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Abstract 

   The ventral premotor cortex (PMv), occupying the ventral aspect of area 6 in the 

frontal lobe, has been implicated in action planning and execution based on visual 

signals. Although the PMv has been characterized by cortico-cortical connections with 

specific subregions of the parietal and prefrontal cortical areas, a topographical 

input/output organization between the PMv and the basal ganglia (BG) still remains 

elusive. In the present study, we employed retrograde transneuronal labeling with rabies 

virus to identify the origins of multisynaptic projections from the BG to the PMv. We 

injected the virus into the forelimb region of the PMv, identified in the ventral aspect of 

the genu of the arcuate sulcus, in macaque monkeys. The survival time after the virus 

injection was set to allow either the second- or third-order neuron labeling across two or 

three synapses. The second-order neurons were observed in the ventral portion (primary 

motor territory) and the caudodorsal portion (higher-order motor territory) of the 

internal segment of the globus pallidus. Subsequently, the third-order neurons were 

distributed in the putamen caudal to the anterior commissure, including both the 

primary and the higher-order motor territories, and in the ventral striatum (limbic 

territory). In addition, they were found in the dorsolateral portion (motor territory) and 
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ventromedial portion (limbic territory) of the subthalamic nucleus and in the external 

segment of the globus pallidus including both the limbic and motor territories. These 

findings indicate that the PMv receives diverse signals from the primary motor, 

higher-order motor, and limbic territories of the BG. 
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Introduction 

   The premotor (PM) cortex in primates, the rostral part of the frontal motor cortex 

corresponding to Brodmann area 6, plays a central role in the visual guidance of motor 

behavior (Halsband & Passingham, 1985; Wise, 1985; García-Cabezas & Barbas, 2014; 

Yamawaki et al., 2014; Barbas & García-Cabezas, 2015). Seminal anatomical works of 

the monkey brain have revealed that the PM is subdivided into two large sectors based 

on the cytoarchitecture (Matelli et al., 1985, 1986; Barbas & Pandya, 1987): one is a 

dorsal region (PMd), lying dorsal to the spur of the arcuate sulcus, and another is a 

ventral region (PMv), lying ventral to the spur. Electrical stimulation and mapping 

studies showed that there is a forelimb region in each of the PMd and PMv (Gentilucci 

et al., 1988; Godschalk et al., 1995; Raos et al., 2003; Aflalo and Graziano, 1996; 

Maranesi et al., 2012). Single cell recoding studies have revealed that the PMd and PMv 

are involved in reaching and grasping movements in an area-specific manner (Kurata & 

Wise, 1988; Caminiti et al., 1991; Boussaoud & Wise, 1993a, b; Kurata, 1993; Scott et 

al., 1997; Kurata & Hoshi, 2002; Raos et al., 2004, 2006; Umiltà et al., 2007; Yamagata 

et al., 2009). By summarizing a large body of evidence, Hoshi and Tanji (2007) have 
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proposed that the PMd plays a major role in action planning based on sensory-motor 

associations (indirect [conceptual] specification of action), whereas the PMv plays a 

major role in reaching and grasping a target object (direct guidance of limb movements). 

Actually, the specific functional deficits that result from PMd/PMv lesions endorse 

these notions (Rizzolatti et al., 1983; Kurata & Hoffman, 1994; Kurata & Hoshi, 1999; 

Schieber, 2000; Fogassi et al., 2001).  

   The functional specializations between the PMd and the PMv may originate from 

distinct anatomical connectivity. Actually, these areas are interconnected with distinct 

subregions of the parietal and prefrontal cortical areas (Wise et al., 1997; Matelli et al., 

1998; Rizzolatti et al., 1998; Luppino et al., 1999; Petrides & Pandya, 1999). In 

addition to the connectivity within the cerebral cortex, it is most likely that neural 

networks linking these forelimb regions with the basal ganglia (BG) play functionally 

crucial roles, given that neurons in the BG code a variety of signals for planning and 

execution of reaching movement (Iansek & Porter, 1980; DeLong et al., 1985) and their 

dysfunctions cause severe deficits in movement (Alexander & Crutcher, 1990; Parent & 

Hazrati, 1995a, b).  
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   In the present study we made an attempt to investigate the distributions of BG 

neurons giving rise to output projections to the forelimb region of the PMv, as an 

extension of our previous anatomical study that has revealed the origins of 

multisynaptic projections from the BG to the corresponding region of the PMd (Saga et 

al., 2011). We employed retrograde transneuronal labeling with rabies virus (CVS-11) 

to identify the cellular origins of multisynaptic projections from the BG structures to the 

forelimb region of the PMv in macaque monkeys. We here show that the forelimb 

region of the PMv receives multisynaptic inputs from the primary motor territory, 

higher-order motor territory, and limbic territory of the BG. 

