)). (3.5)

We give some comments. The first term in (3.3) is the contribution of one gluon exchange

diagram depicted in figure 3(b). Gµν(p) is the Chern-Simons gauge propagator, which is

given as (3.4) in the light-cone gauge, where the matter loop correction is subleading in the

1/N expansion. The second term in (3.3) describes the contribution from the auxiliary field.

It is given by the exact two point correlator of the auxiliary field excluding fermion loops,

which are already taken into account in the main bootstrap equation (3.2) as described

in figure 3(a). Denoting the contribution by −2π
kF ỹ4

, we can determine it by the bootstrap

diagram given by figure 3(c), which reads

−2π

kF ỹ4
=

−2π

kF y4
+

(
−3!

kF
4π

y6

)
×
(−2π

kF y4

)
× T ×

(−2π

kF y4

)
×
(−2π

kF ỹ4

)
, (3.6)

where T is the contribution of the exact tadpole diagram given by (2.8). Solving (3.6)

gives (3.5). Therefore, in the coupling region specified by (2.7) the quantum two point

– 5 –
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correlator of the scalar field (excluding fermion loops) has the same sign as the one at

tree level, which may suggest that the current system is reflection positive or stable in the

quantum mechanical sense under the coupling region (2.7).

To solve the bootstrap equation (3.2) it is convenient to transform the spinor indices

into the vector ones by using the gamma matrices so that

Fα′

β′
β
α(p, k; q) = Fµ̄ν̄(p, k; q)γ

µ̄α′

β′γν̄βα (3.7)

where µ̄ = 1, 2, 3, I and γI = I. Plugging this into the equation above and performing the

straight-forward gamma gymnastics we find that the above equation reduces to two sets of

consistent integral equations. One set is on FII and F+I , which is given by

FII(p, k) =
2π

kF ỹ4
− 2πiλ

∫
d3k′

(2π)3
2
(
2F+I(k

′, k)k′2
− + FII(k

′, k)k′

−(2iΣI(k
′)− q3)

)

(−p+ k′)−(k′2 + c2F )((k
′ + q)2 + c2F )

(3.8)

+
2πλ

ỹ4

∫
d3k′

(2π)3
−2
(
F+I(k

′, k)k′

−(2iΣI(k
′) + q3) + FII(k

′, k)(k′2
s + c2F − 2Σ2

I(k
′) + k′2

3 + q3k
′

3

)

(k′2 + c2F )((k
′ + q)2 + c2F )

,

F+I(p, k) =
−πi

2kF (−p+ k)−
− 2πiλ× (3.9)

×

∫
d3k′

(2π)3
−2
(
F+I(k

′, k)k′

−(2iΣI(k
′) + q3) + FII(k

′, k)(k′2
s + c2F − 2Σ2

I(k
′) + k′2

3 + q3k
′

3

)

(−p+ k′)−(k′2 + c2F )((k
′ + q)2 + c2F )

,

where we omit the third variable q in the scattering function. The other set is on FI+ and

F++, which is given by

FI+(p, k)=
2πi

kF (−p+ k)−
− 2πiλ

∫
d3k′

(2π)3
2
(
2F++(k

′, k)k′2
− + FI+(k

′, k)k′

−(2iΣI(k
′)− q3)

)

(−p+ k′)−(k′2 + c2F )((k
′ + q)2 + c2F )

(3.10)

+
2πλ

ỹ4

∫
d3k′

(2π)3
−2
(
F++(k

′, k)k′

−(2iΣI(k
′)+q3)+FI+(k

′, k)(k′2
s +c2F −2Σ2

I(k
′)+k′2

3 +q3k
′

3

)

(k′2+c2F )((k
′+q)2+c2F )

,

F++(p, k)=4πiλ

∫
d3k′

(2π)3
F++(k

′, k)k′

−(2iΣI(k
′)+q3)+FII(k

′, k)(k′2
s +c2F −2Σ2

I(k
′)+k′2

3 +q3k
′

3)

(−p+ k′)−(k′2 + c2F )((k
′ + q)2 + c2F )

. (3.11)

These integral equations can be solved exactly in a specific momentum frame such that

q± =
q1 ± iq2√

2
= 0. (3.12)

This frame matches the center of mass frame in the S-channel scattering, which is investi-

gated in the next section. Then let us make the following ansatz:

FII(p, k) =
p−

(−p+ k)−
B1(ps, ks) +B2(ps, ks), (3.13)

F+I(p, k) =
1

(−p+ k)−
A1(ps, ks) +

1

p−
A2(ps, ks), (3.14)

and

FI+(p, k) =
1

(−p+ k)−
B3(ps, ks) +

1

k−
B4(ps, ks), (3.15)

F++(p, k) =
1

p−(−p+ k)−
A3(ps, ks) +

1

p−k−
A4(ps, ks). (3.16)

Plugging this ansatz into the equation bove and performing the integral for k′3 and the

angular part of k′− we obtain

– 6 –
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B1(ps, ks) = −4πiλ

∫ hk

hp

dh

(2π)

2A1 +B1(2iΣI − q3)

4h2 + q23
, (3.17)

A1(ps, ks) =
−2πi

kF
+ 4πiλ

∫ hk

hp

dh

(2π)

A1(2iΣI + q3) + 2B1(h
2 − Σ2

I)

4h2 + q23
, (3.18)

B2(ps, ks) =
2π

kF ỹ4
− 4πiλ

(
−

∫
∞

hk

dh

(2π)

2A1 +B1(2iΣI − q3)

4h2 + q23
+

∫
∞

hp

dh

(2π)

2A2 +B2(2iΣI − q3)

4h2 + q23

)

−
4πλ

ỹ4

(
−

∫
∞

hk

dh

(2π)

A1(2iΣI + q3) + 2B1(h
2 − Σ2

I)

4h2 + q23

+

∫
∞

h0

dh

(2π)

A2(2iΣI + q3) + 2B2(h
2 − Σ2

I)

4h2 + q23

)
, (3.19)

A2(ps, ks) = −4πiλ

∫ hp

h0

dh

(2π)

A2(2iΣI + q3) + 2B2(h
2 − Σ2

I)

4h2 + q23
, (3.20)

and

B3(ps, ks) =
2πi

kF
− 4πiλ

∫ hk

hp

dh

(2π)

2A3 +B3(2iΣI − q3)

4h2 + q23
, (3.21)

