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We analyze time evolution of a spherically symmetric collapsing matter from a point of view that black
holes evaporate by nature. We first consider a spherical thin shell that falls in the metric of an evaporating
Schwarzschild black hole of which the radius a(t) decreases in time. The important point is that the shell

can never reach a(t) but it approaches a(t) — a(t)
motion of a shell in a spherically symmetric system is not affected by the outside. In this way, we find that
the collapsing matter evaporates without forming a horizon. Nevertheless, a Hawking-like radiation is
created in the metric, and the object looks the same as a conventional black hole from the outside. We then
discuss how the information of the matter is recovered. We also consider a black hole that is adiabatically
grown in the heat bath and obtain the interior metric. We show that it is the self-consistent solution of
G,, = 8zG(T,,) and that the four-dimensional Weyl anomaly induces the radiation and a strong angular
pressure. Finally, we analyze the internal structures of the charged and the slowly rotating black holes.
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I. INTRODUCTION

The picture of the black hole has changed significantly
since the discovery of the Schwarzschild solution. In the
classical level, black holes are characterized by the exist-
ence of the event horizon, and objects which have entered
into them cannot come back forever. In the quantum level,
however, black holes evaporate in the vacuum [1] and can
be in equilibrium with the heat bath of the Hawking
temperature [2]. One of the problems of this picture is
the information paradox [3], which is essentially the
disagreement between the information flow and the energy
flow. Suppose we consider a process in which a black hole
is formed by the collapse of matter. In the conventional
picture, the matter crosses the horizon holding its own
information. On the other hand, the Hawking radiation is
thermal because it is created in vacuum, and it cannot reflect
the detailed information of the collapsing matter. Therefore,
if we assume that the evaporation occurs after the horizon is
formed, we are forced to conclude that, although all the
energy is emitted to infinity, the fallen information does not
come back. In this paper, we reconsider the time evolution
of the collapsing matter from the point of view that black
holes are objects that evaporate inherently. Then, we find
that no horizon appears and the matter is distributed in the
whole region inside the black hole. Furthermore, we discuss
that the Hawking radiation comes out through the matter
and can exchange information with it.
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In order to understand the absence of the horizon, we
first consider a spherical shell falling in the evaporating
Schwarzschild metric. The important point is that the radius

d‘é(lt) = —aig’z due to the Hawking

radiation. Here, a = 2GM 1is the Schwarzschild radius,
l, = V/AG is the Planck length, and C is a proportionality
constant of order O(1). Then, the shell does not catch up
with the horizon completely but approaches to

a(t) is decreasing as

r=alt) +5(—lf’). This is because the shell approaches the
horizon in the time scale a, but during that time, the radius

a decreases by Aa = |%[a = =2

We then consider a sphencally symmetric collapsing
matter with a continuous distribution and regard it as a set
of thin shells. Because of the spherical symmetry, the time
evolution of each shell is not affected by the shells outside
it. Then, the above argument can be applied to each shell.
Thus, there is no trapped region, and no horizon appears.
Nevertheless, we can show that a radiation is created from
each shell, and it takes almost the same form as the
conventional Hawking radiation. Interestingly, a strong
angular pressure is also induced, against which the shell
collapses and loses the energy.

From these discussions, it turns out that the evaporating

object has a clear surface at r = a(¢) +f(—% and that its

interior is filled with matter and radiation while from the
outside it looks almost the same as the conventional black
hole. As we will see, no trans-Planckian problems occur if
the theory has many fields, for example about 100.

© 2016 American Physical Society
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This picture of black holes indicates possible mecha-
nisms of the information recovery. Since the Hawking
radiation is produced near each shell, the radiation and the
collapsing matter can interact and exchange the detailed
information. The time scale of this process can be estimated
as ~a logﬁ. Based on this mechanism, we discuss the

possibility that the radiation depends on the initial infor-
mation of the collapsing mater.

We also discuss a black hole which is adiabatically
grown in the heat bath. We obtain its interior metric and
show that it is the self-consistent solution of the semi-
classical Einstein equation G,, = 82G(T,,). Then, it is
understood that the four-dimensional Weyl anomaly pro-
duces the radiation and the angular pressure. We can also
investigate the interior structure of the charged and the
slowly rotating black holes.

This paper is organized as follows. In Sec. II, we explain
the new picture of black holes. In Sec. III, we discuss how
the information comes back in the process of evaporation
and consider possible mechanisms of information recovery.
In Sec. IV, we consider the black hole that is adiabatically
grown in the heat bath. In Secs. V and VI, we study the
charged and the slowly rotating black holes. We give
supplementary discussions in the Appendixes.

II. NEW PICTURE OF BLACK HOLES

A. Conventional picture of black holes

We review here the conventional picture of black holes.
Suppose we consider a Schwarzschild black hole in the

vacuum with a large mass M = 5= compared with the

Planck mass m, = \/% The black hole has the Hawking
temperature and the Bekenstein-Hawking entropy [1,2,4],

n A
= —, S = —, 1
A 4na BH 41?, (1)

where A = 4za® is the area of the horizon. From the
Stephan-Boltzmann law [5], the time evolution of a(¢) can
be expressed as

da _ 20(a)

- a2 @

Here, o(a) is {3 multiplied by a constant of order 1. 6(a)
depends on the detail of the theory, such as the number of
species of fields [6]. We expect that o(a) varies with a
slowly compared with /,; S—Z [, < 0. Although these results
were originally obtained by assuming the existence of the
horizon, as we will see later, collapsing matter radiates and
has the same entropy even if there is no horizon.

Next, we consider the smallest unit of energy following
Bekenstein’s argument [4]. Suppose we inject a wave
packet of a massless particle with energy ¢ to a black hole

PHYSICAL REVIEW D 93, 044011 (2016)

with radius a. In order for the wave to enter into the black
hole, its wavelength needs to be smaller than the size of the
black hole:

i<a. (3)

Therefore, its energy should satisfy
2 _h
€ = hw TR (4)

Thus, the minimum energy that can be added to a black
hole with radius a is given by

€n~—, (5)

and the corresponding wavelength is
A~a. (6)

Although the above argument is valid for massless par-
ticles, we can show the same results also for massive
particles (see Appendix A).

The minimum energy (5) corresponds to 1 bit of
information, because the wavelength of the particle (6) is
as large as the black hole, and we have two possibilities,
whether it goes inside the hole or not. Now, suppose we
build up a black hole with radius a from particles which
have the minimum energy. Then, the total amount of the
lost information is evaluated as

S ~ (the number of processes) x (entropy per a process)

(7)

a
~—xlog2~—,
Ge °8 l%
which agrees with Sgy in (1). Note that if we use particles
with € > % the entropy is much less than (7) (see

Appendix A). As we will see later, the existence of the
horizon is not essential for this estimation.

B. Motion of a test particle near
the evaporating black hole

We analyze here the motion of a test particle near the
evaporating Schwarzschild black hole. The outside space-
time can be approximately described by

r—a(r) r

r—a(t)

where a(t) satisfies (2) [7]. If the test particle comes
sufficiently close to a(t), its radial coordinate r(r) is
determined irrespectively of its mass or angular momen-
tum by

ds? = — dr? + dr? + r2dQ?,  (8)
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dr(t)_ r(t) —a(r)
a () ®)

This is because any particle becomes ultrarelativistic near
r ~a and behaves like a massless particle [10,11]. From
(9), we see that the particle approaches the radius a in the
time scale of O(a). During this time, however, the radius
a(t) itself is slowly shrinking due to the Hawking radiation.
Hence, the particle cannot catch up with the radius a
completely. Instead, r(r) is always apart from a(f) by —a 4%
See Fig. 1.

We can see this behavior explicitly by solving (9) as
follows. Putting r(r) = a(t) + Ar(t) in (9) and assuming
Ar(t) < a(t), we have

dAr(t) — Ar(x) da(t)

d  a() A

(10)

The general solution of this equation is given by

— " t d _ [taqm
Ar(f) = Cye ﬁod’a<r’>+/ dt’(—d—f(t’))e Jior g,
)

where Cj is an integration constant. Because a(r) and 9 (1)
can be considered to be constant in the time scale of O(a),
the second term can be evaluated as

t da _ ff d¢'—L da t _i=t
dr{ —— (7 7l —— (¢ dr'e 0
/ (-5r))e 0 [ are

Therefore, we obtain

= da =iy

AI”([) ~ Coe_m — E (l’)a([)(l — e_a(t))7

which leads to

r

r(t)l\

a(t)

E _ 20(a)
dt a

>t

At~al(t)

FIG. 1. A test particle in the time-dependent Schwarzschild
metric. r(f) cannot catch up with a(7) as long as % (1) < 0.
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da ‘
r(t) ® a— aa—&— Ce™a

20(a)

r

2
=a+ +Ce‘2—>a+—6, (11)
a

where C is a positive constant and we have used (2) to
obtain the second line. This result indicates that in the time
scale of O(a) any particle approaches

R(a)=a+ , (12)

and it will never cross the radius a(r) as long as a(t) keeps
decreasing. In the following, we call R(a) the surface of the
black hole. We give a numerical demonstration of (11) in
Appendix B.

One might wonder if such a small radial difference %"
makes sense, since it looks much smaller than /,. However,
the proper distance between the surface and the horizon is
estimated as

A= Vo, R@) 2D 5 a0l (13)

because g,,.(r) = -~-. In general this is proportional to ,,,
but the coefficient can be large if we consider a theory with
many species of fields. In fact, in that case, we have

o~NE> 12, (14)

where N is the number of fields. We assume that N is large
but not infinite, for example, of the order of 100 as in the
standard model.

So far, we have found the surface (12) based on the
classical motion of particles. However, we can show that
the result is valid even if we treat the particles quantum
mechanically. Suppose that we throw a wave packet of a
massless particle with frequency o to the black hole [12].
Here, @ is measured at » > a, and there the wavelength is
given by A= % Then, it becomes blueshifted as it
approaches to r = a + Ar:

[0

Wipcal = — F——= -+
~9u(7)

Thus, the local wavelength is given by

2w [Ar
= _gtt(r))“z 7’1-

local

/Ilocal =

On the other hand, the proper distance / from r = a is
given by
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Ar+a Ar+a 1
l:/ dr\/g,r:/ dr =
a a r

Ar+a
~ / dry/—2— = 2v/ahr. (15)
a Vr—a

Therefore, in order that the wave is contained in a region
with the size /, the wavelength needs to satisfy

[ 2a
1s— ==, 16
~ /llocal A ( )

which turns out to be the same as (3). This tells that such a
wave packet that can go into the black hole behaves as a
particle near r = a. Therefore, we can conclude that (12) is
the position where any wave approaches. Note that (16) is
nothing but the condition for the eikonal approximation.

C. New picture

1. Surface of black holes

We consider spherically symmetric collapsing matter
that forms a black hole in the conventional picture. As is
discussed in Appendix C, we can regard it as consisting of
thin shells with the minimum energy (5). An important
point is that, because of the spherical symmetry, the time
evolution of each shell is not affected by the shells outside
it, if we describe the motion using the local time. Then,
assuming that the mass inside each shell is decreasing as in
(2), we can apply (12) for each shell and find that it is
always apart from its Schwarzschild radius. Therefore, we
can conclude that there is no trapped region.

Next, we consider the outermost shell. Because its radius

approaches R(a(1)) = a(t) + 26%;)), all matter is stuffed in
the region r < R(a(t)), which means that the object has a
clear boundary at r = R(a(t)). This is the reason why we
call R(a) the surface [13]. The region outside the surface is
almost empty, and the object looks exactly the same as the
conventional black holes when it is observed from the
outside. On the other hand, the inside of the surface is
totally different. In particular, the horizon no longer exists
[8,15,16] because of the nontrivial distance (13). In the
following, we call the object a black hole, although it is
significantly different from the conventional ones.