 

Materials and methods 

   We used four male macaque monkeys (Macaca fuscata, weighing 5.4-6.9 kg; 

provided by the Primate Research Institute, Kyoto University, Table 1). The 

experimental protocol was approved by the Animal Welfare and Animal Care 

Committee of the Primate Research Institute, Kyoto University, and all experiments 

were conducted in accordance with the Guideline for the Care and Use of Animals of 
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the Primate Research Institute, Kyoto University.  

 

Surgical procedures 

   Monkeys were subjected to general anesthesia induced with ketamine hydrochloride 

(10 mg/kg, i.m.) and maintained with sodium pentobarbital (20 mg/kg, i.v.). During the 

surgical operation, monkeys were kept hydrated with lactated Ringer’s solution (i.v.). 

An antibiotic (Rocephin; 75 mg/kg, i.m.) and an analgesic (Buprenex; 0.01 mg/kg, i.m.) 

were administered at the time of initial anesthesia. Each monkey’s head was secured in 

a stereotaxic frame, and the skin and muscle were retracted to expose the skull over the 

right hemisphere. A craniotomy was made over the right frontal cortex, and the dura 

mater was cut to expose the superior and inferior limbs and the genu of the arcuate 

sulcus, which allowed us to visually inspect the tracer injection sites at the cortical 

surface. After confirming this, we proceeded with tracer injections. 

 

Viral injections 

   The rabies virus (CVS-11 strain; 1.0 ×108 focus-forming units/ml) was derived from 
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the Centers for Disease Control and Prevention (Atlanta, GA, USA) and donated by Dr. 

S. Inoue (The National Institute of Infectious Diseases, Tokyo, Japan). For viral 

injections, we used the same method as described in our previous reports (Hashimoto et 

al., 2010; Saga et al., 2011; Takahara et al., 2012). Two tracks of injections of rabies 

virus were made into the PMv of each of the four monkeys (Fig. 1, Table 1). The 

injection sites were determined based on the results of our prior studies showing that the 

subdivision of the PMv located just ventral to the genu of arcuate sulcus plays a crucial 

role in reaching movement (Hoshi & Tanji, 2002, 2006, 2007; Yamagata et al., 2009, 

Fig.1B, C). A viral suspension was slowly injected through a 10-µl Hamilton 

microsyringe. Along each injection track, viral deposits were placed at two different 

depths: 3 and 2 mm below the cortical surface. At each depth, 0.5 µl of the viral 

suspension was deposited. When injections were complete, the dura mater and bone flap 

were repositioned, and the scalp incision was closed.  

 

Histology 

   After survival periods of 3-4 days after viral injection, monkeys were deeply 
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anesthetized with an overdose of sodium pentobarbital (50 mg ⁄ kg, i.v.) and 

transcardially perfused with 10% formalin in 0.1 M phosphate buffer (pH 7.4). The 

fixed brains were removed from the skull, postfixed in the same fresh fixative overnight 

at 4°C, and placed into 0.1 M phosphate buffer (pH 7.4) containing 30% sucrose. 

Coronal sections were then cut serially at 50 µm thickness on a freezing microtome. 

Every sixth section was processed for immunohistochemical staining for rabies virus by 

means of the standard avidin-biotin-peroxidase complex method. Following immersion 

in 1% skimmed milk, the sections were incubated overnight with rabbit anti-rabies virus 

antibody (donated by Dr. S. Inoue) in 0.1 M phosphate-buffered saline (pH 7.4) 

containing 0.1% Triton X-100 and 1% normal goat serum. The sections were then 

placed in the same fresh incubation medium containing biotinylated goat anti-rabbit IgG 

antibody (diluted at 1:200; Vector Laboratories, Burlingame, CA, USA), followed by 

the avidin-biotin-peroxidase complex kit (ABC Elite; Vector Laboratories). To visualize 

the antigen, the sections were reacted in 0.05 M Tris-HCl buffer (pH 7.6) containing 

0.04% diaminobenzidine, 0.04% nickel chloride, and 0.002% hydrogen peroxide. The 

sections were mounted onto gelatin-coated glass slides and then examined under the 

Page 12 of 61European Journal of Neuroscience



For Peer Review

  11/47 

light microscope (Nikon Eclipse 80i, Tokyo, Japan).  

 

Analytical procedures 

   We digitized the outline of the nuclei of the BG and the location of labeled neurons 

with the MD-Plot 5 system (Accustage, Shoreview, MN, USA) attached to the 

microscope system. Neuronal labeling was plotted on tracings of equidistant coronal 

sections (separated by 300-µm) throughout the BG. To examine the distribution and 

density of labeled neurons in the internal and external segments of the globus pallidus 

(GPi and GPe), we created two-dimensional density maps with a custom-made program 

that operates on Matlab (Mathworks, Natick, MA, USA). To create the density maps of 

the GPi, we first drew a curved line on each coronal section along the border between 

the inner and the outer portion of the GPi (Fig. 5A). Subsequently, labeled GPi neurons 

were projected onto the line, and both the line and the labeled neurons were unfolded 

and aligned on the ventral edges of the nucleus (Fig. 5B). Finally, to construct the 

density maps, we aligned the labeled neurons in each section (with 300-µm intervals) in 

the rostrocaudal direction and counted the number of the labeled neurons in each of 300 
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× 300 µm2 bins. To create the density maps of the GPe, we drew a curved line on each 

coronal section midway between the medial and the lateral outline of the GPe (Fig. 8A). 