A3(ps, ks) = 4πiλ

∫ hk

hp

dh

(2π)

A3(2iΣI + q3) + 2B3(h
2 − Σ2

I)

4h2 + q23
, (3.22)

B4(ps, ks) = −4πiλ

∫
∞

hp

dh

(2π)

2A4 +B4(2iΣI − q3)

4h2 + q23
−

4πλ

ỹ4

(∫ hk

h0

dh

(2π)

A3(2iΣI + q3) + 2B3(h
2 − Σ2

I)

4h2 + q23

+

∫
∞

h0

dh

(2π)

A4(2iΣI + q3) + 2B4(h
2 − Σ2

I)

4h2 + q23

)
, (3.23)

A4(ps, ks) = −4πiλ

(∫ hk

h0

dh

(2π)

A3(2iΣI + q3) + 2B3(h
2 − Σ2

I)

4h2 + q23

+

∫ hp

h0

dh

(2π)

A4(2iΣI + q3) + 2B4(h
2 − Σ2

I)

4h2 + q23

)
, (3.24)

where we set hp :=
√
p2s + c2F , and in the right-hand side ΣI = λh + (sgn(λ) − λ)cF and

Ai = Ai(k
′
s, ks), Bi = Bi(k

′
s, ks) with h = hk′ , i = 1, 2, 3, 4.

In order to solve this let us take the derivative with respect to hp on both sides. Then

we obtain

∂Bi

∂hp
= 2iλ

2Ai +Bi(2iΣI(p)− q3)

4h2p + q23
(3.25)

∂Ai

∂hp
= −2iλ

Ai(2iΣI(p) + q3) + 2Bi(h
2
p − ΣI(p)

2)

4h2p + q23
(3.26)

for all i = 1, 2, 3, 4. From these two equations one can derive

∂

∂hp
(Bi(2iΣ+ q3) + 2Ai) = 0. (3.27)

Thus Ai can be related to Bi by

Ai(ps, ks) = −Bi(ps, ks)

(
iΣ(p) +

1

2
q3

)
+ αi (3.28)

– 7 –
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where αi is an unknown function independent of ps. Plugging this back into (3.25) we find

∂Bi

∂hp
= 2iλ

−2q3Bi + 2αi

4h2p + q23
. (3.29)

This can be solved as

Bi(ps, ks) =
αi

q3
+ βif(ps) (3.30)

where βi is another integration constant independent of ps and f(ps) is defined by

f(ps) := exp


−2iλ arctan

2
√
p2s + c2F

q3


 . (3.31)

The integration constants αi, βi can be determined so as to satisfy the following conditions

derived from the integral equations.

lim
ps→ks

B1(ps, ks) = 0, (3.32)

lim
ps→ks

A1(ps, ks) =
−2πi

kF
, (3.33)

lim
ps→∞

B2(ps, ks) =
2π

kF ỹ4
+ 4πiλ

∫ ∞

hk

dh

(2π)

2A1 +B1(2iΣI − q3)

4h2 + q23

− 4πλ

ỹ4

(
−
∫ ∞

hk

dh

(2π)

A1(2iΣI + q3) + 2B1(h
2 − Σ2

I)

4h2 + q23

+

∫ ∞

h0

dh

(2π)

A2(2iΣI + q3) + 2B2(h
2 − Σ2

I)

4h2 + q23

)
, (3.34)

lim
ps→0

A2(ps, ks) = 0, (3.35)

and

lim
ps→ks

B3(ps, ks) =
2πi

kF
, (3.36)

lim
ps→ks

A3(ps, ks) = 0, (3.37)

lim
ps→∞

B4(ps, ks) = −4πλ

ỹ4

(∫ hk

h0

dh

(2π)

A3(2iΣI + q3) + 2B3(h
2 − Σ2

I)

4h2 + q23

+

∫ ∞

h0

dh

(2π)

A4(2iΣI + q3) + 2B4(h
2 − Σ2

I)

4h2 + q23

)
, (3.38)

lim
ps→0

A4(ps, ks) = −4πiλ

∫ hk

h0

dh

(2π)

A3(2iΣI + q3) + 2B3(h
2 − Σ2

I)

4h2 + q23
. (3.39)

By using (3.33), (3.32), (3.37), (3.36), α1, β1, α3, β3 can be easily determined as

α1 =
−2πi

kF
, β1 =

2πi

kF q3f(ks)
, (3.40)

α3 = (2iΣI(ks) + q3)
πi

kF
, β3 =

πi(−2iΣI(ks) + q3)

kF q3f(ks)
. (3.41)
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On the other hand, the right-hand sides in (3.34), (3.38) contain divergent integrals, which

need regularization. This divergence originates in the non-renormalizable interaction in the

sense of power counting in (2.1). We regularize the divergence by dimensional regularization

demonstrated in detail in [18], which is skipped here and move it to appendix A. After the

regularization we can determine α2, β2, α4, β4 by using (3.35), (3.34), (3.39), (3.38) as

αi =
(num)αi

(den)αi

, βi =
(num)βi

(den)βi

, (3.42)

where

(num)α2
= 2πf(0)(q3 + 2iΣI(0))(f(ks)(2cF (λ− sgn(λ))− iq3 − 2ỹ4) (3.43)

+ f(∞)(−2cF (λ− sgn(λ))− iq3 + 2ỹ4)),

(den)α2
= kF f(ks){f(∞)(2ΣI(0) + iq3)(2cF (λ− sgn(λ)) + iq3 − 2ỹ4) (3.44)

+ f(0)
(
cF (−4(λ− sgn(λ))ΣI(0) + 2i(λ+ sgn(λ))q3) + q

2
3 − 2iq3(ΣI(0) + ỹ4) + 4ΣI(0)ỹ4

)
},

(num)β2
= −2π(q3 − 2iΣI(0))(f(ks)(−2cF (λ− sgn(λ)) + iq3 + 2ỹ4) (3.45)

+ f(∞)(2cF (λ− sgn(λ)) + iq3 − 2ỹ4)),

(den)β2
= kF q3f(ks){f(∞)(2ΣI(0) + iq3)(2cF (λ− sgn(λ)) + iq3 − 2ỹ4) (3.46)

+ f(0)
(
cF (−4(λ− sgn(λ))ΣI(0) + 2i(λ+ sgn(λ))q3) + q

2
3 − 2iq3(ΣI(0) + ỹ4) + 4ΣI(0)ỹ4

)
},

(num)α4
= π(f(ks)(q3 − 2iΣI(0))(q3 + 2iΣI(ks))− f(0)(q3 + 2iΣI(0))(q3 − 2iΣI(ks)))× (3.47)