Here, one might wonder if the Hawking radiation is
really created by such an object. However, we can show
that indeed it is [8,15] (see also Appendix C). Generally,
particle creation occurs in a time-dependent potential, and it
takes the Planck-like distribution if the affine parameters on
the null generators of the past and future null infinity are
related exponentially [17]. Indeed, in Appendix D, using
the self-consistent metric obtained in Sec. IV, we show that
particles are created from the vacuum in accordance with
the Planck-like distribution with the Hawking temperature
[18]
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Tult) = g (17)

However, as we will see in Sec. II D, the distribution may
be modified by the interaction between the collapsing
matter and the radiation.

2. Self-consistent time evolution of each shell

In this subsection, we investigate how each shell loses
energy during the Hawking radiation. When we analyze the
time evolution of a shell, we can ignore the matter outside it
because of the spherical symmetry and regard the system as
consisting of the shell and the core. Here, the core is the
part of the system inside the shell, and we denote its radius
and mass by 7 and % respectively. For simplicity, we
assume that r’ is already very close to R(a’) and that the
Hawking radiation is emitted as a conventional black hole,

dd’ 20(d

A (18)
where ¢ is the time without taking the matter outside the
core into account. We also assume for simplicity that the
shell has no thickness and denote its radius by r,.

Now, we can discuss how the energy of the shell
decreases from its initial value, which we assume to be
€~ g We can consider the following three stages.
See Fig. 2.

Stage —The shell is far from the core, and the radiation
emitted from the core is not altered by the shell. The total
mass %) decreases as

da  20(d')
e~ a?

(19)

Stage I1.—In the time scale of order a, the shell comes
close to the core. Then, the total system behaves like a
black hole with radius a, the surface of which is located at
r=ry, = R(a), and radiates as usual (2). However, the
radiation comes mainly from the shell because the radiation

T (ywithee = 0) ~

r'(t) = R(a'(t)
_ 20(a(®)
T oal) atpm—m===

P

outermost region

At~a

At~a
1 11 H1

FIG. 2. Time evolution of the core with a’ and the shell with
€(t =0) ~2 in the view of the local time 7.
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from the core is extremely weakened by the redshift %

caused by the shell, although the core itself radiates
constantly as (18) in terms of . Therefore, a'(¢), and thus
R(d'(1)), change very little during this stage.

We can examine the time evolution of the energy of the
shell more precisely, which is given by e(t) = Azag), where
Aa = a — d'. The metric outside the core is given by

forry<r,

G2 o dr? 4 2dQ2,
ds*=

r a(t)
=gy 4 gy dr? +17dQ?, forR(d') <r<r,,
(20)

where a(t) and @'(¢") follow (2) and (18), respectively. The
relation between ¢ and ¢ is obtained as follows. First, we
write the time evolution of 7, in two ways using the metric
outside and inside the shell:

ar,__r-al)  drn__n()-a()
dr r(ty 7 dr ry(?)
Then, by taking the ratio, we get
d? _ 20(a)
ar _ I"s a/ _ : a (22)
ds ry—a o-(ia) + Aa
ala
~1- , 23
206(a) (23)
where we have used r, = R(a) = a + 2UT<‘I) and assumed

Aa < together with (14). By using (2), (18), (23), and

1 o1 2Aa ;
n R (14 22¢), we obtain

de 1 (da da’ 1 (da d? dd’
dt  2G\dr dr) 2G\dr drdf
1 [206(a) ala \ 20(a) 2Aa
R —— —(1- 1+
2G| a? 20(a)) da* a

N -, (24)

IS

which gives
e(t) = e(0)e . (25)

Here, we have used the fact that a(¢) does not change
significantly in the time scale of O(a). Thus, the energy of
the shell decreases exponentially in the time scale

Al‘decay ~d. (26)

Note that the redshift (23) plays a crucial role in (24). This
indicates that in general the radiation observed from the
outside comes from the region near the surface.

PHYSICAL REVIEW D 93, 044011 (2016)

Stage 1Il—When the energy of the shell is exhausted,
the core starts to radiate without redshift.

Because the above argument can be applied to any shell,
we conclude that the whole object evaporates from the
outside as if an onion is peeled. A more detailed analysis is
as follows. First, we estimate how many shells around
the surface are moving without large redshift. From (22),
we have

dr c
—=0(1)Z1eAa < -. 27
o) s1e8a5” @

Therefore, if we consider a black-hole-like object with
radius a, the outermost region with the width

o(a)

(28)
ao

Ar surface ™

h

u_()'

is not frozen, which contains 5 shells with energy e ~
Then, the lifetime of the object is estimated as

Aty ~ (the decay time of a shell)

(the total number of the shells)
(the number of shells moving at the same time)

CON | 3
Naox(gx_) ~d (29)
€

o
3 o
I

which agrees with the one obtained from (2).

3. Interior of the evaporating black hole

Now, we consider the interior of the object. See Fig. 3.
We examine the region deeper than the outermost one
considered in the previous subsection. In terms of the local
time, the shells in this region simply keep falling as (9) for
the local quantities 7/, @', and ' (see the lower closeup of
Fig. 3). However, if we see them from the outside, time is

surface region in
the outside time t
[
Ar ~ — 12
a

26(a(t)) r

y R(t) =a(t) +

a
a(t) VI
11 >IN

FIG. 3. The interior picture of an evaporating black hole.
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frozen due to the large redshift after the outermost shells
come close to the surface. To check this explicitly, we
consider a shell with radius 7 in the deep region so that
Aa=a—d > Argme ~2 Here, a and o are the
Schwarzschild radius corresponding to the mass of the
total system and that inside the shell, respectively. An
important point here is that the shell has not necessarily
reached R(d’). In fact, in that case, Eq. (22) becomes

d/ 20
— 30
dt aAa (30)
which leads to
>
Al ~asAt~—Aa> a. (31)
c

As we have seen, At ~ a is the time scale in which the shell
reaches R(a’). On the other hand, At~ %Aa is the time
scale in which the matter outside the shell evaporates by the
Hawking radiation. Thus, we have seen that the interior
region is almost frozen and its structure depends on the
initial distribution [19]. Each shell starts to evolve after the
matter outside it disappears.

Next, we discuss the outermost region with the width ~ 2,
where time flows without large redshift. For any initial
distribution, each shell in this region reaches the asymptotic
position R(a') in the time scale a. Then, the Hawking
radiation starts to be created, and the energy of the shell
decreases exponentially as (25) (see the upper closeup of
Fig. 3). As we will see later, this time evolution depends on
the initial data, which give a natural mechanism of the
information recovery.

So far, we have found that a collapsing matter becomes a
compact object with the surface located at r = R(a(r)), and
it evaporates without forming a trapped region in the time

black hole region

collapsing matter

FIG. 4. The Penrose diagram of the evaporating black hole in
the vacuum.
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scale of % We will also see in Sec. II'F that no trans-
Planckian problem occurs if the theory has many species of
matter fields. Thus, we obtain the Penrose diagram as in
Fig. 4, which is topologically the same as the Minkowski
space [8,15] [20].

D. Closer look at the surface and intensity &(a)

In this subsection, we examine the surface more pre-
cisely. In particular, we consider the effect that some
portion of the Hawking radiation is scattered back due
to the gravitational potential or scattering with the other
matter.

The outermost region is magnified in Fig. 5. Here,
for simplicity, time is discretized to the interval At~ a.
S stands for the surface which is located at

r=R(a(t)) = a(t) + % Suppose that matter or radi-

ation with energy e ~ @ is emitted from the surface at

t = t;, which is shown as P; in the figure [23]. Here, 6¢(a)
is the “raw intensity” before taking the scattered flow
into account. In the time scale a, the matter reaches
r=ry,=a+ Ar, where Ar ~ a. At this point Q;, some
amount of the matter is scattered back while the rest goes to
infinity. In order to indicate the portion of the scattered
energy, €., we introduce a function g(a) as

g(a)
€scat =7, €

1+ g(a) (32)
g(a) should be an order 1 quantity and may depend on the
matter Lagrangian. Then, in the time scale a, the scattered
matter comes back to the surface S, which is shown as P; ;.
Then, it enters into the object and keeps going along the
trajectory S;,, and it is covered by the subsequent matter or
radiation. Here, S; is located at r = Ry(a;) = a; + 2”"“—(‘”
which is the asymptotic position of the shell that started
from Q;_;. Thus, a part of the Hawking radiation comes
back in the time scale ~a. This process occurs continu-
ously, and we find that the physical surface S consists of the
scattered matter and radiation.

Now, we relate the raw intensity o to the net intensity o.

To do it, we estimate how the mass of the total system

t" t.’ t.
At~a i+1 At~a i+2 At~a i+3

FIG. 5. A closer look at the outermost region.

044011-6



INTERIOR OF BLACK HOLES AND INFORMATION RECOVERY

decreases during #;,, <t < t;,3. Adding the decrease by
the raw emission and the increase by the scattered energy
(32), we have

2 2
Aa=—0ar4+ I =0
ai,, 1+ga;
20'0 g 200 1 200
N——FAt+——— At =————At. 33
a? +1+ga2 1+g d? (33)

Comparing this with (2), we obtain

oo(a)
ola)=-———-=. 34
( ) 1 +_g(a) ( )
Although g(a) may depend on the detail of the matter
Lagrangian, the argument in Sec. II B is still valid, and the
position of the surface S is determined by o, as in (12).

E. Stationary black holes in the heat bath

Here, we consider how the black-hole-like object
becomes in equilibrium with the heat bath. Suppose an
evaporating object with mass 5% is put in the heat bath of
temperature 7y = %. As the matter in the outermost
region comes out of the object [23], the radiation from
the heat bath replaces it. Because the collapsing matter is
replaced by the radiation in the heat bath, this process is not
an equilibrium one. After this process is completed in the
outermost region, the system becomes stationary. Figure 6
represents this situation.

The remarkable point is that this process occurs only in
the outermost region where time flows. The matter in the
deeper region is almost frozen and keeps having its initial
information. Nevertheless, the total object becomes in
equilibrium with the heat bath in that the outgoing and
ingoing flows balance almost completely. In the rigorous
sense, it is merely a stationary state, but in practice, it
behaves as an equilibrium state. Finally, we show the

radiation from
heat bat|

»the same radiation

flip of the direction due to
interaction or wave nature

FIG. 6. The black hole that is in equilibrium with the heat bath.
The matter in the outermost region has been replaced with
radiation from the heat bath.

PHYSICAL REVIEW D 93, 044011 (2016)

black hole region

surface: R(a) = a + %J

FIG. 7. The Penrose diagram for the stationary black hole in
Fig. 6.

Penrose diagram. See Fig. 7. While the interior structure
depends on the initial distribution of matter, the exterior is
universally described by the Schwarzschild metric, Eq. (8)
with a = const.

F. Absence of trans-Planckian problems

In this subsection, we will show that the trans-Planckian
effects are absent if the theory has many fields. We consider
the matter in the outermost region with width ~2, where
time flows as is discussed in (28). The energy of the matter
is given by € ~ £~ due to the relation a = 2GM. Because

the energy of the minimum quantum is ¢; ~ % as discussed

by Bekenstein [4], we can regard the matter as consisting of

&~z ~ N quanta. This is consistent with the fact that we
P

have N species of fields. In fact, we can consider how the N
quanta with wavelength ~a are compressed to form the
outermost region just outside the core. See Fig. 8. During
this process, the waves are adiabatically compressed
because the initial wavelength is ~a, and the condition
(16) is satisfied.