The subsequent unfolding procedures (Fig. 8B) were as for the GPi. A color code in 

each map of the GPi and GPe was assigned to each bin to indicate the number of labeled 

neurons included (Figs. 5C, D and 8C, D). 

 

Safety issues 

   Experiments involving the rabies virus were performed in a special primate 

laboratory (biosafety level 2) designated for in vivo infectious experiments. Throughout 

the experiments, the monkeys were housed in individual cages that were installed inside 

a special biosafety cabinet. To avoid accidental infection with the virus, all investigators 

received immunizations beforehand and wore protective clothing during the 

experimental sessions. Equipment was disinfected with 80% (v/v) ethanol after each 

experimental session, and waste was autoclaved prior to disposal. 

 

Results 
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Rabies injections into the PMv  

   The injection sites of rabies virus were determined according to the results from our 

previous electrophysiological studies (see Hoshi & Tanji, 2002, 2006; Yamagata et al., 

2009). In these studies, we found that PMv neurons located in the ventral aspect of the 

genu of the arcuate sulcus preferentially represent the target site, regardless of the right 

or left arm use, during the preparation of reaching movement. Based on this finding, 

two injection tracks (approximately 1 mm apart) were targeted at this portion of the 

PMv; the sites were situated 1–2 mm posterior to the genu of the arcuate sulcus and 1–2 

mm lateral to the spur of the arcuate sulcus (Fig. 1B-D). At the 3-day post-injection 

period, labeled neurons were densely distributed around the injection sites (Fig. 1E, F). 

   The survival time after the rabies injections was set to allow either the second-order 

or the third-order neuron labeling across two or three synapses, respectively: (1) the 

first-order neurons from the PMv were located in the ventral nuclei (e.g., VLo, VApc) 

and mediodorsal nucleus of the thalamus (Morel et al., 2005); (2) the second-order and 

third-order neurons from the PMv were located in the BG 3 or 4 days after the rabies 

injections, respectively. For instance, Figure 2A, B show examples of labeled neurons 
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observed in the GPi and SNr at the 3-day post-injection period (second-order neurons). 

Figure 2C shows examples of labeled neurons observed in the GPe at the 4-day 

post-injection period (third-order neurons). Summary of the number of labeled neurons 

for each nucleus is shown in Figure 3. 

 

Origins of multisynaptic projections to the PMv from the GPi and SNr 

   Three days after the rabies injections into the PMv, the second-order neurons were 

seen in both the GPi and the SNr in two cases (Figs. 4 and 6). The number of labeled 

neurons in the outer portion of the GPi was 267 on average (257 cells in Case 1 and 277 

cells in Case 2), while that in the inner portion of the GPi was 146 on average (111 cells 

in Case 1 and 181 cells in Case 2, Fig. 3). In order to examine the distribution of the 

labeled neurons within the GPi, two-dimensional density maps were made (Fig. 5A, B). 

These maps indicated that the origin of the projection to the PMv consisted of two parts 

of the GPi; one was the caudodorsal part, and the other was the ventral part (Fig. 5C, 

D).  

   Labeled neurons in the SNr were found widely throughout the entire rostrocaudal 
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extent of the nucleus (Fig. 6). At the rostral level, the labeled neurons were located in 

the dorsolateral part (Fig. 6A, B, A’, B’), while in the caudal two-thirds of the SNr, the 

labeled neurons were distributed primarily in the central part (Fig. 6C-F, C’-F’). The 

number of labeled neuron in the SNr was 203 on average (307 cells in Case 1 and 99 

cells in Case 2, Fig. 3). 

 

Origins of multisynaptic projections to the PMv from the GPe, STN, and striatum 

   By extending the post-injection survival period to 4 days, we detected neuronal 

labeling in the GPe, STN, and striatum. In the GPe, labeled neurons were widely 

distributed over the nucleus (Fig. 7). In order to examine the distribution of labeled 

neurons, two-dimensional density maps of the GPe were made in two cases. In both 

cases, the labeled neurons were located not only in the rostroventral portion, but also in 

the dorsoventrally middle portion at the caudal level (Fig. 8). The number of labeled 

neurons in the GPe was 2,562 on average (2,332 cells in Case 3 and 2,792 cells in Case 

4, Fig. 3). 