× (2(cF − ΣI(0))f(0) + f(∞)(2cF (λ− sgn(λ)) + iq3 − 2ỹ4)),

(den)α4
= kF f(ks){f(∞)(2ΣI(0) + iq3)(2cF (λ− sgn(λ)) + iq3 − 2ỹ4) (3.48)

+ f(0)
(
cF (−4(λ− sgn(λ))ΣI(0) + 2i(λ+ sgn(λ))q3) + q

2
3 − 2iq3(ΣI(0) + ỹ4) + 4ΣI(0)ỹ4

)
},

(num)β4
= π(−2(−cFλ+ΣI(0) + ỹ4)− iq3)(f(0)(q3 + 2iΣI(0))(q3 − 2iΣI(ks)) (3.49)

− f(ks)(q3 − 2iΣI(0))(q3 + 2iΣI(ks))),

(den)β4
= kF q3f(ks){f(∞)(2ΣI(0) + iq3)(2cF (λ− sgn(λ)) + iq3 − 2ỹ4) (3.50)

+ f(0)
(
cF (−4(λ− sgn(λ))ΣI(0) + 2i(λ+ sgn(λ))q3) + q

2
3 − 2iq3(ΣI(0) + ỹ4) + 4ΣI(0)ỹ4

)
}.

A few comments are in order. Firstly, by taking the limit ỹ4 → ∞ this solution reduces

to the one obtained in [30] up to the convention adopted there, where the fermionic four

point function in the massive free fermion theory gauged by Chern-Simons interaction

was computed. This is consistent with the fact that the Schwinger-Dyson equation (3.2)

with (3.3) boils down to that of the Chern-Simons fermion vector model.

Secondly, by sending λ,
y2
2

λ
, y6
λ

→ 0 with 2πλ
y4

= gF4 fixed this solution reduces to the

four point function of Gross-Neveu model computed in [37]. Indeed in this limit all the

components of Fµ̄ν̄ vanish except FII , which is given by

FII =
1

N

gF4

1 + gF4

(
− cF

2π − (q23 + 4c2F )
− tan−1 2cF

q3
+tan−1 2∞

q3

4πq3

)

=
4π

N

q3
−(q23 + 4c2F ) tan

−1( q3
2cF

)
(3.51)

where in the second equation we used cF = 2π
gF
4

under the limit and the formula tan−1(x)+

tan−1( 1
x
) = tan−1(∞). Making (3.51) Lorentz covariant by exchanging q3 →

√
(qµ)2 gives

(9) in [37] up to an overall numerical factor.
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4 S-matrix and duality

In this section we compute the two body scattering matrix of fermions in the general

Chern-Simons fermion vector model in the ’t Hooft large N limit. For this we apply the

method the S-matrix developed in [30], in which the fermionic S-matrix in the regular

Chern-Simons fermion vector model was computed.

In the current system there are two kinds of scattering processes to be studied, that is

particle-particle and particle-antiparticle scattering.2 We focus on the particle-antiparticle

scattering in this paper since the particle-particle S-matrix is to be obtained by analytic

continuation from the particle-antiparticle S-matrix as shown in [30]. Asymptotic states for

this process are constructed in appendix B. We consider a particle-antiparticle scattering

process such that

|~p3,−, k; ~p2,+, j〉 → | − ~p4,−, l;−~p1,+, i〉. (4.1)

This means that the k-the particle with momentum ~p3 and the j-th antiparticle with

momentum ~p2 come from the past infinity and go into the l-the particle with momentum

−~p4 and the i-th antiparticle with momentum −~p1 at the future infinity. By taking into

account momentum conservation, the S-matrix of this process can be written as

〈−~p4,−, l;−~p1,+, i|Ŝ|~p3,−, k; ~p2,+, j〉 (4.2)

= S(−~p4,−, l;−~p1,+, i|~p3,−, k; ~p2,+, j)(2π)3δ3(p1 + p2 + p3 + p4).

Furthermore the S-matrix can be decomposed in terms of the gauge indices as [30]

S(−~p4,−, l;−~p1,+, i|~p3,−, k; ~p2,+, j) (4.3)

=

(
δlkδ

j
i −

1

N
δliδ

j
k

)
ST (−~p4,−;−~p1,+|~p3,−; ~p2,+)+

1

N
δjkδ

l
iSS(−~p4,−;−~p1,+|~p3,−; ~p2,+).

We call the coefficients ST (−~p4,−;−~p1,+|~p3,−; ~p2,+), SS(−~p4,−;−~p1,+|~p3,−; ~p2,+) T-

channel (adjoint channel) S-matrix, S-channel (singlet channel) one, respectively. Similarly

the transition matrix defined by Ŝ = 1̂ + iT̂ is decomposed as

T (−~p4,−, l;−~p1,+, i|~p3,−, k; ~p2,+, j) (4.4)

=

(
δlkδ

j
i −

1

N
δliδ

j
k

)
TT (−~p4,−;−~p1,+|~p3,−; ~p2,+) +

1

N
δjkδ

l
iTS(−~p4,−;−~p1,+|~p3,−; ~p2,+).

Then S-matrix for each channel satisfies

ST (−~p4,−;−~p1,+|~p3,−; ~p2,+)

=
〈−~p4,−;−~p1,+|~p3,−; ~p2,+〉
(2π)3δ3(p1 + p2 + p3 + p4)

+ iTT (−~p4,−;−~p1,+|~p3,−; ~p2,+), (4.5)

SS(−~p4,−;−~p1,+|~p3,−; ~p2,+)

=
〈−~p4,−;−~p1,+|~p3,−; ~p2,+〉
(2π)3δ3(p1 + p2 + p3 + p4)

+ iTS(−~p4,−;−~p1,+|~p3,−; ~p2,+), (4.6)

2Antiparticle-antiparticle S-matrix can be obtained by charge conjugation of particle-particle one.
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where

〈−~p4,−;−~p1,+|~p3,−; ~p2,+〉 = (2π)22E~p3δ
2(~p3 + ~p4)(2π)

22E~p2δ
2(~p2 + ~p1). (4.7)

By definition the T-matrix in the T-channel is of order 1/N , while that in S-channel is of

order one.

