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It has been claimed that the super-Hubble modes of the graviton generated during inflation can
make loop corrections diverge. Even if we introduce an infrared (IR) cutoff at a comoving scale
as an ad hoc but practical method of regularization, we encounter secular growth, which may
lead to the breakdown of perturbative expansion for a sufficiently long-lasting inflation. In this
paper, we show that the IR pathology concerning the graviton can be attributed to the presence of
residual gauge degrees of freedom in the local observable universe, as in the case of the adiabatic
curvature perturbation. We will show that choosing the Euclidean vacuum as the initial state
ensures invariance under the above-mentioned residual gauge transformations. We will also show
that, as long as we consider a gauge invariant quantity in the local universe, we encounter neither
IR divergence nor secular growth. The argument in this paper applies to general single-field
models of inflation up to a sufficiently high order in perturbation.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Subject Index E00, E81, E86

1. Introduction

The inflationary spacetime leads to the generation of gravitational waves. Even though the amplitude
of gravitational waves is smaller than the amplitude of the adiabatic curvature perturbation, detection
of the primordial gravitational waves generated during inflation is expected to be within our reach.
Measurement of primordial gravitational waves is crucially important in uncovering the model of
inflation, providing information that cannot be obtained through the measurement of scalar pertur-
bations. In particular, the amplitude of the gravitational waves can directly measure the energy scale
of inflation, unlike the amplitude of the adiabatic curvature perturbation, which is also sensitive to
the detailed dynamics of the inflationary universe. We can find an example that highlights the impor-
tance of measuring the primordial gravitational waves for non-linear perturbations as well, say in
Refs. [1–3], which elucidate the impact of parity violation in the gravity sector on the bi-spectrum
of the primordial gravitational waves. Thus, it will be profitable to study the method of predicting
primordial gravitational waves in the presence of the non-linear interaction too. In this paper, our
focus is on the loop correction due to the primordial gravitational waves.

It is known that loop corrections of a massless scalar field generated during inflation can suffer
infrared (IR) divergences [4–42]. Since a massless scalar field yields a scale-invariant spectrum in

© The Author(s) 2014. Published by Oxford University Press on behalf of the Physical Society of Japan.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Funded by SCOAP3



PTEP 2014, 073E01 T. Tanaka and Y. Urakawa

the IR limit asP(k) ∝ 1/k3, a naive loop integral yields a factor
∫

d3k/k3 ∼ ∫
dk/k, which logarith-

mically diverges. As expected from the fact that the mode equation of the tensor perturbation, which
we also refer to as the graviton, is nothing but the mode equation for a massless scalar field, graviton
loop corrections also appear to yield IR divergences. To quantify the graviton loop corrections, we
need to provide a way to regularize them. One may propose the introduction of an IR cutoff, say, at a
comoving scale kIR as a practical method of regularization. However, this will not provide a satisfac-
tory solution, because the loop integral of the super-Hubble modes gives

∫ aH
kIR

dk/k ∼ ln(aH/kIR),
which logarithmically increases in time. Here a and H are the scale factor and the Hubble parameter
of the background spacetime, respectively. Compared with the tree-level contribution, the loop cor-
rections are typically suppressed by the Planck scale as (H/Mpl)

2 with M2
pl ≡ (8πG)−1. However,

this suppression may be compensated by the secular growth for a sufficiently long-lasting inflation.
(A thorough overview of the possible origins of the IR divergences can be found in the review paper
by Seery [43].)

The IR behavior of the graviton has also attracted attention as a possible origin of the running of
coupling constants [10–12,24,44–53]. Tsamis and Woodard claimed that the logarithmically grow-
ing secular effect due to the graviton loops can lead to the screening of the cosmological constant,
suggesting that the screening may provide a dynamical solution to the cosmological constant prob-
lem [24]. More recently, Kitamoto and Kitazawa studied the IR effect on gauge coupling and claimed
that the secular growth from the graviton loops can screen the gauge coupling [34,35]. A related issue
is discussed for the U(1) gauge field in Refs. [36,37]. If the secular growth due to the graviton loops is
actually physical, it will have a phenomenological impact. However, these secular growths originate
from the increasing IR contributions, and hence the predicted secular effects significantly depend on
the regularization method of the IR contributions. Therefore, to trust the secular growth as a physical
effect, its presence should be verified based on a rigorous method of regularization. The graviton
loop corrections have mostly been discussed in the exact de Sitter background and their regularity
is still under debate, even at the linear level. In Ref. [54], Higuchi et al. claimed the existence of a
regular two-point function (see also Refs. [55,56]), while Miao et al. objected against it in Ref. [57].
This issue was also discussed in Refs. [58–60].