   Labeled neurons in the STN were observed extensively throughout the entire 
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rostrocaudal extent of the nucleus (Fig. 9). The labeled neurons were distributed 

primarily in the central to dorsolateral portions of the caudal half of the nucleus (Fig. 

9C-F, C’-F’). Another focus of the labeled neurons was seen in the ventromedial portion 

mainly at the rostral level of the nucleus (Fig. 9A, B, A’, B’). The number of labeled 

neurons in the STN was 1,679 on average (1,583 cells in Case 3 and 1,774 cells in Case 

4, Fig. 3). 

   In the striatum, a large number of labeled neurons were observed (Fig. 10). At the 

level rostral to the anterior commissure (ac; Fig. 10A-C, A’-C’), labeled neurons were 

located in the ventral striatum. At the level caudal to the ac (Fig. 10D-F, D’-F’), labeled 

neurons were found at the dorsoventrally middle portion of the medial and lateral 

aspects of the putamen. Further, throughout the entire rostrocaudal extent of the striatum 

except for the anterior-most level (Fig. 10A-E, A’-E’), labeled neurons were 

continuously seen in the striatal cell bridge region and in adjacent regions of the caudate 

nucleus and the putamen. The number of labeled neuron in the caudate nucleus 

including the bride region was 2,890 on average (3,431 cells in Case 3 and 2,289 cells 

in Case 4), and that in the putamen was 24,036 on average (27,815 cells in Case 3 and 
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20,256 cells in Case 4, Fig. 3). 

 

Discussion 

   We examined the organization of multisynaptic projections from the BG to the 

forelimb region of the PMv in macaque monkeys. After injecting rabies virus into the 

PMv, we found the second-order neuron labeling in the GPi and SNr. Subsequently, the 

third-order neuron labeling occurred in the GPe, STN, and striatum. Our histological 

analysis of the distributions of rabies-labeled neurons revealed that the PMv primarily 

receives major input signals from multiple territories within each structure of the BG 

that have comprised the two distinct motor territories (i.e., the primary and higher-order 

motor territories) and the limbic territory. 

 

Multisynaptic inputs to the PMv from the primary motor territory of the GPi and 

striatum 

   In the present study, we obtained many pieces of evidence indicating that the PMv 

receives inputs from the two distinct motor territories (i.e., the primary and higher-order 
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motor territories) of the BG. We first discuss the organization of the inputs from the 

primary motor territory. 

   We observed that two different parts of the GPi give rise to disynaptic projections to 

the PMv. The first part was located in the ventral aspect of the GPi. Several lines of 

evidence have shown that this ventral part is interconnected predominantly with the 

primary motor cortex (M1). First, anatomical studies using retrograde transsynaptic 

transport of neurotropic viruses have revealed that the ventral part of the GPi projects 

multisynaptically to the M1 via the motor thalamus (Hoover & Strick, 1993, 1999). 

Second, by examining the responses of GPi and GPe neurons to cortical and striatal 

electrical stimulations, Yoshida et al. (1993) identified pallidal neurons that receive 

inputs from the M1, PMv, PMd, the supplementary motor area (SMA), and the 

prefrontal cortex. They found that neurons in the ventral part of the GPi receive input 

preferentially from the M1. Third, Haber et al. (1990, 1993, 1995, 2000) have revealed 

that the ventrolateral GPi receives input from the dorsolateral putamen, which 

corresponds to the zone that receives major input from the arm region of the M1 

(Takada et al., 1998a, b; Kaneda et al., 2002). These findings indicate that the PMv 
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receives disynaptic input from the primary motor territory located in the ventral aspect 

of the GPi. Within the striatum, the third-order neurons were distributed in the putamen 

caudal to the ac. One group of dense patches of labeled neurons was seen in the 

dorsoventrally middle portion of the lateral aspect of the putamen. It has been shown 

that this portion of the putamen receives major input from the arm region of the M1 

(Zemanick et al., 1991; Inase et al., 1996b; Takada et al., 1998a, b; Kaneda et al., 2002). 

These observations indicate that the PMv receives input from the primary motor 

territory of the striatum. The overall results provide evidence that the PMv receives 

multisynaptic inputs from the primary motor territories of the GPi and striatum. 

 

Multisynaptic inputs to the PMv from the higher-order motor territory of the GPi and 

striatum 

   The second part of the GPi that sends disynaptic projections to the PMv was 

identified in the caudodorsal aspect of the nucleus. The previous study of Yoshida et al. 