Each quantum with energy ¢; ~ g is blueshifted as it falls
toward the core, and the energy becomes

€llocal — €l ~ h .
\/_gtt(R(a)) \/G(a)

Here, we have used (12) and (20) to obtain g, (R(a)) =

—% ~— 2';—(2“) From (14), we have €' < m, when N

(35)

A= Arpefore~a

~
~~
~~
~~
~—e

o
Argfrer~2Ge~ 2

R(a'(t)

T~

At~a

FIG. 8. f quanta with energy €, NZ approaching the core.
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is large. This indicates that each quantum does not have
trans-Planckian energy.

It should be noted that the wavelength A°<d of each
quantum is of the same order as the proper length A/ of the
outermost region:

n

ellocal

local __
AP =

o(a) (36)

Al o R "D foa). ()

Here, we have used (12) and (20) to obtain g,.(R(a)) =
% ~ #(za) This gives another support to the picture that
the waves are adiabatically compressed as in Fig. 8 [24].

The above results suggest that the typical scale in which
things change is ~\/o. Therefore, the curvature can be

estimated as

R~ﬁ~é, (38)

which is smaller than l;z from (14). We will justify this
result in Sec. IV by examining the self-consistent metric.
See Eq. (795).

We can show that the energy density p = —(7",) is much
smaller than the Planck scale if the object is sufficiently
large, a > 1,,. First, we note that for the general spherically
symmetric system the Arnowitt-Deser-Misner (ADM)
energy inside radius r is given by [10]

M(r) = 4ﬂ[)rdr’r’2p(r’). (39)

In Fig. 8, the total energy ¢ of the quanta is conserved, and
using (39), we have

2 2
€ ~4ra”Ar, beforePbefore ™~ draAr afterPafter - (40)

Here, Arpetores Poefores AFafier> aNd pager are the size of the
region and the energy density before and after the process,

respectively. Using € ~ &, Aryeore ~ @, Algier ~ 2, and
N ~ l% we obtain
P
Nh
Phefore ~ 7 > (41)
a
1 (42)
Pafter Ga2 .

Both are much smaller than the Planck scale if N is not too
large. Equation (42) will be checked by the self-consistent
solution [see Eq. (78)].

It is expected that the energy flux density is of the same
order as the energy density, because the matter is
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ultrarelativistic near R(a) as in (35). Indeed, we can check
— ola)

this as follows. The Hawking flux is given by J(a) = Z 7

from (2), and considering the double blueshift factors,
we have

Toea(R(a)) = (m) J(a)

a* o(a) 1

~ —t = 43
26(a) Ga* 2G (43)
Therefore, the flux per unit area is estimated as [16]
o (R(@)) = s e (R(@)) M g, (44)
ocal a)) = ocal a)) =~ s
Jioca 4zR(a)? " 87Ga®

which is again very small compared with the Planck scale.
Note that if the horizon existed Jj,., would diverge
at r = a.

G. Strong angular pressure

We show that a strong pressure in the angular direction
appears in the interior of the black hole. We consider stage
IT of Fig. 2 and evaluate the surface energy-momentum
tensor on the shell. We can use the junction condition for
a null hypersurface [25,26], because the shell moves
almost lightlike along (9). We obtain the surface energy
density and surface pressure [8] (see Appendix F for the
derivation.):

€
4ﬂr§

—r da ro—a\2da
S N e SN (45
Pad 82G(ry —a)? [dt <rs - a’) dt’} (45)

€54 simply represents the energy per unit area of the shell
with energy e. In the expression of p,,, the first term
corresponds to the total energy flux from the whole object
(2). The second term represents the energy flux from the
core (18) that is redshifted due to the shell [see Eq. (22)].
Thus, p,, is induced by the Hawking radiation from the
shell itself.

We can estimate p,; for r, = R(a) using a similar
argument to (24) (see Appendix F):

N rg 20 | ala)\ 20 - ZAa
Paa ™ 87G(ry — a)? |a® o ) a® a

a
~ 46
GNL: (46)

€24 =

’

Here, Aa ~ % and (14) have been used. Let us see how large
this is as a three-dimensional quantity. Noting that p,, is a
force per unit length on the spherical shell with the
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curvature radius ~a, we expect that the three-dimensional
pressure is given by

P ]

~ . 47
a GNzl% (47)

Po

As we will show in Sec. IV D, Eq. (47) can be understood
by the four-dimensional Weyl anomaly [27]. This is large,
but not trans-Planckian because of (14). If an observer falls
into the object as §; in Fig. 5, he will find this intense
pressure around the surface. This may be identified with the
firewall [28], although the interpretation is rather different.
Furthermore, the pressure is extremely anisotropic because
the radial pressure p, can be estimated as p, ~ jiocal ~ #
from (44), which is much smaller than (47). Therefore, the
interior of the object cannot be regarded as the ordinary
fluid.

At a first glance, the strong angular pressure seems
mysterious. However, it plays an important role to decel-
erate and sustain the collapsing matter. They lose energy
as they shrink against the pressure, and the energy is
converted to the Hawking radiation. Therefore, we can
conclude that the existence of the strong angular pressure is
self-consistent and robust. In this sense, the new picture
is very different from that of the two-dimensional
models [29].

III. INFORMATION RECOVERY
IN THE NEW PICTURE

A. Interaction

As we have seen in the new picture, the Hawking
radiation is created near the surface (see Appendix D for
the detailed analysis). Therefore, it is important to consider
the interaction between the collapsing matter and the
Hawking radiation. Here, we estimate the time scale of
the scattering by considering only the s-wave and approxi-
mating the interaction as a one-dimensional scattering
problem.

Suppose that the ingoing matter and outgoing Hawking
radiation interact with a small dimensionless coupling
constant 1 (see Fig. 9). There are two possible cases.
One is the backward scattering, after which the ingoing
matter goes outward and the Hawking radiation inward. In
this case, they exchange their energies. The other is the
forward scattering, in which the matter and radiation go
through each other. If we denote the probability of the
backward scattering per unit proper time by P, the
scattering proper time Az, is evaluated from

ATSCZI[
/ dzPioca = 1, (48)
0
where dr = \/—g,,(r ® R(a))dt ~ 7V2:(a> dr.
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1-dim scattering with 4

collapsing matter, Piocar

local
in

FIG. 9. Scattering process between ingoing matter and out-
going radiation in the outermost region.

We can estimate Py, as follows. First, we have
Plocal = choss x F, (49)

where Q. and F are the cross section and the number
flux, respectively. Q... 1S given by

n o h
~)2_-
QCIOSS A elocal eloca.l ’ (5 0)
in out

where €% and €954 are the local energy of the ingoing
matter and outgoing radiation, respectively. We note that
the energy of the wave in the collapsing matter decays as
(25) and that the typical local energy scale is given by (35).

Thus, we have

Qross ~ ’126(") eTm' (51)
Next, using (44), we have
, 1 o(a)
F N]local(R(a)) X @™~ 1m - (52)
€out lpa

Then, Eq. (48) becomes

ATSC&(
1= / drQuo X F
0

N /Arsmt dfﬂza(a)eﬁ " Vol(a)
0

2 2
lya

N V2226 (a)? e—\A/%’%

l?,a2 ’
from which we obtain
l,a
Aty ~ \/20(a)log [ﬂap(a)] . (53)

In terms of the Schwarzschild time, it corresponds to

l,a
Afgenr ~ alog[ pa } (54)
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B. Wave nature of matter

We next examine another possible mechanism of the
information recovery. Equation (25) indicates that the
wavelength of the particles in the outermost region
increases as

h L Je(@erm, (55)

€local (T)

Aiocal (T) =

where we have used (25), (36), and drzivzj(a) dt. The
matter can no longer stay in the black hole if the wavelength
becomes larger than the size of the black hole:

Alocal(‘[) z lBH(T)' (56)

Here,

Lo (1) = / D ST (57)

is the proper size of the black hole which depends on the
interior metric g,,.(¢, r). We can rewrite the condition (56)
by using (55) as

2 mmg[ j;_)} = At (58)

Thus, Az, is the time scale in which the matter comes
back by the wave nature.

[gy 1s estimated as follows. We first note that the flat
space, in which g,. = 1, has the minimum proper length.
On the other hand, we expect that the interior of the
adiabatically formed black hole, which we will see in
the next section, has the longest proper length. Thus, using
the self-consistent metric (72), we have

2 a2
1<g,(r) < = a<lgu(a) S —F—=. (59
g ( ) 20(1") BH( ) zm ( )

At any rate, At,,,. 1S approximately given by
ATyaye ~ v/20(a) log —— (60)

o(a)’

from which we obtain the time scale in terms of the
Schwarzschild time

Atyye(a) ~ alog—o— . 61
twave(@) ~ alog =) (61)

C. Time evolution of information recovery

Based on the above results, we can discuss how the
information recovers in the evaporation process. Because
the two time scales (54) and (61) are essentially the same
and expressed as

PHYSICAL REVIEW D 93, 044011 (2016)

a
Alpgek ~ a logr ) (62)
p

we do not have to distinguish the detailed mechanism. At
any rate, it indicates that after the particle with initial energy
~ Z reaches the surface of the black hole, it comes back with
its initial information in the time scale Af,y. Thus, the
energy flow agrees with the information flow, and the
information comes back in sequence from the outside as
the black hole evaporates. Note that (62) also corresponds
to the thermalization time in the sense of Sec. II E.

We can examine the time evolution of the entanglement
entropy between the black hole and the emitted matter.
Suppose that initially the collapsing matter is in a pure
state. The time evolution of the total system is unitary
because there is no trans-Planckian physics and it is
described by a local field theory. Therefore, as usual, the
entanglement entropy increases for a while, and it starts to
decrease after about half of the black hole has evaporated.
This time is about the half of the lifetime of the black hole
N%g, which is essentially the same as the Page time [30].
When the black hole evaporates completely, the entropy
becomes zero again, which means that all the information
has come out.

D. Nonconservation of baryon number

We discuss the conservation of the baryon number in the
evaporation process. Suppose we construct a black hole

with radius a from ‘1’—22 baryons by repeating Bekenstein’s
P

operation [4] (see Appendix A). The important point is that,
although each baryon has the rest mass m, it increases the
ADM mass of the black hole by ~ %, which is much smaller
than m. Then, if the baryon number is conserved, not all the
baryons can come back to infinity after the evaporation

because the total rest mass ~‘;—;m is much larger than the
total ADM mass 5. In other words, even if the baryons are
emitted near the surface, they cannot reach infinity due to
the binding energy. String theory may give an answer to
this paradox. Actually, in string theory it is believed that
there is no continuous global symmetry, and any continu-
ous symmetry must be gauged [31]. Therefore, we can
expect that baryons are converted to massless particles
through some interaction in the region near the surface
where the local energy of particles is close to the Planck
scale as (35). Thus, the black hole made from baryons can
evaporate by violating the baryon number conservation.

IV. ADIABATICALLY FORMED
SCHWARZSCHILD BLACK HOLE

A. Black hole in the heat bath

We consider a small Schwarzschild black hole put in a
heat bath and grow it to a large one adiabatically by
changing the temperature and size of the heat bath properly
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N
v O

High temperature Low temperature

FIG. 10. The black hole that is formed adiabatically in the heat
bath.