Let us determine the unitarity condition for each channel. Let us start the unitarity

condition with respect to the S-matrix

Ŝ†Ŝ = 1. (4.8)

In terms of the transition matrix, this is written as

− i(T̂ − T̂ †) = T̂ †T̂ . (4.9)

Let us sandwich both sides inside the two particle states so that

〈−~p4,−, l;−~p1,+, i| − i(T̂ − T̂ †)|~p3,−, k; ~p2,+, j〉
(2π)3δ3(p1 + p2 + p3 + p4)

=
〈−~p4,−, l;−~p1,+, i|T̂ †T̂ |~p3,−, k; ~p2,+, j〉

(2π)3δ3(p1 + p2 + p3 + p4)
.

(4.10)

By using (4.4) the left-hand side is computed as

l.h.s. = −i

{(
δlkδ

j
i −

1

N
δliδ

j
k

)
(TT (−~p4,−;−~p1,+|~p3,−; ~p2,+)− TT (~p3,−; ~p2,+| − ~p4,−;−~p1,+)∗)

+
1

N
δjkδ

l
i(TS(−~p4,−;−~p1,+|~p3,−; ~p2,+)− TS(~p3,−; ~p2,+| − ~p4,−;−~p1,+)∗)

}
. (4.11)

In order to compute the right-hand side we insert the identity operator

1 =
∑

k,j

∫
d3r1
(2π)3

d3r2
(2π)3

(2π)δ(r21 + c2F )θ(r
0
1)(2π)δ(r

2
2 + c2F )θ(r

0
2)

×|~r1,−, k;~r2,+, j〉〈~r1,−, k;~r2,+, j|+ · · · (4.12)

where the ellipsis contains other many-particle states with more than 2-particles, which is

suppressed in the 1/N expansion. Then the right-hand side is computed as

r.h.s. =

∫
d3r1
(2π)3

d3r2
(2π)3

(2π)δ(r21 + c2B)θ(r
0
1)(2π)δ(r

2
2 + c2B)θ(r

0
2)

×
{(

δlkδ
j
i −

δliδ
j
k

N

)
TT (−~p4,−;−~p1,+|~r1,−;~r2,+)TT (~p3,−; ~p2,+|~r1,−;~r2,+)∗

+
δjkδ

l
i

N
TS(−~p4,−;−~p1,+|~r1,−;~r2,+)TS(~p3,−; ~p2,+|~r1,−;~r2,+)∗

}
. (4.13)

Recalling the fact that the transition matrix in the T-channel is of order 1/N , the product

of TT and T ∗
T is of order 1/N2, which is subleading in the 1/N expansion. Thus to the

leading order in the large N limit the unitarity condition is given by

− i{TT (−~p4,−;−~p1,+|~p3,−; ~p2,+)− TT (~p3,−; ~p2,+| − ~p4,−;−~p1,+)∗} = 0 (4.14)
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for the T-channel, and

− i{TS(−~p4,−;−~p1,+|~p3,−; ~p2,+)− TS(~p3,−; ~p2,+| − ~p4,−;−~p1,+)∗}

=

∫
d3r1
(2π)3

d3r2
(2π)3

(2π)δ(r21 + c2F )θ(r
0
1)(2π)δ(r

2
2 + c2F )θ(r

0
2)

× TS(−~p4,−;−~p1,+|~r1,−;~r2,+)TS(~p3,−; ~p2,+|~r1,−;~r2,+)∗ (4.15)

for the S-channel.

4.1 T-channel

We determine the transition matrix in the T-channel, which can be done by applying the

LSZ formula to the fermion four point vertex determined in the previous section. Since the

exact four point vertex was determined in Euclidean space, we perform the Wick rotation

such that

x2 = ix0, q2 = iq0. (4.16)

In the momentum assignment in the previous section the T-channel is given by

− k0 > 0, p0 > 0, (k + q)0 < 0, −(p+ q)0 < 0. (4.17)

Then the LSZ formula tells us a contraction rule of the wave functions associated with the

external legs to obtain the T-channel transition matrix as follows.

TT = TT (−~k − ~q,−; ~p+ ~q,+| − ~k,−; ~p,+)

= vα(−~k − ~q)v̄β(−~k)Fα′

β′
β
α(~p,~k, ~p+ ~q)uβ

′

(~p)ūα′(~p+ ~q)

= [ū(~p+ ~q)γν̄u(~p)][v̄(−~k)γµ̄v(−~k − ~q)]Fν̄µ̄(~p,~k, ~p+ ~q) (4.18)

where u(~p), v(~p) are given in (B.4), (B.5). By plugging Fν̄µ̄ determined in the previous

section into this we obtain

TT = −4πq3
ikF

(
z −

f(0) + (2sgn(λ)cF+iq3)(4cF (λ−sgn(λ))−4ỹ4+2iq3)
(2sgn(λ)cF−iq3)(4cF (λ−sgn(λ))−4ỹ4−2iq3)

f(∞)

f(0)− (2sgn(λ)cF+iq3)(4cF (λ−sgn(λ))−4ỹ4+2iq3)
(2sgn(λ)cF−iq3)(4cF (λ−sgn(λ))−4ỹ4−2iq3)

f(∞)

)

= −4πq3
ikF

(z + i tanXF (q3)) (4.19)

where we set

z =
(p+ k)−
(p− k)−

(4.20)

with p− = p1+p0√
2

, and

XF (q3) = (λ− sgn(λ)) tan−1

(
q3
2cF

)
− tan−1

(
2(ỹ4 − cF (λ− sgn(λ)))

q3

)
. (4.21)

A few comments seem appropriate. Firstly, this satisfies the unitary equation (4.14).

This is because the unitarity condition can be written as TT = T ∗
T |q3→−q3 , which can be

easily seen from (4.19).
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Secondly, by performing the duality transformation found in [17], this transition matrix

maps the one describing two body scattering of bosonic particles in general Chern-Simons

scalar theory. To see this we recall the duality transformation in [17].

kF = −kB, λ = λB − sgn(λB), y6 =
1− x6

4
, y4 = b4, y22 = m2

B, (4.22)

which suggests that cF = cB. Plugging this duality relation into (4.19) we obtain

TT =
4πq3
ikB

(z + i tanXB(q3)) (4.23)

where

XB(q3) = λB tan−1

(
q3
2cB

)
+ tan−1

(−4b4 + cBλB(1 + 3x6)

2q3

)
. (4.24)

This precisely agrees with the transition matrix in the T-channel (adjoint channel) in the

general Chern-Simons bosonic vector model, T
(B)
T , which is computed in appendix C by

extending the result in [30] including the triple trace coupling. Thus the S-matrix of this

system given by (4.5) maps to the one of the dual bosonic system.