(1993) have revealed that neurons in the caudodorsal part of the GPi respond primarily 

to electrical stimulation of the PMd, SMA, the cingulate motor area, or PMv. In our 
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prior study, Saga et al. (2011) found that GPi neurons projecting to the PMdc (i.e., the 

caudal aspect of area F2) were located dorsal to those projecting to the M1 (Hoover & 

Strick, 1993,1999). Moreover, the neurons in the caudodorsal part of the GPi have been 

shown to project to the SMA across synapses (Akkal et al., 2007). These findings 

suggest that this part of the GPi may correspond to a higher-order motor territory, and 

that the PMv receives input from such a territory across synapses. Within the striatum, a 

subset of the third-order neurons was distributed in the medial aspect of the putamen, 

including the striatal cell bridge region. Takada et al. (1998a, b) have revealed that this 

part of the striatum receives major inputs from the arm regions of the PMv, PMd, and 

SMA. In our prior study (Saga et al., 2011), rabies injections into the PMdc produced 

retrograde neuronal labeling in the same striatal zone. These findings indicate that the 

medial aspect of the putamen corresponds to a higher-order motor territory, and that the 

PMv receives input from this striatal territory across synapses. The overall results 

provide evidence that the PMv receives inputs from the higher-order motor territories of 

the GPi and striatum. 
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Multisynaptic inputs to the PMv from the limbic territory of the GPe and striatum 

   In the present study, we found that labeled neurons in the GPe were located mainly 

in the dorsoventrally middle portion at the caudal level and in the rostroventral portion. 

Many pioneer works reported that neurons in the former portion of the GPe responded 

to reaching or passive arm/wrist movements in monkeys (Iansek & Porter, 1980; 

DeLong et al., 1985; Filion et al., 1988; Hamada et al., 1990; Yoshida et al., 1993). 

Anatomical studies have revealed that this portion of the GPe receives inputs from the 

primary motor and premotor cortical areas via the striatum (Flaherty & Graybiel, 1993; 

Takada et al. 1998b; Kaneda et al. 2002, François et al., 2004). Further, Grabli et al. 

(2004) have shown that the bicuculline (a GABAA receptor antagonist) microinjection 

into this portion of the GPe induces abnormal movements. These observations indicate 

that this portion of the GPe corresponds to its motor territory. 

   Moreover, Grabli et al. (2004) have shown that microinjection of bicuculline into 

the rostroventral portion of the GPe of monkeys induces a stereotypic behavior, such as 

obsessively licking and biting fingers. Subsequently, by injecting an anterograde tracer 

into the same portion of the GPe, François et al. (2004) demonstrated that the 
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rostroventral portion portion of the GPe projected to the ventromedial portion of the 

SNr at its rostral level, which receives ample input from the ventral striatum, including 

the nucleus accumbens (Haber et al., 1990, 1993, 2000). These findings indicate the 

rostroventral portion of the GPe corresponds to its limbic territory. In addition, a 

number of labeled neurons were distributed in the limbic territory of the striatum, 

including the ventromedial putamen and the nucleus accumbens. Previous studies 

reported the existence of neuronal labeling in the ventral striatum after rabies injection 

into the M1 (Kelly & Strick, 2004; Miyachi et al., 2006) and the PMd (Saga et al., 

2011). This indicates that the ventral striatum sends diverse output projections to 

multiple motor cortical areas across synapses. Altogether, our findings have revealed 

that the PMv receives inputs from the limbic territories of the BG (i.e., the GPe and 

striatum). However, the exact pathways toward the PMv from the GPe and stratum still 

remain elusive. One potential candidate is the basal forebrain; it has been shown that the 

ventral striatum projects to the basal forebrain and cholinergic neurons therein in turn 

sends widespread outputs to the cerebral cortex (Kievit & Kuypers, 1975; Mesulam et 

al., 1983; Haber et al., 1993, 1995; Miyachi et al., 2006). Actually, we found many 
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labeled neurons in the basal forebrain in our second-order samples. Further work is 

needed to address this issue.  

 

Multisynaptic inputs to the PMv from the SNr and STN 

   We found the second-order labeled neurons in the SNr. A subset of labeled neurons 

was located in the central and dorsal portions of the SNr. These portions correspond to a 

sector that receives inputs from the M1- and/or SMA-recipient regions of the striatum 

(Haber et al., 2000; Kaneda et al., 2002). Furthermore, these portions have been shown 

to project to the PMd (Saga et al., 2011), as well as to the prefrontal cortex (Middleton 

& Strick, 2002), across synapses. The overall findings suggest that the PMv may 

receive inputs from the primary and higher-order motor territories of the SNr.  

   Within the STN, we found that a subset of labeled neurons were located in the 

central to lateral portions within the caudal half of the nucleus. Previous studies have 

revealed that these portions of the STN correspond to the somatomotor territory 

(Nambu et al., 1996, 1997; Inase et al., 1999; Takada et al., 2001; Kaneda et al., 2002) 

that receives input from the M1 and sends output to the M1 across synapses. Further, 
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Nambu et al. (1996, 1997) showed that terminal labeling from the PMv, PMd, and SMA, 

as well as from the M1, was located in the same portions of the STN. Thus, the overall 

data indicate that the PMv receives inputs from the primary and higher-order motor 

territories of the STN. Another subset of labeled neurons was seen in the ventromedial 

portion of the rostral aspect of the nucleus. This portion of the rostral STN has been 

shown to correspond to the limbic territory (Haber et al., 2000; Hamani et al., 2004). By 

injecting an anterograde tracer into the ventromedial GPe, François et al. (2004) 

demonstrated that this GPe region projected to the ventromedial portion of the rostral 

STN. Altogether, neuronal labeling in the two distinct portions of the STN indicates that 

the PMv receives inputs from the primary/higher-order motor territories and the limbic 

territory of the STN. 