The IR pathology has been studied more intensively for the adiabatic curvature perturbation [61–
76]. In the presence of gravity, we need to remove the influence of gauge degrees of freedom in
calculating the observable fluctuations. In the cosmological perturbation theory, gauge artifacts are
usually removed by employing gauge conditions that completely fix the coordinate choice. However,
when we consider actual observations, the gauge conditions may not be fixed in a suitable way that
preserves the gauge invariance for an actual observer. In fact, we can observe the fluctuations only
within the region causally connected to us, which is limited to a finite portion of each time constant
slice. Therefore, precisely speaking, the gauge conditions used in the conventional cosmological
perturbation theory, which require all the information all over the time constant slice of the universe,
does not match the actual process of observations. To regularize the IR contributions for the curvature
perturbation, it is necessary to take into account this subtle issue [62,63,65–67]. Since in actual
observations we can impose the gauge conditions only in the observable region, there inevitably
appears an ambiguity associated with the degrees of freedom in choosing coordinates in the outside
of the observable region. Such residual coordinate degrees of freedom can be attributed to the degrees
of freedom in the boundary conditions of our observable local universe. It was shown that requesting
the invariance under the change of such residual coordinate degrees of freedom in the local universe
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can ensure the IR regularity and the absence of the secular growth [62,63,65–67]. This is, so to
speak, because we can absorb the singular IR contributions by the residual coordinate degrees of
freedom (see also Refs. [77,78]). This issue is reviewed in Ref. [67]. It has been pointed out that the
residual coordinate degrees of freedom can also affect the IR behavior of the graviton [63,67]. In
the present paper, we will show that, when we require the invariance under the residual coordinate
transformations, the IR regularity and the absence of secular growth are also guaranteed for the
graviton loops. (The IR issues about the entropy perturbation were studied in Refs. [79,80] and those
about a test scalar field in the de Sitter background were studied in Refs. [81–86].)

For the graviton, the relation between the IR divergence and the gauge artifact has been discussed
during the past few decades. Allen showed that the IR divergence in the free graviton propagator that
appears for some particular values of the gauge parameter can be understood from the fact that the
gauge-fixing term does not select a unique gauge for these particular values of the gauge parame-
ter [87]. (See also Refs. [88–91].) Even if we properly choose the gauge parameter, it is known that
the transverse traceless mode can still suffer from IR divergence through the loop corrections, which
is the target of this paper. The connection between the IR divergence and the gauge artifact was also
pointed out in Ref. [92], where the secular growth predicted by Tsamis and Woodard in Ref. [24]
was reexamined. It was shown that the spatially averaged Hubble expansion computed by Tsamis
and Woodard is not invariant under the change of the time slice and hence the screening effect that
shows up in their averaged Hubble parameter suffers from the gauge artifact [92,93]. Meanwhile, in
Ref. [92], it was shown that the locally defined Hubble expansion, which may mimic the observable
Hubble rate, becomes time-independent. This example suggests that computing observable quanti-
ties, unaffected by the influence from the outside of the observable region, will play an important
role in quantifying the IR effects of the graviton [92] (see also Ref. [94]).

This paper is organized as follows. In Sect. 2, we will briefly show how the IR divergence and the
secular growth can appear when we naively compute the loop corrections for the curvature and gravi-
ton perturbations. Then, in Sect. 2.2, we will point out the presence of the residual coordinate degrees
of freedom in the local observable universe, which describes the influence from the outside of the
observable region. One way to preserve the invariance under the residual coordinate transformations
will be discussed in Sect. 2.3. Using the prescription that will be introduced in Sect. 3, we will show,
in Sects. 4 and 5, that when we choose the Euclidean vacuum as the initial state, IR regularity and
the absence of secular growth are ensured. In this paper, we will discuss the inflationary universe
that contains a single scalar field and we will not directly discuss the pure gravity setup, although our
argument may also provide some insight into the latter case.