(see Fig. 10). As was discussed in Sec. II, the black hole has
the surface at » = R(a’) when the mass is % and the
radiation from the black hole always balances that from the
heat bath as in Fig. 6. Therefore, the structure at the radial
coordinate r is completely determined when the surface is
at r. Once it is determined, it is not altered even after the
black hole grows because of the spherical symmetry [32].
Hence, the interior metric is independent of the total size of

the black hole, a. Thus, we can parametrize the metric as

ds? = —

B0r) eA)de? 4 B(r)dr? + r2dQ2,

for r < R(a), (63)

where neither A(r) nor B(r) depends on a. In the next
subsection, we will determine A(r) and B(r) in terms of
two phenomenological functions. On the other hand, the
region r > R(a) is approximated by the Schwarzschild
metric, Eq. (8) with a = const.

We discuss here the time scale for adiabaticity. As we
have seen in the previous sections, the unfrozen region at

ol@) ' (28), and it is thermalized in

al
the time scale d’log ;‘—', (62). Therefore, if the radius a
P

each stage has the width ~

changes by Aa ~ 2 in a time scale longer than a log %, it can
P

be regarded as an adiabatic process [33].

B. Determination of the interior metric

The function B(r) is easily determined if we assume that
the metric at radial coordinate r is completely frozen to the
value when the surface is at r in the growing process
Fig. 10. First, g,, on the surface is obtained from (8) by
setting r = R(a):

| _ _R(a) _R(a)a_ R(a)®
rrlr=R(a) R(a) —a 26(61) ~ 2U(R(a)) '

(64)

In the last expression, we have replaced a with R(a)

because % is much less than a for a large black hole,

a > 1,. This can be directly identified with B(R(a)) in (63)

because the radial coordinate r is uniquely fixed in the
Schwarzschild coordinate (8): B(R(a)) = %. Because

this result holds for any a, and we have postulated that A(r)

PHYSICAL REVIEW D 93, 044011 (2016)

and B(r) do not depend on a, we find that the function B(r)
is determined as

B(r) = . (65)

In order to determine A(r), we consider the energy-
momentum flow inside the black hole. Because the system
is in equilibrium, it has the time-reversal symmetry and
satisfies

—(T")k, = n(I + f(r)k*),
(1)1, = n(k* + f(r)l). (66)
Here, f(r) is expected to be of order 1 and vary slowly

compared with /,: % l, < f.land k are the radial outgoing
and ingoing null vectors, respectively,

1 1
[=e20,+ 70 k= e™20, — 7 0r (67)

which transform under time reversal as (I,k) - (—k, —I).
Equation (66) can be rewritten as

(T%) (1) =12, (T9%) =(T").  (68)
where T stands for T"k,k,, and so on. This is also

expressed in terms of the ratio between the energy density
—(T",) and the radial pressure (T”,):

(1) _1-f
Ty TS

(69)

Here, we discuss the physical meaning of f(r) (see
Fig. 11). The vector P# = (T*) at r inside the black hole
represents the energy-momentum flow through the ingoing
lightlike spherical surface S of radius r. Since S can be
regraded as an evaporating black hole with M ~ 5, P*
describes the radiation from the black hole. If the radiated
particle is massless and propagates outward along the radial
direction without scattering, P* should be parallel to /¥,
which means f = 0. Therefore, the value of f represents
the deviation from such an ideal situation. If the radiated
particle is massive, P* is timelike, and we have f > 0.

r

FIG. 11. The meaning of f(r).
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Even when the particle is massless, f can become nonzero if
the particle is scattered in the ingoing direction by gravita-
tional potential or interaction with other particles. Note that
£ (r) in the outermost region may be different from one in the
deeper region. This is because the energy density outside the
surface is less than that in the deeper region [see (41) and
(42)], and the probability of scattering should be different. In
the following, we assume that f(r) does not depend on a
except for a very thin outermost region.

Once f(r) is given, we can determine A(r) as follows.
Using (69) and the Einstein equation, we obtain

rd,A rd,A
1= ! ~——. (70
* B—-1+r0.logB B (70)

2 G,
1+f -G,

R(a)
ds? {_26([) e_fr 4y ’)
s = ”

r—a 442

where R(a) =a+ 2”7(”) This metric is continuous at
r = R(a). We emphasize that the interior metric of (72)
does not exist in the classical limit # — 0 because o(r)
vanishes.

As we have discussed in Sec. II, in general the inside
metric depends on the initial distribution of the collapsing
matter. If we put such an object in the heat bath with the
Hawking temperature, the outermost region becomes in
equilibrium (as discussed in Sec. IIE) in the time scale
alogy, while the deeper region is almost frozen. However,
if we waita very long time, or if we make it shrink and grow
adiabatically by changing the temperature of the heat bath,
the inside is replaced by the radiation from the heat bath,
and the object becomes exactly in equilibrium, the metric of

|

R(a(w) 4

_ / 4 _ (Rla(w)) 3.,
. { —e I A7) (2%(2’)8 S ar s 205 du + 2dr> du + r*dQ?, for r < R(a(u)),
ST =

—lr(”)du2 — 2drdu + r*dQ?,

where R(a(u)) = a(u) + %, and a(u) satisfies d?j—i“) —

“L(I?L(f)‘z)) This metric is continuous at r = R(a(u)).

C. Consistency checks

We give some consistency checks here. First, we
investigate the large redshift inside the black hole.
The tt-component of (72) behaves as —g,~

exp (— 5, (R =
face, r < R. Here, we have used the fact that o(r)//3 and

f(r) are of order 1 and small compared with r/,. This
means that time flows only in the outermost region with the

r) —2log \/Lz_g) slightly below the sur-

Nde? +
L dr? 4 A2,

PHYSICAL REVIEW D 93, 044011 (2016)

In the last equation, we have used B> 1 and B>
rd,log B for r > [,, which can be easily checked from
(65). From (65) and (70), we have

r/

Alr) = / Yarreer Y

where r, is a reference point.

Now, by connecting the inside metric (63) and the
outside metrics (8) at the surface, we can write down the
metric of the black hole of radius a that has been grown in
the heat bath [15],

2 dQZ

for r < R(a

% () )
for r > R(a),

(72)

|
which is given by (72). In this sense, the metric (72)
represents the state with the maximum entropy. We will
show later that it agrees with the area law.

Similarly, we can construct the metric of the evaporating
black hole in the vacuum. To do that, we first rewrite (63) in
the Eddington-Finkelstein-like coordinates as

T 1 I
ds? = _e# (W e#du + 2dr) du + r2dQ?, (73)

where we A(Vhave introduced u-coordinate by du =
dr — B(r)e™ = dr. Then, we obtain the metric by connecting
(73) to the Vaidya metric [9] along the null surface S,

(74)
for r > R(a(u)),

width of (’)(%) and it is exponentially frozen in the deeper

region, which is consistent with (28).

Next, we examine the validity of the use of the Einstein
equation. From (72), we can evaluate the geometrical
invariants in the region /, < r < R(a) and obtain

1
\/R, R ~——n . (75
pvaf (1 +f)20 ( )

This means that if the condition

R, /R,R"
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o(1+f)?>10 (76)

is satisfied, the curvature is small compared to 12, and we
can use the Einstein equation without worrying about the
higher-derivative corrections. Note that (76) is the same as
(14) because f = O(1), and (75) is consistent with (38).
The condition (76) is realized if there are many fields as in
the standard model. Although this field-theoretic approach
does not apply to the small region 0 < r < [,,, the curvature
at r= 1, is smaller than the Planck scale as (75), and
dynamics in such a small region would be resolved by
string theory. In this sense, this metric does not have a
singularity [34], as we have expected in Sec. IIF
Furthermore, as we will check in the next subsection,
Eqgs. (72) and (74) correctly contain the effect of the four-
dimensional Weyl anomaly. In this sense, they can be
regarded as the self-consistent solutions of

G,, = 8xG(T,,). (77)
We then investigate the behavior of the energy-

momentum tensor inside the black hole. They can be
evaluated from (72) for r > [, as [35]

1 1
—_ 4 —_
(') 87G r*’
1 1-f1
T")) = ——"——
(') 827G 1+ fr?’
1 1
(T%) (78)

" 82G2(1+ f)%0
The energy density —(7",) = iz is positive definite
everywhere [37] and consistent with (42). It gives the
mass of the black hole correctly through (39):

R(a)
M=4 dr' P (—(T')) ~ = . 7
o[ areemss. o 09)

Furthermore, the strong angular pressure (T?,) appears as
in (47). Actually, it breaks the dominant energy condition
[26], (T?) > —(T",), and leads to the drastic anisotropy,
(T%) > (T",), as we have discussed in Sec. Il G. Thus, the
interior is not a fluid.

Finally, we check that the energy-momentum flow P# =
(T#*) through the ingoing lightlike spherical surface S is
equal to the strength o of the Hawking radiation. Actually,
the total energy flux measured by the local time is given by

1
J =4nr*Plu, = 4ﬂr2§ (—(T")) = el (80)
r

where u = e‘%(?,, and in the last equation we have used
(65) and (78). This is consistent with (2).
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D. Case of conformal matter

In this subsection, we consider conformal matter and
show that the metric (72) is indeed the self-consistent
solution of G,, = 8zG(T,,) [15]. We start with the Weyl
anomaly [38,39]

2
G, =8xG(T",) = yF ~aG+3p0R.  (81)

where F = C,,0sC*? and G = R, ;R — 4R, R+
R?. We have introduced the notations

y = 87Ghec, o = 87Gha, p=8xGhb, (82)
where ¢, a, b are the coefficients in the Weyl anomaly. This
equation together with the assumption (68) determines A(r)
and B(r) as follows.

Here, we assume that for » > [, A(r) and B(r) are large
quantities of the same order as expected from (65) and (71):

A(r) ~B(r) > 1. (83)
In order to examine what terms dominate in (81) for r > [,
we replace A, B, and r with yA, uB, and \/ﬁr, respectively,

and pick up the terms with the highest powers of pu.
Then, we have [40]

A/2 N - A/4 N . 2A/2 N
2B =Y 1232 a U r2B

2 | A/3B/ A/ZA//
- - - cer | 84
+3ﬂ<” [433 | (84)
Therefore, under the assumption u > 1, Eq. (84) becomes
’;‘—Z = y%, that is,
B="an (85)
6
By combining this equation with (70), which is the
consequence of (68), % = '%’A, we obtain
3(1 3(1 2p?
P LR IO IS ) el
v 2y

It is natural to expect that the dimensionless function
f(r) is a constant for the conformal fields

f(r) = const (87)

If we assume it, we obtain the following interior
metric:
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ds2 o 2}/ e_3(124yrf)[R<a)2_r2]dlz
3(1+ )%
3(1] 2.2
+ (ziyf)rd# +2dQ2, for r <R(a). (88)

This contains only two parameters. One is the c-coefficient,
which is determined by the matter content. The other is the
constant f, which may depend on the detail of the dynamics
and the initial state. Thus, we have seen that (88) is the
self-consistent solution of G, = 8zG(T,,) [41].

Now, we can understand the origin of the Hawking
radiation. In fact, by comparing the second equation in (86)
with (65), we find

oy
T30+ (89)

and the condition for the curvature to be small (76)

becomes y > [2, that is,

c> 1. (90)

Thus, we have seen that the Hawking radiation is produced
by the four-dimensional Weyl anomaly [39,42,43]. It is
interesting that the strength of the Hawking radiation is
proportional to the c-coefficient. The positive Hawking
radiation ensures the positivity of the c-coefficient [44].
Furthermore, if we compare (89) with (34) in the outermost
region, it is natural to conjecture

l+g=(1+1)>2 (91)

14
00:—,

3

We can also understand the existence of the strong
angular pressure. Actually, from (78), we have

(T%) =5 (T",). (92)

N[ =

which indicates that the large pressure arises as a conse-
quence of the Weyl anomaly.