 

Integration of diverse signals in the cortico-basal ganglia circuits 

   We have revealed that the cellular origins of multisynaptic projections from the BG 

to the PMv consist of two distinct motor territories, i.e., the primary and higher-order 

motor territories. Seminal studies have reported that the PMv is involved in spatial 
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attention (Kubota & Hamada, 1978; Rizzolatti et al., 1981; Boussaoud & Wise, 1993a; 

Godschalk et al., 1995) and reaching execution (Boussaoud & Wise, 1993b; Kurata & 

Hoshi, 2002; Schwartz et al., 2004). Lesion studies in monkeys have supported these 

findings. The monkeys with hemi-ablation of the PMv resulted in deficits in orienting 

responses toward the contralateral space (Rizzolatti et al., 1983; Scheiber, 2000). 

Similarly, microinjection of bicucullin into the dorsal GPe, including a portion from 

which the PMv receives input, induced attentional bias toward the contralateral space 

(Grabli et al., 2004), and dopamine depletion in one side of the BG resulted in visual 

hemi-neglect (Apicella et al., 1991; Miyashita et al., 1995). Thus, the PMv may 

intensively interact with the BG for signal processing of spatial attention. In contrast, a 

subset of PMv neurons exhibits movement-related activity during reaching movement. 

Since the movement-related activity is most prominent in the M1 (Evarts, 1968; 

Georgopoulos et al., 1982; Tanji & Kurata, 1982), the PMv may receive the information 

about the movement from the primary motor territory of the BG. In addition to spatial 

attention and movement execution, the PMv has been shown to participate in 

visuomotor transformation for reaching movement by encoding both visuospatial and 
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motor information (Boussaoud & Wise, 1993a, b; Kurata & Hoshi, 2002). Actually, 

inactivation of the PMv induced deficits in remapping from visual to motor space in 

shift-prism adaptation (Kurata & Hoshi, 1999). One intriguing possibility is that the 

PMv receives two distinct inputs concerning movement execution from the primary 

motor territory and spatial attention (or visual signals) from the higher-order motor 

territory of the BG, and that these two sets of information are integrated in the PMv to 

achieve the visuomotor transformation. After the motor commands are generated for the 

reaching movement, these signals may be transferred to the M1 via the intracortical 

connections between the PMv and the M1 (Dum & Strick, 2005; Dancause et al., 2006) 

and via the circuits through the BG. In addition to the reaching movement, the PMv 

plays a crucial role in goal-directed grasping movements (Rizzolatti et al., 1987). 

Inactivation of the PMv impairs grasping movements without any paralysis of finger 

movements per se (Fogassi et al., 2001). Murata et al. (1997) have reported that PMv 

neurons reflect three-dimensional features of objects for grasping them. In the parietal 

and temporal cortical areas, object visual signals are amply represented in the inferior 

parietal lobule (IPL) and the inferotemporal cortex (IT). Of these the PMv is directly 
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interconnected with the IPL, but not with the IT (Luppino et al., 2001; Rozzi et al., 

2006; Borra et al., 2008). Anatomical studies have revealed that the IT projects to the 

IPL, suggesting that the PMv may receive input from the IT via the IPL. In addition, it 

has been reported that the IT projects not only to the caudate tail (Saint-Cyr et al., 1990; 

Cheng et al., 1997), but also to the lateral aspect of the caudate body (Webster et al., 

1993) in which we found the cellular origin of the projection to the PMv. Thus, the PMv 

may receive signals about the object shape represented in the IT via the BG. Taken 

together with the electrical stimulation and mapping studies (Gentilucci et al., 1988; 

Godschalk et al., 1995; Aflalo & Graziano, 2006; Maranesi et al., 2012), these findings 

revealed a large overlap of zones representing reaching and grasping movements in the 

PMv. The overlap region may integrate movements with motor commands to achieve 

the visuomotor integration for grasping a target. An intriguing possibility is that the 

PMv-BG networks may be involved in the integration of the reaching and grasping 

components of forelimb movement (Gerbella et al., 2015). 

   The motivational aspect, as well as the visual aspect, has been shown to influence 

action (Mogenson et al., 1980; Haber et al., 2000). In relation to this, it has been 
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revealed that the motor territory of the BG represents 'the vigor of movement'. 