Thirdly one can make this scattering amplitude Lorentz covariant by rewriting in terms

of Mandelstam variables. Our definition of Mandelstam variables is3

s = −q2, t = −(p− k)2, u = −(p+ k + q)2, (4.25)

which satisfy s+ t+ u = 4c2F . In the frame (3.12), s = −q23 < 0. Let us consider to rewrite

the first term in (4.19), which comes from the one gluon exchange diagram. This part can

be made Lorentz covariant as

− 4πq3
ikF

z = − 4π

ikF

εµνρ(p+ k)µqν(p− k)ρ
(p− k)2

(4.26)

where ε013 = 1. From a straightforward algebraic calculation we can show that

(εµνρ(p+ k)µqν(p− k)ρ)
2 = stu. (4.27)

which leads to

εµνρ(p+ k)µqν(p− k)ρ = σ
√
stu. (4.28)

where we set σ = sgn(εµνρkµqνpρ). Therefore we find

− 4πq3
ikF

z = − 4π

ikF

σ
√
stu

−t
=

4π

kF
σ

√
su

−t
(4.29)

where we used the fact that t > 0 in the T-channel. Substituting these into (4.19) we

obtain the Lorentz covariant form of the T-channel scattering amplitude as

TT =
4π

kF

(
σ

√
su

−t
−
√
−s tanXF (

√
−s)

)
. (4.30)

3The definition of Mandelstam variables in this paper is different from that in [30]. The s, t, u variables

there are defined in each channel so that s always becomes positive as adopted in a standard textbook [38],

while here they are defined globally so that s, t, u become positive in S,T,U-channel, respectively.
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4.2 S-channel

Finally we determine the transition matrix in the S-channel. For this let us first compute

the transition matrix in the S-channel in the same fashion as done in the T-channel. For

the S-channel we perform a Wick rotation from Euclidean space such that

x3 = ix0, q3 = iq0. (4.31)

Then the frame (3.12) coincides with the center of mass frame for two body scattering. In

the momentum assignment in the previous section S-channel is given by

− (p+ q)0 > 0, p0 > 0, (k + q)0 < 0, −k0 < 0. (4.32)

In particular q0 < 0. From the LSZ formula the S-channel transition matrix is obtained

by contracting the four point vertex with the wave functions associated with the external

legs in such a way that

TS = TS(−~k − ~q,−;~k,+| − ~p− ~q,−; ~p,+)

= −vα(−k − q)ūβ(ks)F
α′

β′
β
α(p, k, p+ q)uβ

′

(p)v̄α′(−p− q)

= −[v̄(−p− q)γν̄u(p)][ū(ks)γ
µ̄v(−k − q)]Fν̄µ̄(p, k, p+ q) (4.33)

where u(~p), v(~p) are given in (B.4), (B.5) with double Wick rotation so that firstly q0 →
−iq2, subsequently q3 → iq0. Note that the minus sign appears when the fermionic fields

associated the four point vertex contract with the external states. Plugging Fν̄µ̄ determined

in the previous section into this gives

TS =
4πq0

kF
(z + tanhX ′

F (−q0)) (4.34)

where z is given by (4.20) with p− = p1−ip2√
2

and

X ′
F (−q0) = (λ− sgn(λ)) tanh−1

(−q0

2cF

)
+ tanh−1

(
2(ỹ4 − cF (λ− sgn(λ)))

−q0

)
. (4.35)

This result matches the one obtained by performing the double Wick rotation against the

T-channel transition matrix given by (4.19). Performing the duality transformation we

obtain

TS = −T
(B)
S , (4.36)

where T
(B)
S is given by (C.17).

A main problem of the S-channel transition matrix determined in this way is that it

does not satisfy the unitarity condition [30]. In fact, the same problem of non-unitarity

in the S-matrix also exists in the original Aharonov-Bohm scattering [39], which is to be

obtained by taking the non-relativistic limit of the S-matrix in the current set up. The

problem of non-unitarity in Aharonov-Bohm scattering was resolved by Ruijsenaars in [33],

who pointed out that the delta-function type singular contribution in the forward scattering

was missed in the original Aharonov-Bohm scattering and it becomes unitary by taking
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into account the singular contribution. The reason why this phenomenon happens may be

that in the set up of Aharonov-Bohm scattering, where electrons are sent to screen in the

presence of solenoid at the center, the contribution to the wave function of one path of

electron through the left side of the solenoid and that of the right side are equal only in

the forward scattering, whose coherent superposition is singular.

The method to cure the non-unitary problem in the relativistic situation developed

in [30] is also to take into account the singular contribution in the forward scattering by

the ansatz of the Schwinger-Dyson equation of the scattering amplitude such that

T conj
S = T1(

√
s) + zT2(

√
s) + T3(

√
s)2πδ(θ) (4.37)

where
√
s = −q0 and θ is the scattering angle of an out-particle to the line formed by two

in-particles in the center of mass frame (3.12). By using θ the on-shell momenta of in and

out particles can be parametrized as

pµ = (E, p, 0), kµ = (E, p cos θ, p sin θ), E =
√

p2 + c2F =

√
s

2
(4.38)

which leads to z = −i cot θ
2 . T3 describes the singular contribution in the forward scattering.

Then the unitarity condition (4.15) boils down to

−iT1 + iT ∗
1 =

1

4
√
s
(|T1|2 + T ∗

1 T3 + T1T
∗
3 − |T2|2), (4.39)

−iT2 + iT ∗
2 =

1

4
√
s
(T ∗

2 T3 + T2T
∗
3 ), (4.40)

−iT3 + iT ∗
3 =

1

4
√
s
(|T2|2 + |T3|2), (4.41)

where we used
√
s > 2cF in the S-channel scattering.

A solution physically preferable may be as follows. Whether the situation is relativistic

or not does not matter in the argument for the singular term to be generated, so it may

be safe to assume that the singular part is the same as in the non-relativistic case.

T3 = 4i
√
s(1− cosπλ). (4.42)

Then (4.40) is met if T2 is real. In addition by using (4.41) T2 is determined as

T2 = −4
√
s sinπλ. (4.43)

Finally (4.39) is met if T3 is given by

T1 = −4
√
s sin(πλ) tanh(X ′

F (
√
s)). (4.44)

The solution found in this way possesses several desired properties as argued in [30] as

follows.