E. Mechanisms of energy extraction

1. Time evolution of the energy of the collapsing matter

We examine how the collapsing matter loses energy in
the metric (72). In Appendix G, we show that the local
energy €,cq1(7) decreases exponentially as a function of the
local time 7:

T

€local (T) = elocal(o)e_\/z_”(lﬁ)' (93)

If we consider the outermost region, the decay time in terms
of the proper time
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ATdecay(r) = 20(1”)(1 + f(r)) (94)

can be converted to the Schwarzschild time by using

de(R(a)) ~ Y22 dr as

a

Al‘decay = (1 +f(a))a' (95)

This is consistent with (25) except for an extra factor
(1 + f). The decay time is increased by this factor because
the emission rate is reduced by the scattering.

2. Energy exchange and the Weyl anomaly

Here, we analyze the local energy conservation
V. (T%s) =0 in the presence of the Weyl anomaly and
try to get a microscopic picture of the energy decrease (93).
First, we express the energy flux from each part by the trace
of the energy-momentum tensor. Using the same argument
as (43), we can show that the outgoing flow of the local
energy at v’ is given by

1

Jlocal(rl) = E

(96)

Then, the local energy flow created by the thin region
r—Ar <7 <ris given by

2

_gtt(r — AI”)

AJ oca = J oca - JOCa - A =g ()

tocal (7) tocal (1) = Jiocal (r = Ar) =9u(r)
~ e 9, [eA) T 1o (1) AF
r

_ Ar. 97
26(1+ f(n)a(r) 7

This result is also obtained from the energy conservation
and the Weyl anomaly. In fact, by rewriting V,(7%3) = 0
for the metric (72), we obtain

A
Aiocal _ 42V 26(1 + f)(T*,). ©8)
Arlocal

where Arjoq = /g,-Ar. This indicates that the outgoing
energy is produced at each point by the four-dimensional
Weyl anomaly and increases as it goes outward.
Similarly, we can consider the ingoing energy flow.
From the time reversal symmetry, we see that the ingoing
energy flow decreases as it goes inward. This can happen if
the ingoing energy of the matter is reduced by the negative
energy that is created from the vacuum inside the black
hole. This situation is similar to that in the two-dimensional
models [39,46]. In our case, however, the positive energy
brought by the collapsing matter is greater than the negative
energy so that the total energy density is positive every-
where as (78). Thus, the anomaly describes the net effect
of the conversion of the ingoing energy to the outgoing one.
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In order for this mechanism to work, there must be proper
interactions between the collapsing matter and the negative
energy states. To describe the precise process of evapora-
tion such as the information recovery and the baryon
number nonconservation, it should be important to under-
stand such interactions.

F. Entropy

Because the adiabatically formed black hole has the
maximum entropy, the area law should be obtained if we
sum up the entropy of the interior. More concretely, we put
such a black hole in the vacuum and examine the entropy
flow during the evaporation. Because the interior is frozen,
we slice it to shells with the typical width 2, which has been
discussed in Sec. II F. See Fig. 12. Then, the total entropy
should be given by

_ / i / dzs(r), (99)

where §(r) is the entropy emitted per unit proper width

d/ = /g, dr per unit local time dr = ,/—g,dt.
We first evaluate the local time Azy,, () that it takes for

a shell with radius r to appear at the surface,
I s / - f 2(1+/( f
\/— / )2 2

ATﬂow (}") -

dre” 4”/
\/ 6 r a a __a*-2
v/ da —— ¢ T D
r [ a20'(a)e
~ \/20(r)(1 + f(r)),

where 7 is the time at which a(z) becomes r, a(tc) = r,
and (2) has been used. Note that this agrees with (94)
because time flows only in the outermost region.
Next, we consider the entropy flux J; from each shell.
Because the black hole has been formed adiabatically, we
AQ

can use the relation AS = =% and have J,; = J]l"“ll Here,

Jiocal 18 the local energy flux glven by (96), and T,y is the
local temperature at ». We assume that in the adiabatic
process of the black hole formation, the local temperature

(100)

o
r ~—
7/Ar\1‘
/ o~
I

Atsiow (1)

T =const.|[&

t

FIG. 12. The evaporation of the adiabatically formed black hole
and the entropy.
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at a point is frozen to the value at the moment when the
point is covered by the surface. Therefore, using g,(r) =

-1+ “7' we have
1 7] )
Tioca (@) = = ,
oot @) = g = R 4 /200
(101)
from which we obtain
J = Jlocal _ 2”\/ 26(7‘) 102
s - 2 . ( )
Tlocal lp
Then, we can calculate § similarly to (97):
. 1 —gu(r — Ar)
s(r) = Jo(r)=J,(r—Ar)y | ————=
)= i [P AT
1
N A0, [ AN ] (1)
grr
2w
N (103)
51+ f(r))
Now, using (100), (103), and Al(r) = Ar, we can
26(r)
evaluate (99) as
R(a) r
S = / dr x \/20(r)(1 4 f(r))
0 26(r)
27
X7
L1+ f(r))
Ra)  2gr ma®
- / 4~ (104)
0

which agrees with the area law, Sgy = We can also

412
derive the area law for the stationary black hole in the heat
bath. See Appendix H.

V. ADIABATICALLY FORMED CHARGED
BLACK HOLE

We consider a Reissner-Nordstrom black hole which is
adiabatically formed in the heat bath. In the following
sections, we set i =G = 1.

A. Test particle near the evaporating
charged black hole

As in the case of the Schwarzschild black hole, we start
with examining the motion of a test particle near the
evaporating Reissner-Nordstrom black hole with mass
M(t) and electric charge Q(#). We represent the outside
spacetime by
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2 =2M(t)r + Q(1)?

ds? = — 2 dr?
2 2 2 2
+r2—2M()r—|— Gl + e
_ =m0 =r) 4
I
+ r dr? +2dQ2,  (105)
(r=ro0)(r—r(1)
where
ro =M+ /M- Q% (106)

Motivated by the Stephan-Boltzmann law for the entropy
flux [47], we parametrize the time evolution of r () as

->3. (107)

We assume that ijzy = 7zy(M, Q) is a quantity of order 1
and proportional to the number of fields. We also assume
that it varies slowly as a function of M and Q and remains
finite in the limit Q - M.

If a test particle comes sufficiently close to r (7), its
motion is governed by

dry  2mpy r,—r

= 2
dr re

, NN = ’_1RN(
Iy

dr(z) ro—r_

T = =2kgy (r(t) = r (1)), KRNEW (108)

no matter what mass, angular momentum, or electric charge
it has. Here, r(t) represents its radial position, and kgy is
the surface gravity. Using a similar argument to (11), we
obtain

2ngN
7’+ - r_

r(t)~r, + + Ce2krnt, (109)

where we have used (107). Thus, in the time scale of
O(r,.), any particle reaches

27 —r\2
Rey(M, Q) =1y + Tk <r+7r> . (110)
r r,

+

where (107) has been used. The proper distance from the

outer horizon is estimated as
/ —r_

which is larger than the Planck length if we have many
fields as in (14).

=V 3rr (RRN
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B. Interior structure and the thermodynamic
integrability

In this subsection, we consider the interior structure of the
adiabatically formed charged black hole. First, following the
same argument as in Sec. I[IC 1, from (110), we find that
the object has the surface at r = Rgy (M, Q) and there is no
trapped region inside it. Next, we consider the process in
which the black hole grows adiabatically and discuss how
the charge moves in the black hole. Suppose radiation from
the heat bath increases the mass and charge of the black hole
from M’, Q' to M’ + AM, Q' + AQ. In this process, the
electric charge on the original surface Rgzy(M’, Q') should
go outward due to the repulsive force and eventually moves
to the new surface Rpy(M' + AM, Q' + AQ).

Therefore, it is natural to expect that all the charge is
distributed in the outermost region, where time flows
without large redshift. Then, the interior region is staffed
with neutral radiation, and in accordance with the adiabatic
formation, it should have the same structure as the interior
of the adiabatically formed Schwarzschild black hole (72).
Then, there is no inner horizon. See Fig. 13.

This picture is natural from the thermodynamic point of
view. We consider the thermodynamic parameter space
(M, Q). We can move from one point to another along any
path by controlling the temperature and electric potential of
the heat bath. If the object really obeys thermodynamics,
the state is completely determined by (M, Q) and should
not depend on the path along which (M, Q) is reached. On
the other hand, the interior of the object is frozen except for
the outermost region, as we have seen in Sec. II. Therefore,
if the electric charge did not move outward as mentioned
above, it would be distributed depending on the path, and
the thermodynamic integrability would be violated.

Interestingly, there is a fact that supports this picture. Let
us consider the energy of the object of Fig. 13. The inside
energy density is given by that of the Schwarzschild black
hole (78), and we obtain pg = 8# The outside one comes
from the electric field of a spherical capacitor of radius r_,

PEM :85—; [26]. Thus, using the general formula (39),

we have

the interior of the

surface region Schwarzschild BH

with electric charge

FIG. 13. A picture of the Reissner-Nordstrom black hole
consistent with the condition for thermodynamical integrability.
Electric charge exists only in the outermost region with the
width ~i
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Rpy 00
M~ 47[/ drripg + 475/ drpgy
0 Ry

T
2 2RRN 2 2r+

(112)

This agrees with (106), which gives a nontrivial check for
the consistency of the above picture.
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C. Simple model

We now write down the interior metric for such an
object. Because the charge distribution in the outermost
region would be nontrivial, we assume that the charge is
distributed on the surface. Then, the object consists of the
interior structure of the Schwarzschild black hole and the
charged thin shell.

Because the inside and outside metrics are the same as
that of the Schwarzschild (72) and Reissner-Nordstrom
black holes (105), respectively, we have

_20) [ Y e 4 355 dr? 4 Q7 for r < Rey.
ds? = { " 2() (113)
—{reralr=r) g2 + ooty dr? + r2dQ2, for r > Rgy.
|

We will find the relation between two time coordinates z  which is rewritten by using (109) as
and r below. Here, the surface is considered as a timelike
hypersurface located as r = Rpy = const as in Fig. 6.
Then, the induced metric needs to be connected smoothly dz? = Mdﬂ_ (114)
[26,36], and the condition of the ¢f-component is given by o(Rgy)

26(RRN)dT2 _ (Rey =14 )(Rpy = 12)

dr?
2 2 ’
RRN RRN

72

_20(r) ,= S O e e (01.0) dr +
dsz — “o(Rew)

_rP=2Mr+0Q? 32
r dr” + rr— 2M -‘,—Q2

We can evaluate the energy-momentum tensor on the
surface using Israel’s junction condition [26,36]. In par-
ticular, the surface energy density €,, is given by

71 26(Rgy) <1_ (R ;
O\KRpN

€ g
" 4r RL,
In order for this to be non-negative, we need to have

Ny (M, Q) < o(Rgy), (117)

which means dz < dr. This is consistent with the picture
that the electric charge lives on the surface. Then, it is
natural that the rr-component of (115) jumps at r = Rpy.

VI. ADIABATICALLY FORMED SLOWLY
ROTATING BLACK HOLE

We discuss a slowly rotating Kerr black hole which is
adiabatically formed in the heat bath. We denote the ratio
between ADM energy M and angular momentum J

by j=3;

dr? + r2dQ?,

Thus, we obtain the metric for the adiabatically formed
charged black hole:

dr? + r2dQ2, for r < Rpy,
0 K (115)

for r > RRN'

A. Test particle near the evaporating Kerr
black hole

We begin with analyzing the motion of a test particle
near the evaporating Kerr black hole. A remarkable point is
that, although we no longer have the spherical symmetry,
the notion of surface is valid because of the Carter constant.