Inactivation of the caudoventral part of the GPi (i.e., the primary motor territory) 

resulted in the increase in the reaction time of a visually guided reaching task (Inase et 

al., 1996a), the reduction in the movement velocity and the acceleration without 

impairment in reaching execution (Wenger et al., 1999; Turner & Desmurget, 2010), 

and the undershoot toward motor targets (Turner & Anderson, 2005; Desmurget & 

Turner, 2008). These observations indicate that the motor territory of the BG already 

integrates the information concerning the visuospatial and motivational aspects. Thus, 

the PMv may receive the integrated ‘vigor’ signals from the motor territory of the BG 

(Turner & Desmurget, 2010). In addition to this, the limbic territory of the BG may 

provide the PMv with context-dependent motivational signals. Actually, Roesch and 

Olson (Roesch & Olson, 2004) showed that PMv neurons in macaque monkeys fired 

more strongly when the expected reward or penalty was larger, indicating that the PMv 

represents a general motivational signal of action. One intriguing possibility is that the 

PMv may receive it from the limbic territory of the BG. Altogether, it is likely that the 

PMv receives the information not only concerning the visual and motor aspects and 
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response vigor, but also about general motivation from the BG. Further, the 

motivational signal from the BG may enhance other types of forelimb movements in 

foraging behavior, such as locomotion, climbing, and reaching/grasping to eat food 

(Graziano, 2006; Rizzolatti et al., 2014; Wise, 2006). 

 

Comparison of the BG labeling after PMv and PMd injections  

   The PMd and PMv are suggested to play distinct roles in achievement of reaching 

and grasping movements. It has been shown that the PMd plays a major role in action 

planning based on multiple sets of sensory-motor association (i.e., indirect specification 

of action), whereas the PMv is involved more highly in matching actions directly with 

features (e.g., shape and location) of a target (i.e., direct guidance of action) (Hoshi & 

Tanji, 2007). In a prior report, we investigated the origins of mutisynaptic inputs in the 

BG to the PMd (Saga et al., 2011). By comparing the results obtained after the PMd and 

PMv injection, it was found that the number of labeled neurons in the output station of 

the BG (i.e., GPi and SNr) was comparable in the PMd and PMv injection cases, 

whereas those in the intermediate (i.e., GPe and STN) and input (i.e., striatum) stations 
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were higher in the PMv injection case than in the PMd injection case (Saga et al., 2011). 

These findings might suggest that the PMv is more tightly linked with the indirect 

pathway (involving the GPe and STN) than the PMd, and that the greater degree of 

funneling takes place in the striatum in the PMv-BG circuit than in the PMd-BG circuit. 

However, such notions should be taken as a preliminary account because the subjects, 

injection volumes, and viral lots differ in the PMd and PMv injections. To better 

characterize possible differences in the network architecture of the PMv-BG and 

PMd-BG circuits, it is needed to overcome these technical issues. 
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Table 1. 

Summary of experiments 

 

  

Monkey Species 
Injection 

site 
Tracer 

Survival 

(days) 

Injection 

tracks 

(n) 

Injection 

volume 

(µL) 

Case 1 
M. 

fuscata 
PMv CSV-11 3 2 2.0 

Case 2 
M. 

fuscata 
PMv CSV-11 3 2 2.0 

Case 3 
M. 

fuscata 
PMv CSV-11 4 2 2.0 

Case 4 
M. 

fuscata 
PMv CSV-11 4 2 2.0 
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Figure Legends 

Figure 1  

Locations of injection sites in the PMv. (A) Diagram illustrating the frontal lobe of the 

macaque monkey. The rectangular area drawn with broken line is enlarged in (B). (B) 

Schematic view of injection site of rabies virus in the PMv. The circle drawn with the 

dotted line indicates the intended injection site. Within the intended injection site, the 

small gray circles (0.5 mm in radius) indicate the estimated viral spread around the 

injection tracks. The genu of the arcuate sulcus (AS) is denoted with the asterisk. The 

border between the premotor cortex and the primary motor cortex (M1) is represented 

by the broken line. (C) Drawing illustrating a slice with an injection track for each case. 

In (C-E), an arrowhead points to an injection track. (D) Low-magnification 

microphotograph of a Nissl-stained section of Case 1. (E) Low-magnification 

microphotograph of the injection site in Case 1 three days after rabies injection. In the 

low-power image, labeled neurons are densely distributed around the injection site. (F) 

The boxed region in the panel (D) is enlarged. Many neurons are seen to be labeled in a 

Golgi-like manner. CS, central sulcus; PS, principal sulcus; AS, the arcuate sulcus; Spur, 
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spur of AS; Spur, spur of AS; Cg, cingulate sulcus. Scale bars in (D) and (E): 500 µm. 

Scale bar in (F): 50 µm.  