2. Overview of IR issues

In this section, we will give an overview of the IR issues of the curvature perturbation and the gravi-
ton perturbation. In this paper, we consider a standard single-field inflation model whose action is
given by

S =
M2

pl

2

∫ √−g[R − gμνφ,μφ,ν − 2V (φ)]d4x, (2.1)

where Mpl is the Planck mass and φ is the dimensionless scalar field, which is an ordinary scalar
field divided by Mpl. We choose the time slicing by adopting the uniform field gauge

δφ = 0. (2.2)
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Under the ADM metric decomposition, which is given by

ds2 = −N 2dt2 + gi j (dxi + N i dt)(dx j + N j dt), (2.3)

we further decompose the spatial metric gi j as

gi j = e2(ρ+ζ )γi j ≡ e2(ρ+ζ )
[
eδγ

]
i j , (2.4)

where a ≡ eρ is the scale factor, ζ is the so-called curvature perturbation, and δγi j is the graviton
perturbation that satisfies the transverse and traceless condition

δγi i = 0, ∂iδγ
i
j = 0. (2.5)

Since δγi j is traceless, we find det γ = 1.

2.1. Various divergences from the curvature and graviton perturbations

In this subsection, after we briefly review the linear perturbation theory for the scalar and tensor
perturbations, we will summarize several different origins of the divergences that possibly appear in
the loop corrections of these two perturbations.

2.1.1. Scalar perturbation. The quadratic action for the scalar perturbation ζ , which describes
the evolution of the interaction picture field ζI , is given by

Ss
0 = M2

pl

∫
dt

∫
d3xe3ρε1

[
ζ̇ 2

I − e−2ρ(∂iζI )
2
]
, (2.6)

and its equation of motion is given by
[
∂2

t + (3 + ε2)ρ̇∂t − e−2ρ∂2
]
ζI = 0. (2.7)

Here, the dot denotes the differentiation with respect to cosmological time t . Here, for notational
convenience, we introduce the horizon flow functions as

ε1 ≡ ρ̇
d

dρ

1

ρ̇
, εn ≡ 1

εn−1

d

dρ
εn−1, (2.8)

with n ≥ 2. We do not assume that these functions are small, leaving the background inflation model
unrestricted.

For quantization, we expand the curvature perturbation ζI (x) as

ζI (x) =
∫

d3k

(2π)3/2 eik·xvs
k(t)ak + (h.c.), (2.9)

where ak is the annihilation operator, which satisfies
[
ak, a†

k′
]

= δ(3)(k − k′), [ak, ak] = 0. (2.10)

The mode function vs
k(t) should satisfy

[
∂2

t + (3 + ε2)ρ̇∂t + (ke−ρ)2
]
vs

k(t) = 0, (2.11)
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and is normalized as
(
vs

keik·x, vs
peip·x

)
= (2π)3δ(3)(k − p), (2.12)

where the Klein–Gordon inner product is defined by

( f1, f2) ≡ −2i M2
pl

∫
d3xe3ρε1{ f1∂t f ∗

2 − (∂t f1) f ∗
2 }. (2.13)

Notice that Eq. (2.11) states that vs
k(t) becomes time-independent in the IR limit k/(eρρ̇) 	 1. When

we choose the mode function for the adiabatic vacuum, which approaches the WKB solution in the
UV limit k/(eρρ̇) 
 1, the power spectrum becomes almost scale invariant in the IR limit as

Ps(k) ≡ |vs
k(t)|2 = 1

4k3

1

ε1(tk)

(
ρ̇(tk)

Mpl

)2 [
1 + O

(
(k/eρρ̇)2

)]
, (2.14)

where we have evaluated vs
k(t) at the Hubble crossing time t = tk with k = eρ(tk)ρ̇(tk), since the

curvature perturbation gets frozen rapidly after tk .
When we assume that the corresponding free theory has an almost scale-invariant spectrum in

the IR limit, a naive consideration can easily lead to the IR divergence due to loop corrections. For
instance, one may expect that an interaction vertex that contains the curvature perturbation without
the derivative operator yields the factor

〈ζ 2
I (x)〉 =

∫
d3k

(2π)3 Ps(k), (2.15)

whose momentum integral logarithmically diverges in the IR as
∫

d3k/k3 for the scale-invariant
spectrum. Even if the spectrum is not exactly scale invariant as in Eq. (2.14), the deep IR modes
give a significant contribution to Eq. (2.15). Following Ref. [67], we refer to such unsuppressed
contribution due to the integral over small k as the IR divergence (IRdiv).