We assume that the metric of the evaporating Kerr black
hole with M() and j(¢) is given by

4 — —Ed , Psin’0

p)
(dp — wdt)? + Kdrz + Zde#?,
=7 —i—]( )?cos?0),
P=(r*+ j(t)*)? — Aj(t)*sin®0.

A=r2=2M(t)r+ j(1)%
(118)

The angular velocity at r measured by an observer with
zero angular momentum is

2Mj  r—ry Jj
r
P i+

(119)

w 2—601.1,
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where r is the location of the outer horizon, which is the
solution of A = 0:

ry =M+ /M-

If a test particle comes close to r_(f), its motion is
described by (see Appendix I)

(120)

T — akglrlo) = () + 00,
Kk = ”2;2:‘, (121)
do(r) 5
“ar o(r??), (122)
dep(r) _
T—wHJFO(”ﬁ)’ (123)

no matter what mass and angular momentum it has. The test
particle approaches r in the time scale of O(r_ ). It rotates
with the black hole while it hardly moves in the 8-direction.
Using a similar analysis to Sec. I B, we obtain

1 dr,

H~r, — — 4 Ce 21, 124
r(t)~r, e dr € (124)
Therefore, any particle approaches
1 dr
RxM,j)=r, ———F, 125
KM =ry =5 (125)
and we conclude that there is a clear surface
at r = Rg(M, j).

B. Slowly rotating limit

We now investigate the interior of the adiabatically
formed Kerr black hole. However, it is difficult to analyze
the general Kerr black hole because the discussions in
Sec. II depend on the spherical symmetry. In the following
parts, as a first trial, we consider the slowly rotating limit in
which we ignore terms with O(j?). Then, the Kerr metric
(118) reduces to

,_ T 2M(1) ., r )
ds® = dr +r—2M(t)dr
+ r2d0* + r’sin®0[dp — w(t, r)df)* + O(?)  (126)
with
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2Mj
a):TJ+O(j2),

r. =2M+ O(j2),
1

kg =+ O().

7 (127)

Now the location of the horizon and the surface gravity are
the same as the Schwarzschild black hole. If we introduce
another angular coordinate by dy =d¢ — w(r,1)ds,
Eq. (126) becomes

r—2M(t) r
- dr?
r i 2M(1)

+ r2(d6? + sin?0dy?) + O(j?).

ds? = dr?

(128)

Note that a trajectory with y = const rotates with the
angular velocity %: w(r,t) with respect to the static
coordinate at infinity. Therefore, we can regard this object
simply as the Schwarzschild black hole rotating with the
angular velocity

(129)

Then, we can understand that the object emits energy in
the same way as the Schwarzschild black hole, which is
consistent with the emission of angular momentum. Hence,
from (2), (125), and (127), we have

20(ry)

+

Rg(M)=r, + +0(%) (130)

for r,. = 2M + O(j?), which is the same as (12).

C. Simple model

We now investigate the interior metric of such an object.
Because (128) is spherically symmetric and the surface is
given by (130), we can follow the discussion of Sec. II C 1.
As in the case of the charged black hole, the thermody-
namic integrability in (M, j) space requires that the angular
momentum is distributed only in the outermost region with
width N% and that the interior is the same as the

Schwarzschild black hole. Here, we assume that due to
the centrifugal force the angular momentum moves out-
ward at each step of the adiabatic growth. Thus, we obtain a
picture similar to Fig. 13 in which electric charge is
replaced by angular momentum, and the whole system is
rotating.

In order to write down the metric, we model the object by
composing the interior of the Schwarzschild black hole and
a thin layer with the angular velocity (129). Then, from (72)
and (128), we obtain the metric
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/

_ [Rg(M) 4 v
4 { 20, J; ST AR 4 2
§° = r

26(r)

dr? + r?[d6? + sin’0dy 2],
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for r < Rx(M), (131)

— =M g2 4 L dr? + r2[d6? + sin?0(dg — w(r)dt)?] + O(j%), for r > Rg(M),

r—=2M

where dy gy = d¢ — wgdt.

As a consistency check, we evaluate the energy-momen-
tum tensor on the surface r = Ry by using Israel’s junction
condition [26,36]. We obtain the surface energy density €,,,
surface pressure p,,;, and surface angular momentum
density J :

€rqg = 0,

P27 T H6r 1+ f(Ry) \/20(Re)
(132)

These reproduce the angular momentum J through the
generalized Komar formula [48], while there is no addi-
tional contribution to the ADM energy M from the surface.

VII. CONCLUSIONS AND DISCUSSIONS

In this paper, we have considered time evolution of the
black hole with the backreaction from the Hawking
radiation taken into account. We have found that a
collapsing matter becomes an object that looks like a black
hole when it is seen from the outside. However, instead of
the horizon, it has a clear boundary, which we call the
surface. The inside of it is filled with matter and radiation,
while the outside is almost empty. The surface is located
slightly outside the horizon of the vacuum solution. For
example, in the spherically symmetric case, it is located at
r=a+ ZG‘E‘Z) , Where a is the Schwarzschild radius. Because
the structure inside the surface is totally different from the
vacuum solution, the object has neither a trapped region nor
singularity. In general, the inside structure depends on the
initial distribution of the matter, because time evolution is
almost frozen inside the surface due to the large redshift.
However, if we see the object from the outside, it looks the
same as the conventional picture of the black hole: it emits
the Hawking radiation and evaporates in the time scale ~ %

In this sense, the black hole in the real world is not the
vacuum region with the closed trapped surface but a kind of
highly dense star. Therefore, the problem of the time
evolution of the information is similar to that of the wave
function of a many-particle system in condensed matter
physics. Here, it is important to consider interactions.
Actually, we can estimate the time scale in which the
information comes back in the evaporation process by
considering the interaction between the matter and the
Hawking radiation.

However, there remain problems to be clarified. First,
our description is based on the spherical symmetry. It is
important to extend it to the general case such as the
construction of the interior metric of the rotating black hole
and the investigation of the nonspherical symmetric insta-
bility of (88).

Another important problem is to understand how baryon
number changes through interactions in the evaporation
process. We have seen that it should occur in the outermost
region, where the energy scale of the particles is close to the
Planck scale but still controllable by field theory if we have
many species of fields. It is interesting to see whether some
effects of quantum gravity or string theory are involved in
the mechanism or not.

We also have not identified the microscopic mechanism
of the strong angular pressure, which supports the object.
Although we have found that it is necessary to satisfy the
Weyl anomaly, we have not understood how it occurs. This
problem is also related to how the incoming energy of the
collapsing matter is converted to the outgoing energy of the
Hawking radiation.

It is also interesting to construct more explicit relations
among the phenomenological functions, oy(a), g(a), f(a),
by considering a simple example. Then, we can see
explicitly how the intensity o(a) depends on the initial
data of the matter.

Finally, it is attractive to investigate the process in which
the charged and rotating black hole is formed from the
matter with a general distribution and check the validity of
the thermodynamic integrability more explicitly.
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APPENDIX A: BLACK HOLE ENTROPY AND
BEKENSTEIN’S ARGUMENT

Based on Bekenstein’s gedankenexperiment, we discuss
black hole entropy. First, we estimate information to be lost
in the formation process. Then, we discuss the area law and
argue that generically the entropy production occurs in the
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evaporation process. Finally, we review an operation for
massive particles.

1. Entropy in the formation process

Bekenstein introduced the notion of black hole entropy
as the logarithm of the number of all the possible ways € to
construct the black hole [4]. We review and generalize his
idea. Suppose we construct a black hole with radius a from
matter. First, we focus on the stage where the radius is a;
and throw a particle with energy ¢; to the black hole. Here,
in order for the particle to enter into the black hole, Eq. (4)
needs to be satisfied. Let us estimate the number of all the
possible ways €; for this process. Note that the wavelength
of the particle is 4; ~ eE,-’ which plays a role of the spatial
resolution for this process. Hence, the number of the ways
for the particle to enter into the black hole is given by

a; a;ein;

QiN—an'N
Ai

(A1)

Here, n; is the number of species of particles with ¢;, which
is assumed to be O(1). Equation (A1) corresponds to the
phase volume for a particle with energy €; and species n; in
a one-dimensional system with size ~a;, because the black
hole is spherically symmetric.

Applying this estimation to each stage of the construc-
tion, we obtain

Q=

N
(A2)

N
a;e;n;
o ~[[~=-.
! h
i=1

In order to evaluate the total number of steps N, we
consider the case where a; ~ a, €¢; ~ €, and n; ~ n for any i.
Then, we have

i=1

a
N~—

e (A3)

because the size and energy of the black hole are related as
a = 2GM. Thus, Eq. (A2) becomes

N
Q~ <c;l€n> ,

A a ae
Stormation — Jog Q ~ Golos <h> .

(Ad)
which leads to
(AS)

Here, the contribution of logn is neglected because it is
smaller than log(%) due to (4). By construction, this
entropy measures the amount of information that is lost
in the formation process. This is because the information of
the matter which has entered into the horizon is lost for an
outside observer.
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We consider here the saturating case in (4), that is, the
case of (5). This is the most slow formation that corre-
sponds to the adiabatic process in the sense of thermody-
namics. Then, Eq. (AS5) becomes

A a> a>
Sgn ~Tlog O~ (A0
P P
which agrees with the conventional area law [1,2]
. A
B = iz (A7)
P

except for the coefficient.

Here, we discuss the relation with the new picture of
black holes. As is discussed in Sec. II, in the new picture,
the interior of the black hole is almost frozen due to the
large redshift, and the information of the initial distribution
is kept inside for long time. Eventually, it will come out in
the process of evaporation, but in practice, it seems to be
lost. In this sense, the above discussion applies also to the
new picture.

2. Entropy production in the evaporation process

We discuss the relation between the general result (A5)
and the usual formula (A7) and show that generically the
entropy production occurs in the evaporation process.
Originally, Eq. (A7) was obtained by integrating the
Hawking radiation from the evaporating black hole [1].
In this sense, it counts the number of microstates in the
matter emitted from the black hole. On the other hand,
Eq. (A5) measures the number of all possible ways to
construct the black hole. Note that (A7) is much larger than
(AS5) unless € ~ g Therefore, in the whole process from
formation to evaporation, the entropy increases by

2
__ qformula formation a a ae
AS = Sgi™™ = Spir Ng—alog <_h)’ (A8)

which is consistent with the generalized second law [4].
Especially, if we consider the adiabatic formation (A6),
AS ~ 0, which corresponds to the black hole in equilibrium
with the heat bath of the Hawking temperature [2].

3. “Reversible” process of massive particles

From the above discussion, it seems that a massive
particle with ¢ >% cannot be given to the black hole
adiabatically, since AS > 0 for ¢ > % However, we can
make a procedure to add a massive particle to the black hole
“reversibly.”