 

Figure 2 

Neuronal labeling in the GP and SNr. (A and B) Second-order neuron labeling in the 

GPi (A) and the SNr (B) 3 days after the rabies injection into the PMv. (C) Third-order 

neuron labeling in the GPe 4 days after the rabies injection. The boxed region in each 

panel is enlarged in each microphotograph. Scale bars in A-C: 50 µm. oGPi, outer 

portion of GPi; iGPi, inner portion of GPi; SNc, substantia nigra compacta; SNr, 

sabstatia nigra reticulata. 

 

Figure 3 

Summary plot of the number of labeled neuron. Mean values of the labeled neurons in 

each nucleus are shown. Each data point at the top of each bar indicates the number of 

labeled neuron in each case (Case 1, filled circle; Case 2, open circle; Case 3, filled 

square; Case 4, open square). The distance between the data point and the mean 
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corresponds to standard error of the mean. White bars indicate mean values of labeled 

neurons (second-order neurons) observed in the GPi and SNr, while gray bars indicate 

the mean values of the labeled neurons (third-order neurons) observed in the GPe, STN 

and striatum (Cd and Put). Cd, caudate nucleus; GPe, external segment of the globus 

pallidus; GPi, internal segment of the globus pallidus; Put, putamen; SNr, substantia 

nigra pars reticulata; SNT, subthalamic nucleus. 

 

Figure 4 

Distribution of labeled neurons in the GPi. Six coronal sections are arranged 

rostrocaudally from the left to right (A-F, A’-F’). Each row represents data from a single 

subject (Cases 1, 2). Each dot indicates the location of an infected neuron labeled by 

retrograde transneuronal transport (second-order neurons). The border between the 

oGPi and the iGPi is represented with the dotted line. Scale bar: 1 mm. oGPi, outer 

portion of GPi; iGPi, inner portion of GPi. 

 

Figure 5 
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Density maps of GPi neurons labeled after rabies virus injections into the PMv. (A and 

B) Procedures to construct two-dimensional density maps of the GPi. The unfolding 

process started with drawing a line through the border between the outer (oGPi) and 

inner (iGPi) portions of the GPi. The reference points were placed at the bottom (the red 

circle) and the top (the blue circle) of the GPi. The position of each labeled neuron was 

projected onto the line. Then, each line through the nucleus was aligned on the ventral 

edge of the GPi (B). Neurons were divided into 300 × 300 µm2 bins. (C and D) 

Density maps of the GPi neuron labeling in each case. The number of labeled neurons 

in each bin was counted and color-coded. 

 

Figure 6 

Distribution of labeled neurons in the SNr. Six coronal sections are arranged 

rostrocaudally from the left to right (A-F, A’-F’). Each row represents data from a single 

subject (Cases 1, 2). Each dot indicates the location of an infected neuron labeled by 

retrograde transneuronal transport (second-order neurons). The number in each section 

indicates its relative rostrocaudal position within the SNr (most rostral level = 0, most 
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caudal level = 1). The lines in each section indicate the border between the SNr and the 

substantia nigra pars compacta (SNc). 

 

Figure 7 

Distribution of labeled neurons in the GPe (third-order neurons) and the GPi 

(second-order or third-order neurons). Six coronal sections are arranged rostrocaudally 

from the left to right (A-F, A’-F’). Each row represents data from a single subject (Cases 

3, 4). Each dot indicates the location of an infected neuron. 

 

Figure 8 

Density maps of GPe neurons labeled after PMv injections. (A and B) Procedures to 

construct two-dimensional density maps of the GPe. The unfolding process started with 

drawing line through the center of the GPe. The reference points were placed at the 

bottom (the red circle) and at the top (the blue circle) of the GPe. The position of each 

labeled neuron was projected onto the central line. Then, each line through the nucleus 

was aligned on the ventral edge of the GPe (B). Neurons were divided into 300 × 
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300 µm2 bins. (C, D) Density maps of the GPe neuron labeling in each case. The 

number of labeled neurons in each bin was counted and color-coded. 

 

Figure 9 

Distribution of labeled neurons in the STN. Six coronal sections are arranged 

rostrocaudally from the left to right (A-F, A’-F’). Each row represents data from a single 

subject (Cases 3, 4).  

 

Figure 10 

Distribution of labeled neurons in the striatum. Six coronal sections are arranged 

rostrocaudally from the left to right (A-F, A’-F’). Each row represents data from a single 

subject (Cases 3, 4). For each section, the AP (anterior-posterior) level relative to ac 

(anterior commissure) is indicated in mm. Scale bar in F’ applies to all panels (A-F, 

A’-F’). 
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We employed retrograde transneuronal labeling with rabies virus to identify the origins 

of multisynaptic projections from the basal ganglia (BG) to the forelimb region of the 

ventral premotor cortex (PMv) in macaque monkeys. This study revealed that the PMv 

primarily receives major input signals from multiple territories within each structure of 

the BG that have comprised the two distinct motor territories (i.e., the primary and 

higher-order motor territories) and the limbic territory. 
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