(i) Unitarity is guaranteed by construction.
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(ii) The S-matrix constructed this way enjoys the bosonization duality. To see this let us

compute the S-channel S-matrix by plugging the above solution into (4.6). The first

term in (4.6) by using (4.38) can be computed as

〈−~r4,−;−~r1,+|~r3,−;~r2,+〉
(2π)3δ3(r1 + r2 + r3 + r4)

= 8π
√
sδ(θ). (4.45)

Then the result is

Sconj
S = ikF

sin(πλ)

π
TS + 8π

√
s cos(πλ)δ(θ) (4.46)

where TS is given by (4.34).4 Due to (4.36) the conjectural S-matrix in the S-channel

transforms under the duality transformation as

Sconj
S = −ikB

sin(πλB)

π
T
(B)
S − 8π

√
s cos(πλB)δ(θ) = −S

(B),conj
S , (4.47)

where in the second equation we used (C.19). This shows that the physical scattering

amplitudes coincide in the dual theories.

(iii) Upon analytically continuing the S-channel S-matrix to off-shell region
√
s < 2cF , a

pole arises in a certain coupling region [40]. The bound state energy is determined

by the following equation

y = λ+
2(s+ sgn(λ))s

(s− sgn(λ))e2λ tanh−1(s) + s+ sgn(λ)
− s− sgn(λ) (4.48)

where we set s =
√
s

2cF
, y = ỹ4

cF
. In other words, a particle-antiparticle bound state

shows up when this equation has a solution. The region for a solution to exist is

1 < y
λ
< 2−|λ|

1−|λ| .
5 In particular in the limit y4, y

2
2 → ∞ with λ, y6,

y2
2

y4
fixed, in which this

system reduces to the regular Chern-Simons fermionic vector model [17], the bound

state disappears, which is consistent with the result in [41]. In addition the bound

states in the dual theories map to each other under the duality transformation [31].

(iv) The non-relativistic limit reduces the solution to the Aharonov-Bohm-Ruijsenaars

scattering amplitude. To see this let us take the non-relativistic limit
√
s → 2cB for

the S-channel transition matrix with general coupling constants. The result is

T conj
S → 8cF

(
− sin |πλ| − sin |πλ|i cot θ

′

2
+ i(1− cosπλ)2πδ(θ′)

)
(4.49)

where we redefine the scattering angle so that θ′ = −sgn(λ)θ. In order to compare

the scattering function in quantum mechanics, we scale the result by 1
cF

√
p
(see [30]),

4The delta function δ(θ) can be written in terms of the Mandelstam variables as δ(θ) = 1

2
δ(
√

t
u
).

5This region may be related to that where the theory possesses the reflection positivity. In fact, the

reflection positivity of the two point correlator of the auxiliary field with fermion loops excluded implies

that kF ỹ4 > 0, which is compatible with the region for the pole to arise.
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which correctly reproduces the Aharonov-Bohm-Ruijsenaars scattering amplitude up

to an overall numerical factor.

Connection to the self-adjoint extension of Aharonov-Bohm scattering [42] was found

in [40]. This was achieved by taking the non-relativistic limit and simultaneously

sending the couplings to the lower threshold for the bound state to exist, where the

mass of the bound state approaches 2cF . By denoting deviations from the bounds by

√
s = 2cF + ǫ1

p2

cF
, ỹ4 = cF (λ+ ǫ2) (4.50)

the limit is given by

ǫ1, ǫ2 → 0,
ǫ2

ǫλB

1

: fixed (4.51)

in the assumption that λ < 0 or λB > 0. Under this limit the improved transition

matrix in the bosonic side reduces to

T
conj,(B)
S → −8cB


sinπλB




(
2cB
p

)2λB
ǫ2

2ǫ
λB
1

eiπλB − 1

(
2cB
p

)2λB
ǫ2

2ǫ
λB
1

eiπλB + 1

− i cot
θ

2


+ i(cosπλB − 1)2πδ(θ)


 .

(4.52)

On the other hand, the Aharonov-Bohm scattering with a general self-adjoint bound-

ary condition is given by [42]

f(θ) =
−ie

−iπ
4√

2πp


sinπα




Γ(1+α)
wΓ(1−α)

(
2
Rp

)2α
eiπα − 1

Γ(1+α)
wΓ(1−α)

(
2
Rp

)2α
eiπα + 1

− i cot
θ

2


+ 2πi(cosαπ − 1)δ(θ)




(4.53)

where p is the initial momentum, α is the background magnetic field normalized so as

to be in the range from 0 to 1, and R is the effective radius of the system. They agree

with each other up to an overall factor mentioned above under the identification such

that
ǫ2

ǫλB

1

=
2Γ(1 + α)

wΓ(1− α)
, cB =

1

R
, λB = α. (4.54)

Finally this result suggests that the usual crossing symmetry given in standard text-

books of quantum field theory needs to be modified when the scattering amplitude contains

a singular contribution. In the current system upon performing analytic continuation from

T-channel to S-channel the amplitude picks up the overall factor N × sinπλ
πλ

. The origin of

this factor was discussed in relation to Wilson lines formed in the trajectory of the charged

particles [30], though such a novel aspect is not confirmed from explicit calculation yet.

We leave it to future work.

5 Discussion

We have computed the four point function of the fermionic field exactly in the general

U(N) Chern-Simons fermionic vector model in the ’t Hooft large N limit. Applying the
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LSZ formula to this result with a suitable Wick rotation, we have calculated scattering

amplitudes in the T-channel and the S-channel taking special care for the S-channel so

as to include the singular contribution in the forward scattering to achieve unitarity. We

have shown that the scattering amplitudes determined in this way enjoy the bosonization

duality proposed in [17] as well as a novel crossing relation proposed in [30]. We have also

shown that in the non-relativistic limit in a general coupling region the S-matrix reduces to

the Aharonov-Bohm-Ruijsenaars scattering amplitude, and in a special coupling region of

the threshold for the bound state to exist the S-matrix reduces to the self adjoint extension

of Aharonov-Bohm scattering [42] as claimed in [40].