Suppose we give a massive particle with rest mass
m > %, say, a proton with m ~ 1 GeV. If we throw it far
from the black hole, the ADM energy increases by € = m.
Now, we follow Bekenstein’s gedankenexperiment [4].
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Imagine that we slowly lower the massive particle from a
point at » > a to the black hole by using a strong string. If
the string is cut off at a point r, the ADM energy given to
the black hole is evaluated as

e(r) = m\/E,

which is smaller than e(r = co) = m. This is because in
this process the system composed of the black hole and the
particle works positively to an external agent by the
gravitational binding energy. Here, we consider a question:
In order to give the maximum entropy and the minimum
energy to the black hole by this process, how far do we have
to lower the particle? In quantum mechanics, a massive
particle exists within the Compton wavelength A- = %
Therefore, if the particle is located at a distance of its
Compton wavelength from the horizon, we cannot distin-
guish whether the particle already has been swallowed into
the black hole or not. This situation leads to loss of 1 bit
information for an outside observer. Indeed, we can see this
explicitly as follows. For r = a + Ar, Eq. (A9) becomes

Ar )
= A ~ _— = -,
e(r=a+ Ar) = my/ S =my

where (15) has been used. Therefore, by taking [ = A- = %,
we have

(A9)

(A10)

n
e(r:a+Ar):2—, (A11)

a

which agrees with the minimum energy (5). Thus, if we
repeat this process to make a black hole, no entropy
production occurs in the evaporation process: AS ~ 0.
More rigorously, however, the baryon number should be
changed in the evaporation process as is discussed in
Sec. I D, and the entropy production should occur.

Finally, we show that when such a massive particle
released at r = a + Ar(l = A¢) comes close to the surface
at r = R(a) = a + 2, it becomes ultrarelativistic and can
be regarded as an ingoing lightlike particle. In fact, its local
energy is estimated as

\/~gu(r=a+ar)
—9u(r =R)

€local = M

a /Ic_ n

IR Al2
. V2c2a 22 ( )

where (15) has been used. This is the same order as (35)
and much larger than the rest mass m.
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APPENDIX B: A NUMERICAL SOLUTION OF r(t)

We give a numerical demonstration of (11). We consider
a simple case where 6(a) = k = const in (2), the solution
of which is given by a(¢) = [a(0)® — 6kt]'/3. Using this, we
solve (9) numerically for a(0) =100, r(0) = 110, and
k =1 and obtain Fig. 14. This shows that r(z) approaches
a(t) + % as in (11).

APPENDIX C: A MULTISHELL MODEL

We introduce a simple model [8] as a concrete example
for the new picture in Sec. II C.

1. Single-shell model

In order to construct the self-consistent solution of
G,, = 8rG(T,,), we start with a spherically symmetric
collapsing null shell. The inside region is flat because of the
spherical symmetry. We assume that the outside region is
described by the outgoing Vaidya metric [9]:

for r <rg

—dU? = 2dUdr + r*dQ?
ds? = { (1)

— =4 42— 2dudr + 2dQ?  for r > 1.

Here, r, is the radius of the shell, M (u) = % is the Bondi
mass, and U and u are the outgoing null coordinates in the
Eddington-Finkelstein coordinates for the inside and out-
side, respectively. See Fig. 15.

In Ref. [8], we have shown that the self-consistent
solution is obtained by solving

ra) =a) g, ogr —au (C2)
rs(u)
and
da 2
W —8—”{u, U}, (C3)

a(®)[r(®) —a(®)]

1000 2.05

2.04
800

2.03

600

2.02

400 2.01

2000 3000 4000 5000

200

FIG. 14. The numerical result of a(t)[r(t)—a(r)] for
a(0) =100, r(0) = 110, 6 = k = 1. It approaches 2k = 2.
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(W)

null shell Vaidya metric

Flat metric

FIG. 15. An evaporating null shell. In this coordinate (u, r), an
outgoing null ray is depicted by a line with u = const.

provided that the radiation is massless, and only the s-wave
is considered in the eikonal approximation. Here, {u, U} is
the Schwarzian derivative, which is given by {u,U}=
Uw? _ 20w
Uu)?  30(u)

shell is lightlike both in the inside and the outside regions.
Equation (C3) is equivalent to the Einstein equation G, =
87G(T,,) because the only nonzero components of G,,

and (T,,) are G, = —@ and (T,) = ;1o {u. U}.

. Equation (C2) indicates that the motion of the

2. Generalization to multishells

It is easy to generalize the above model to the case of
multishells. We consider n shells of which the radii are
denoted by r; (i =1, ...n). See Fig. 16. The metric of the
region between r; and r;, is described by

ds? = _L’(u’)du% _ 2duidr+ erQZ’
r

(C4)

where u; is the local time and Z(G) is the mass in the ith

shell. The junction condition of each time coordinate u; is
given as (C2) by

r—a .
L fori=1,...n,

dui = —2drl~ = ¥dui_1

r T

(C5)

where we regard a, = 0 and uy = U for the flat space. This

is equivalent to

dr,-_ ri —a;

dui a Zri ’

(Co)

a; (y;
ds;® = — <1 - %J) du;? — 2duydr +r2dQ?

FIG. 16. A continuous distribution modeled by many shells.
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and

du; _ri—ai

a;—ai
=14+—. C7
du,-_l ri—a; * ri—a; ( )
The Einstein equation (C3) holds for each shell,
dai le
S U}, (c8)

where the degrees of freedom of the fields N have been
introduced.

The coupled equations (C5) and (C8) can be solved by
the following ansatz:

da; C
L=, C9
dui l2 ( )
da; 2C
=a. -2 — =qa. += C10
rl al al dul al + al ( )

Equation (C9) means that each shell behaves like the
conventional evaporating black hole, and (C10) indicates
that each shell has reached the asymptotic radius as in (11).

First, Eq. (C10) solves (C6) as in (11). Next, we solve
(C7) with the ansatz. We define #; by

dU
=1 Cl1
R (C11)
Then, we have
=1lo gbl'] —1lo du;
M —Mi-1 = gddU - gdu, |
Uiy
ri—a;
a;—a_ a;—a_
~— p— R ——5¢
~ Lo, 2
~ 4C(a —ai ). (C12)

Here, at the second line, we use (C7); at the third line, we

assume % 2?‘ L <« 1, which is satisfied for the case of

continuous distribution; and at the last line, we approximate
2a; ~ a;+ a;,_;. With the boundary conditions #, =
ag = 0, we obtain

1
n =g (c13)

Finally, we check (C8). Because the Schwarzian deriva-
tive {u;, U} is written as
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1 di’]l 2 2d ’71
Uy =— Cl4
{u Uy =3 (du,-> 3du (C14)
we obtain
11
ZUY R ——. Cl15
Here, we have used (C9) and (C13) to obtain
dn; 1 da; 1
= 1
du;  2¢"du,  2a (C16)
Therefore, Eq. (C8) is satisfied if
NI
=2, C17
967 ( )

In particular, the outermost shell (nth shell) satisfies

da C

which indicates that the entire system behaves like the
conventional evaporating black hole when it is observed
from the outside.

APPENDIX D: HAWKING RADIATION IN THE
NEW PICTURE

We show that the metric of the new picture of black holes
indeed creates radiation from the vacuum which obey a
Planck-like distribution with the Hawking temperature (17)
[49]. We start with the general form of the spherically
symmetric metric in the Eddington-Finkelstein-like
coordinates:

ds?> = —q(u,r) <Mr’r)du + 2dr> du + r?dQ?.  (D1)

See Fig. 17. We assume that the metric near the surface,
Rr < r <R, is given by (74). Rigorously speaking, the
values of f and o there for the evaporating black hole may

o ——

IREN
~
\

—iwU (u)\\

FIG. 17. A continuously distributed matter that collapses and
evaporates and a trajectory of a field from the flat spacetime to the
matter. Here, an outgoing null line is depicted as u = const.
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be different from those of the adiabatically formed one.
Here, we simply assume that they are the same. On the
other hand, the deeper region, 0 < r < Rp, need not be the
same as (74), but the metric there is frozen in time.
We further assume that there remains a small flat spacetime
around the origin:

—2dUdr + r*dQ?.

ds? = —dU? (D2)

We consider the s-wave of a massless real scaler field
¢(x) and solve the Heisenberg equation using the eikonal
approximation [1]. In this approximation, the reflection of
the radiation is not considered, and f(r) becomes zero.
The Hawking radiation is created by the time evolution
of the field along a ray that starts from the flat space before
the collapse, goes through the center, and passes the
collapsing matter (see Fig. 17). We focus here on a time
interval around u,, I(u,) = [u* - ka(u ), u, + ka(u,)],

where k ~ 1. By putting ¢ = r~!¢ o , the Klein-Gordon
equation V2¢ = 0 in the metric (D1) becomes

1 h
[— 0, — —8,} S0, =0, (D3)
q = 2rq
in the leading approximation of the 7 expansion. Here, the
ingoing and outgoing radial null vectors are given by k =
éa 2Irlq 0, and I = 0,, respectively. Therefore, we obtain

the outgoing eikonal solution

isout (u)
h

e
Pow = ——

r

(D4)

We assume that the field was in the vacuum state before
the collapse. Therefore, in the Heisenberg picture, the state
should satisty

a,|0) =0, (D5)
where a,, is the coefficient of eV for w > 0 in the
outgoing component of ¢:

¢= /mr<¢4—ﬂ *mﬁ (D)

Because of (D4), the field which has evolved is given by

e—imU(u) eia)U(u)

0= | vz (e ) 7

On the other hand, this can also be expressed in terms of
the modes in the future infinity:
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b= vﬁzwf__<3;;ib +—j§;rb2)- (D8)

Generally, two operators a,, and b, are related as

b, = / da'A,a, = / dw/<AwaJ’aw’ +Aa},—w’a;’)'
—0o0 0

(D9)

From (D7), (D8), and (D9), we obtain

_ iou za)U
w,—w U, H / due )

Here, we have extended the integration region from /(u, ) to
[—00, 0], which does not affect the following calculation
[1,8,17] [50]. From (D9), we obtain the expectation value
of the number of the particles:

(D10)

w%%mm—[%M%wwﬁ (D11)

Then, we estimate U(u), which is the relation between
the outside time u and the time U around the origin. In the
metric (D1), the ingoing radial geodesic r(u) is given by
é% =- zi‘q and ¢(u, r(u))du corresponds to the local time
at r=r(u). Because u is
q(u,r =R) =1, we have

the outside time and

dU(u) q(u,r~0)
= s ~ 0 = s = R
G = ler=0) = LR gl = Ry)
R(u) . R(u)Z-R2F
— Ce_ fRF dr2"<r) ~ Ce_ 46(R(u)) . (Dlz)

u,), the deeper region between 0 <

q(u,r~0)
q(u,r=Rp)

the other hand, the region near the surface, Ry < r < R(u),
is described by the interior metric of (74) with f = 0. Next,
we expand R(u) around u, as

Here, in the interval (

r < Ry is frozen in time so that is a constant, C. On

R(u) ~ R(w.) + S ()~ )
Ru) =T =), (13)

where we have used the geodesic equation in (74),

R — 2B Putting R(u)*~ R( )P =2 (=)

into (D12), we have dl(]i—f) ~ C' ) ). Thus, we obtain
U(u;u,) u*)C’eﬁ“*),

= D + 2R( (D14)

where D and C' are constants.
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Now, we can evaluate (D10). Using (D14) and contin-
uing analytically [1], we have

! —nwR(u, .
27,\/721?( e ™R (2iwR (u,)),  (D15)

Aw,—w’;u

where an irrelevant overall phase factor has been dropped.
Then, employing the formula |[(ix)|* = TsmhGy for x € R

and considering wave packets in (D11) [1,17], we obtain

1

(01bhb,[0),, = ——. (D16)
eTu) — |
where
f f
T = I~ . D17
() 4zR(u) 4ma(u) (D17)

This agrees with the Hawking temperature [1] but changes
in time slowly according to (2). The above analysis has
shown that the Hawking radiation is created in any
collapsing process as long as the region near the surface
becomes the asymptotic spacetime described by (74). In
particular, the existence of the horizon is not necessary.