It turned out that the conjectural S-matrix in tje S-channel in the general Chern-

Simons fermionic vector model develops a pole in a certain coupling region, which is a signal

for a particle-antiparticle bound state to exist. Analysis of a bound state in the regular

Chern-Simons fermionic vector model was done from the Bethe-Salpeter equation with the

result of no bound state in that system [41], which is consistent with the result in this

paper. It would be interesting to derive the Bethe-Salpeter equation in the current system

and determine the bound state energy, which is expected to match the one determined in

this paper.

As discussed in [17] the Chern-Simons vector models in the current paper are expected

to be dual to a higher-spin gravity theory with parity violated by the boundary condition

in AdS4 [1, 2]. In the gravity side three point correlation functions were computed by

taking advantage of infinitely many higher spin symmetries [43–45]. (See also [8, 10].) It

is interesting to compute the counterpart in the gravity side for the scattering amplitude

computed in the paper.

It would be interesting to recompute the scattering amplitude including chemical po-

tential as done in [32], where the S-matrix in Chern-Simons theory with dense fermionic

matter was computed and was applied to determining Landau parameters to see the con-

sistency of a microscopic calculation and a thermodynamic macroscopic one. It would be

intriguing to determine Landau parameters in the current setup and investigate its behavior

in the RG flow and the physical implication thereof.

It would be also interesting to compute the scattering amplitude in higher supersym-

metric case such as ABJ model by taking the vector model largeN limit. Some perturbative

calculation of two body scattering in ABJ(M) theory was done in [46–52]. In the results

there the singular term in forward scattering does not show up, while the result in the

N = 1, 2 Chern-Simons vector model exhibits the singular contribution for the unitar-

ity [31]. This issue may be cleared up by carrying out the large N calculation developed

in the analysis of Chern-Simons vector models explicitly.

We hope to make progress in these issues in the near future.
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A Regularization

In this appendix we detail the regularization for the divergence we encountered in section 3

following [18]. The divergent integrals are contained in (3.34), (3.38), which are of a form

such that

I =

∫ ∞

h

dh

(2π)

Ai(h)(2iΣI + q3) + 2Bi(h)(h
2 − Σ2

I)

4h2 + q23
(A.1)

where h =
√
p2s + c2F and we denote Ai(k

′
s, ks) = Ai(h), Bi(k

′
s, ks) = Bi(h) with h = hk′ =√

(k′s)2 + c2F . Using (3.28) and (3.30) one can show that the asymptotic behavior of the

numerator in the integrand around h ∼ ∞ is

Ai(h)(2iΣI + q3) + 2Bi(h)(h
2 − Σ2

I) = 2Bi(∞)h2 +O(h0). (A.2)

Using this we can divide the above divergent integral into two parts in a way that

I =

∫ ∞

h

dh

(2π)

[
Ai(h)(2iΣI + q3) + 2Bi(h)(h

2 − Σ2
I)− 2Bi(∞)h2

4h2 + q23
+

2Bi(∞)h2

4h2 + q23

]
. (A.3)

The first term, which we denote by I1, is convergent and computed as

I1 = lim
Λ→∞

∫ Λ

h

dh

(2π)

[
Ai(h)(2iΣI + q3) + 2Bi(h)(h

2 − Σ2
I)− 2Bi(Λ)h

2

4h2 + q23

]
(A.4)

=
1

16πλ

{
αiλ

(
πsgn(q3)− 2 tan−1

(
2h

q3

))
+ 2βif(ps)(2cF (λ− sgn(λ))− 2hλ+ iq3)

+ βif(∞)

(
−4cF (λ− sgn(λ)) + 4hλ− 2λq3 tan

−1

(
2h

q3

)
+ πλq3sgn(q3)− 2iq3

)}
.

The second term, which we denote by I2, is a divergent term, which we can easily regularize

by the dimensional regularization prescribed in [18]. For this purpose we rewrite the integral

as the original three-dimensional integral form.

I2 = 2Bi(∞)

∫
d3k′

(2π)3
(k′s)

2 + c2F
(k′2 + c2F )((k

′ + q)2 + c2F )

k′−
(k′ − p)−

. (A.5)

Then we can apply the dimensional regularization prescribed in [18] to this integration.

I2 = 2Bi(∞)

∫
d2k′d1−ǫk3

(2π)3
h2

((k3)2 + h2)((k3 + q3)2 + h2)

k′−
(k′ − p)−

. (A.6)

This can be computed in a standard method by employing Feynman parameters. The

result is

I2 = 2Bi(∞)× −1

8π

(
h− q3

2
tan−1 2h

q3
+

π|q3|
4

)
. (A.7)

Finally we obtain the regulated integral as

I = I1 + I2 (A.8)

=
−2αihλ+ βiq3f(ps)(2cF (λ− sgn(λ))− 2hλ+ iq3) + βiq3f(∞)(−2cFλ+ 2cF − iq3)

8πλq3
.
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B Construction of asymptotic states

In this appendix we construct asymptotic particle states which are necessary to define

the S-matrix. For this purpose we quantize the fermionic field of the system (2.1) in the

canonical formulation. The Dirac equation of the system (2.1) is

(γµ∂
µ +ΣF )ψ

m
x = 0 (B.1)

where m is the fundamental index of the U(N) gauge group and ΣF is given by (2.4). To

find a complete set of the solutions we do Fourier transformation:

(iγµp
µ +ΣF (p))ψ

m
p = 0. (B.2)

A non-trivial solution of the Dirac equation exists only when the momentum is on mass-

shell:

p0 = ±E~p, E~p :=
√

~p2 + c2F . (B.3)

Then a positive-energy solution is found to be

u(~p) =

(
−ip3 +ΣI(p)√

p1 + p0
,−i

√
p1 + p0

)
, (B.4)

with p0 = E~p, and negative-energy one is

v(−~p) =

(
ip3 − ΣI(p)√

p1 + p0
, i
√
p1 + p0

)
, (B.5)

with p0 = −E~p. These are normalized in such a way that

ū(~p)u(~p) = 2ΣI(p), v̄(−~p)v(−~p) = −2ΣI(p). (B.6)

Then we expand the fermionic field in terms of this complete set. The result is

ψm
x =

∫
d2p

(2π)2
1√
2E~p

(
am~p u(~p)eixp + (bm,~p)

†v(~p)e−ixp
)
|p0=E~p

(B.7)

where a~p, b~p are expansion coefficients of the field.

Following the canonical formalism we introduce the canonical commutation relation.

{am~p , (an~q )
†} = (2π)2δmn δ2(~p− ~q), {bm,~p, (bn,~q)

†} = (2π)2δnmδ2(~p− ~q). (B.8)

Then (am~p )†, (bm,~p)
† are one-particle creation operators with the positive, negative charges,

respectively. We call the particle with positive charge antiparticle. By using these creation

operators we can define in-state and out-state of one particle by

|~p,+,m〉 =
√
2E~p(a

m
~p )†|0〉, |~p,−,m〉 =

√
2E~p(bm,~p)

†|0〉,
〈~p,+,m| =

√
2E~p〈0|am~p , 〈~p,−,m| =

√
2E~p〈0|bm,~p, (B.9)
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where |0〉 is the vacuum state. Here the normalization is determined so that the inner

product of these state becomes Lorentz invariant:

〈~p,+,m|~q,+, n〉 = 〈~p,−, n|~q,−,m〉 = 2E~p(2π)
2δmn δ2(~q − ~p). (B.10)

In the main text we study two particle scattering, where two particle states are defined by

|~q,−, n; ~p,+,m〉 =
√
2E~q(bn,~q)

†√2E~p(a
m
~p )†|0〉,

〈~q,−, n; ~p,+,m| =
√
2E~p

√
2E~q〈0|am~p bn,~q.

(B.11)

C S-matrix in general Chern-Simons bosonic vector theory

In this appendix we give a brief derivation of two body scattering amplitude in general

Chern-Simons vector model in the ’t Hooft large N limit. This can be done by applying

the method developed in [30] to the current case, in which the triple trace coupling is

included. Lagrangian of general Chern-Simons bosonic vector model is [15, 17]

LB = iεµνρ
kB
4π

Tr

(
Aµ∂νAρ −

2i

3
AµAνAρ

)
+Dµφ̄D

µφ

+m2
Bφ̄φ+

4πb4
kB

(φ̄φ)2 +
(2π)2x6
(kB)2

(φ̄φ)3. (C.1)

The exact propagator of the scalar field is determined as [15]

〈φm(p)φ̄n(−p′)〉 = δmn (2π)3δ3(−p′ + p)αB(p), αB(p) =
1

p2 + c2B
(C.2)

where c2B is the physical mass of the scalar field determined by the following gap equation

c2B = λ2
B(1 + 3x6)

c2B
4

− 2λBb4cB +m2
B. (C.3)

As in the fermionic case in order to compute the four point correlator we determine

the four point vertex given by

− 1

2

∫
d3p

(2π)3
d3k

(2π)3
d3q

(2π)3
φ̄m(−p− q)φm(p)B(p, k; q)φ̄n(−k)φn(k + q). (C.4)

As the fermionic case, the bootstrap diagram for this four point vertex is precisely the same

as the ladder diagram in the ’t Hooft large N limit, thus the Schwinger-Dyson equation is

B(p, k; q) = B0(p, k; q) +N

∫
d3k′

(2π)3
B0(p, k′; q)αB(q + k′)αB(k

′)B(k′, k; q). (C.5)

Here B0 represents the contribution of the ladder bar, which is diagrammatically given by

figure 4 in [30] with the contribution of the triple trace vertex given by

−
(
2π

kB

)2

× 3!×N

∫
d3r

(2π)3
αB(r) = 6x6

(
2π

kB

)2

N
cB
4π

. (C.6)
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Thus we obtain

B0(p, k; q) =
4π

ikB
q3z +

b4

kB
(C.7)

where b4 is a constant given by

b4 = 2πλBcB − 8πb4 + 6πx6λBcB. (C.8)

The bootstrap equation (C.5) can be solved exactly in the frame (3.12). In order to

solve (C.5) we set the ansatz [6]

B(p, k; q) = B1(ps, ks) + q3zB2(ps, ks), (C.9)

where z is defined by (4.20). Plugging this into (C.5) and performing k3-integral and

angular integral for k− we find

B2(ps, ks) =
4π

ikB
+N

∫ hk

hp

dh

(2π)

1(
4h2 + q23

)−8πq3
ikB

B2, (C.10)

B1(ps, ks) =
b4

kB
+N

∫ hp

h0

dh

(2π)

1(
4h2 + q23

) 8πq3
ikB

B1 +N

∫ hk

h0

dh

(2π)

1(
4h2 + q23

)−2b4q3
kB

B2

+N

∫ ∞

h0

dh

(2π)

1(
4h2 + q23

)
(−4πq3

ikB
+

b4

kB

)(
B1 + q3B2

)
, (C.11)

where in the right-hand side we set Bi = Bi(k
′
s, ks) with h = hk′ . A solution of these

integral equations is

B2(ps, ks) =
4π

ikB

fB(ps)

fB(ks)
, (C.12)

B1(ps, ks) =
4πq3
ikB

[
−(b4 + i4πq3)fB(∞) + (b4 − i4πq3)fB(0)

(b4 + i4πq3)fB(∞)− (b4 − i4πq3)fB(0)

]
fB(ps)

fB(ks)
, (C.13)

where fB(ps) is defined by

fB(ps) := exp


−2iλB arctan

2
√

p2s + c2B

q3


 . (C.14)

Therefore

B(p, k; q) =
4πq3
ikB

(z + i tanXB(q3))
fB(ps)

fB(ks)
(C.15)

where XB(q3) is given by (4.24).

Then the procedure to compute scattering amplitude is completely parallel to the

fermionic case described in the main text. Therefore we do not repeat the description for

the bosonic case, and we present only results with the subscript (B) for the corresponding

quantities. The T-channel transition matrix is

T
(B)
T =

4πq3
ikB

(z + i tanXB(q3)) = − 4π

kB

(
σ

√
su

−t
−
√
−s tanXB(

√
−s)

)
, (C.16)
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and the naive S-channel transition matrix obtained by double Wick rotation is

T
(B)
S =

4πq0

kB
(z + tanhX ′

B(−q0)) = − 4π

kB

(
σ

√
su

−t
−√

s tanhX ′
B(

√
s)

)
, (C.17)

where s, t, u variables are defined by (4.25) and

X ′
B(

√
s) = λB tanh−1

√
s

2cB
+ tanh−1

(−4b4 + cBλB(1 + 3x6)

2
√
s

)
. (C.18)

By making the S-channel S-matrix unitary as done in [30] we obtain

S
(B),conj
S = ikB

sin(πλB)

π
T
(B)
S + 8π

√
s cos(πλB)δ(θ). (C.19)
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