APPENDIX E: EXAMPLES OF THE INTERIOR
STRUCTURE

Simple examples would be helpful to understand the new
picture. We consider two macroscopic shells with radii r,
and r,, where r; < r,. We assume initially they have the
same energy M. Then, the Schwarzschild radius of the total
system and the inner shell are a, = 4GM and a; = 2GM,
respectively. Although in the real system the energy
distributes continuously, for simplicity we consider two
thin shells. See Fig. 18.

¥ e

(1))
r1(t)

a,(t)

ay (t),

FIG. 18. Examples of two-shell collapsing process.
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We consider the following two cases. In one case, the
initial values of the radii are very close, for example, r; =
3a; and r, = 3a; + Ar, where Ar < a; (see the upper
panel of Fig. 18). Then, shell 2 reaches r = R(a,) earlier
than shell 1 reaches r = R(a;) because the two shells have
started from almost the same positions but R(a,) is
significantly larger than R(a;). When shell 2 reaches
r = R(a,), time inside shell 2 is frozen, and r; stays
almost constant. At the same time, shell 2 starts emitting the
Hawking radiation. Thus, only shell 2 evaporates until its
energy is exhausted. After that, shell 1 begins to approach
to R(a;) and eventually evaporates.

In the other case, shell 1 reaches r = R(a;) earlier than
shell 2 reaches r = R(a,). Such a case occurs if the initial
value of r| is close to R(a;) but r, is not so close to R(a,)
(see the lower panel of Fig. 18). Then, shell 1 reaches R(a,)
before it is frozen by shell 2, and some part of it evaporates
until shell 2 reaches R(a,). Then, shell 1 stops radiating,
and only shell 2 emits the energy. After this, the same thing
occurs as in the first case.

APPENDIX F: SURFACE ENERGY DENSITY AND
PRESSURE ON THE EVAPORATING SHELL

We derive (45) and (46) from the Barrabes-Israel
junction condition [25] following the formalism in
Ref. [26]. We consider an evaporating shell with initial
energy €(0) NZ which approaches the evaporating core
with a'(7') as in Fig. 2. The metric is given by (20), and we
denote the position of the shell by r,. We take the ingoing
and outgoing null vectors as k= f'0;—0, and
=107+ %8,, respectively, so that k - = —1. Here, T =
tand f =1—%forr > r, while T = ¢ and f = 1 — < for
r < ry. Note that the null vector k satisfies the geodesic
equation Vi k* = kk* with

K= —f20rf. (F1)

We assume that the shell moves along k and denote its
locus by N. The transverse curvature of the null hyper-
surface \ is given by

1
Cah = E (£lgpw)eléel};‘ (FZ)
Here, £; is the Lie derivative along I, and {e,} = {e;, =
k.ey=0y.e,=0,} is the basis on N. Using another

expression C,;, = —lyeZV”eZ (see Ref. [26]), we obtain
_ _f
Cu =k, Cap = 2,08 (F3)

where o, 1s the 2-metric on the shell such that
045d04dOP = 2d6? + r’sin’0dg?  with 04 = {0, ¢}.
Thus, we obtain the formula (45) for the surface energy
density €,, and pressure p,,:
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1 €
= — —UAB C = —F,
€2d 872G [Casl 4nr?
1 1
P2a = —%[Cu] = —%[K]

B r da ro—a\2dd (F4)
- 8aG(ry—a)*\dt \r,—da') dr')’

Here, [A] = A|,, 1o — Al,., _o for a quantity A, and ¢ =

"2‘({:/ is the energy of the shell.

Next, we show (46). Suppose that the shell has come

close to the core as in stage II of Fig. 2, where r, =
b

a+29 Using (14), (23), Aa~2, and L~ L (1 4 229),
Paq in (F4) becomes

2

_a a
P27 8,6 (20)2
206(a) ala \ 20(a) 2Aa
-11-2 1
X( a? ( 20'(61)) a? T
a’Aa a

¥ 162Go? " GN?E2

APPENDIX G: EXPONENTIAL DECREASE
IN THE ENERGY OF THE
COLLAPSING MATTER

Here, we derive (93). We consider ingoing matter with
radius r = r(t) and width Ar(¢), in the outermost region of
the evaporating black hole with radius a(z). Here, we
assume the metric is given by (72) and examine the time
evolution of the ADM energy of the shell e(z), which is
expressed as

e(t) = 4nr(1)’p(r(t))Ar(t) = %Ar(z), (G1)
where p = —(T",) = L because of (78).

We first consider the motion of a test particle in (72). If it
is ultrarelativistic, it satisfies

dr 1 A
a— —Eez. (G2)

Taking the difference of this equation with respect to r, we
obtain

dA d,B 1 3 3

LF _ (92 _“ga)Sarn——"" _CAr (G3)
dr B 2 B 26(1+f) B

where we have used (71) and (65). This can be rewritten in

terms of the local time dr = \/I%e#dt, as
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dAr 1

e Ar, G4
dr V2(1+ f) (G4

and the solution is given by
Ar(z) = Ar(0)e Va7, (G5)

Therefore, the time evolution of the local energy €, =

\/% is given by

_ T

eloca_l(f) = 61003_1(0)6 Vao(1+/)

(Go)

APPENDIX H: ENTROPY OF THE
STATIONARY BLACK HOLE

We consider the stationary black hole that is formed
adiabatically in the heat bath and evaluate the total entropy
by summing up the contribution from each piece in the
interior. Here, we approximate the interior as one-
dimensional massless radiation with local equilibrium.
Because the local energy of particles is ultrarelativistic,
and the ingoing and outgoing energy flux are balanced at
each r, it is reasonable to consider such a model.

Then, the Gibbs relation for one-dimensional radiation
[5] should be satisfied,

u+ p =T, u=p, (Hl)

where u, p, Tj,q, and s are one-dimensional internal
energy density, pressure, local temperature, and entropy
density, respectively. In the following, we evaluate

s=2 "

H2
Tlocal ( )

and integrate it over the inside of the black hole by using
the metric (72).

We first evaluate u. The general mass formula (39)
indicates that p = —(T",) can be regarded as the four-
dimensional energy density in the local inertial frame. This
is because the integration measure is the same as the
ordinary flat space, and the diagonal component 77, is
the same as 77, for the stationary state. Then, the one-
dimensional energy density, that is, the proper energy per
proper length, is given by [51]

e = 4nr’p. (H3)

Here, by noting that the ingoing and outgoing energy flows
are balanced in the stationary state, the energy flow only in
one direction should be considered to count the entropy in
(H2). Therefore, by using (78), we can evaluate the one-
dimensional internal energy density as

1
u=se=, G

Now, we can evaluate the entropy. From (H2), (H4),
and (101), we obtain

(H4)
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206(r)
Lo

s(r)=2n (HS)
which indicates that \/o/ lf, bits are stored per unit proper
length, as discussed in Ref. [24]. Integrating this from r ~ 0

to r=R(a) =a+ 20la)

a

SBH = /R(a> dl"v grr(r)s(r)
0

, we have

/R(a) 4 r, 20(r)

= r b3

0 \/20(r) I
ma*> A

N—=—, (H6)
lf, 41%,

which agrees with the Bekenstein-Hawking formula. Thus,
we have seen that the black hole entropy is stored in the
interior structure.

APPENDIX I: SURFACE OF THE ROTATING
BLACK HOLE

In Sec. VI A, we analyze the motion of a test particle in
the evaporating Kerr metric and show that the notion of
surface is valid even for the rotating black holes. In this
Appendix, we derive the three equations (121), (122), and
(123), which play a crucial role for the existence of the
surface.

If the black hole is not very close to extremal, the
relevant time scales are similar to those of the spherically
symmetric black holes. The time scale of the change of the
mass M () and the angular momentum j(#) is about M3,
while the test particle approaches the horizon in the time
scale of ~M. Therefore, it is enough to analyze the equation
of motion of the test particle for constant M and j and then
replace them to the time-dependent ones.

In order to do that, we consider the Hamilton-Jacobi
equation for a massive particle with mass m [26] in the Kerr
metric (118):

0= ¢"9,50,8 + m*. (I1)

As usual, because of the cylindrical symmetry, we
can set

S(t,r,0,¢) = —Et+ L+ W(r,0). (I2)

By using the inverse metric

P A 1
gtt:_ﬂ’ grrzf, g(ié‘_i’
A — j*sin’6 2M jr
gt/)t/) = gtt/) _ ,
2 Asin-0 A

Eq. (I1) becomes
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P A 1
0=——F? +E(8,W)2 Jri(agw)2 +

A — j?sin’0 2 2M jr
ZA

2——FL 2, 13
TAsin®o -~ T zA 0T 13)
Multiplying this by X, we obtain

1
0= <—A (P2 4 j?)2E? + j*L* —4MjrLE] + A(O,W)* + (r* + j2)m2>

2

L
+ < j2sin*0E? +

st (OpW)? — jzsin29m2>. (14)

The first and second terms depend only on r and 6, respectively. Therefore, we can put the first term as a constant, —C,
where C is the Carter constant [26], and decompose W(r,0) as

W(r,0) =w(r)+0(0). (15)

Then, we have the two ordinary differential equations and obtain the solutions

ro1
w(r;E,L,C) = i/ dr< \/(r2 + j2)2E? + j*L* —4MjrLE — A[C + (> + j2)m?], (16)
|
2 2 dr(t
9 - oy (AP
O(6;E.L.C) = i/ d0\[C — — — jsin?0(E? — m?). A(r(r)) dr
sin“@ 202
—Ej*sin“0(¢) do(r)
(17) + - , o )
V€ = sk = Psin?0(1) (B — m?)
Taking two derivatives of
S=-Et+Lp+w(r;E,L,C)+0O(0;E,L,C) (I8) We now focus on the region r~r,, where A~0.
Using A = (r(t) = ry)(r(1) = ro) = (r(1) = ri)(re = 1-)
with respect to E and to ¢, we have and kg = ﬁ from (I9), we obtain
dr(t Ej*sin®0(t do(z
:1( )~ () = 1) |1+ o/ (x d( )1 : (110)
! V€ = ki = Psin0(0)(E2 = m?) 4
|
where we have chosen the sign for the radial ingoing The second term in the large bracket in (/12) turns out to

direction. Similarly, taking. two derivative of (I8) with  pe of order O(r7?), and it can be neglected compared with
respect to C and 7, we obtain the first term. We can show this as follows. Since we
consider adiabatic processes, the ingoing energy E should be

L? 22 2 2 i ~ ~-L
o) _ /€ =t~ PO B =) g o e Same oner s e Hawdng emperunre £ T ~
P (r2+ n jz)E ~iL a e typical angular momentum of the ingoing particles can

be estimated as L ~ (impact parameter) X (energy)~
(I11)  r,_E ~ 1. Furthermore, as in the spherically symmetric case,
we have

Then, substituting this into (I10), we have

r(t) = ry(1) ~ ; (113)

Ej*sin?0(1)  dr(1) ri(1)
(i +/)E—jL dr |
(112)

dr(r)
dr

= 2e(r() =) |1 &

which will be shown self-consistently. Using these estimates,
we can show the above statement.
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Thus, we obtain

dr(2)
dr

= 2 (r(t) 1) +OCT),  (114)

which is (121). From this, Eq. (I11) can be estimated as

do(r) 1 1
ar r kg (r(t) —ry) ri (I15)
which gives (122).
Finally, we examine %(tl). Taking two derivatives of (I8)

with respect to L and ¢, we have
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dg(t) | —adr(t)
0= 4+
+ 0 do(r)
\/C B sin%:}([) — j*sin?0(t)(E? — m?) dr
dp(r) , —a £A
L), e

dt AR+
Thus, we have (123):

M = wy + O0(r}).

o (116)
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