When we introduce an IR cutoff for the regularization, say, at the Hubble scale at the initial time ti ,
the super-Hubble (superH) modes in the variance of ζI give rise to secular growth that is logarithmic
in the scale factor a = eρ as

〈ζ 2
I (x)〉superH ∝

∫ eρ(t)ρ̇(t)

eρ(ti )ρ̇(ti )

dk

k
= ln

(
eρ(t)ρ̇(t)

eρ(ti )ρ̇(ti )

)

. (2.16)

Then, the loop corrections, which are suppressed by an extra power of the amplitude of the power
spectrum (ρ̇/Mpl)

2, may dominate if the inflationary epoch lasts sufficiently long, leading to the
breakdown of the perturbative expansion. We refer to the modes with eρ(ti )ρ̇(ti ) � k � eρ(t)ρ̇(t) as
the transient IR (tIR) modes and refer to the enhancement of the loop contributions due to the tIR
modes as the IR secular growth (IRsec). From the definition, it is clear that the tIR modes were in the
sub-Hubble (subH) range at the initial time ti , but have been transmitted into the superH ones by the
time t . The influence of the IRsec has been discussed by introducing an IR cutoff in Refs. [95–102].
We refer to the case when both the IRdiv and the IRsec are absent as IR regular.
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So far, we have discussed the secular growth that originates from the momentum integration, keep-
ing the time coordinates of the interaction vertices fixed. However, the time integration can also yield
secular growth. If the contribution from the interaction vertex in the far past remains unsuppressed,
it will diverge when we send the initial time to the infinite past. We refer to the secular growth due to
the temporal integral as the SG, discriminating it from the previously discussed IRsec. (Regarding
the SG, see also Refs. [103,104].)

2.1.2. Graviton perturbation. The quadratic action for the graviton perturbation δγi j , which
describes the evolution of the interaction picture field δγi j I , is given by

St
0 =

M2
pl

8

∫
dt

∫
d3xe3ρ

[
δγ̇ i

j I δγ̇
j

i I − e−2ρ∂ lδγ i
j I ∂lδγ

j
i I

]
, (2.17)

and its equation of motion is given by

[
∂2

t + 3ρ̇∂t − e−2ρ∂2
]
δγi j I = 0. (2.18)

We quantize δγi j I as

δγ i
j I (x) =

∑

λ=±

∫
d3k

(2π)3/2 v
t (λ)
k (t)ei

j (k, λ)eik·xa(λ)
k + (h.c.), (2.19)

where λ labels the helicity, ei j (k, λ) is the transverse and traceless polarization tensor that satisfies

ei
i (k, λ) = ki ei j (k, λ) = 0, ei j (k, λ)ei j (k, λ′) = δλ,λ′, (2.20)

and a(λ)
k is the annihilation operator that satisfies

[
a(λ)

k , a(λ′)†
p

]
= δλλ′δ(3)(k − p). (2.21)

When the graviton perturbation is isotropic, its variance (in the coincidence limit) is given by

〈δγi j I (x)δγkl I (x)〉 = 1

4

∫
d3k

(2π)3

(Pik Pjl + PilP jk − Pi jPkl
)

Pt (k), (2.22)

where Pi j is the transverse traceless projection tensor:

Pi j ≡ δi j − ki k j

k2 , (2.23)

and Pt (k) is the power spectrum of the graviton perturbation:

Pt (k) = 2|vt
k(t)|2. (2.24)
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Here, the factor 2 shows the helicity number. Since the equation for v
t (λ)
k is identical to that for a

massless scalar field, the graviton spectrum in the adiabatic vacuum is almost scale invariant in the
IR limit as

Pt (k) = 4

k3

(
ρ̇(tk)

Mpl

)2 [
1 + O

(
(k/eρρ̇)2

)]
. (2.25)

Integrating over the angular coordinates in Eq. (2.22), we obtain

〈δγi j I (x)δγkl I (x)〉 = 1

20π2

(

δikδ jl + δilδ jk − 2

3
δi jδkl

)∫
dk

k
k3 Pt (k). (2.26)

Similarly to the curvature perturbation, we find that the IR and tIR modes in Eq. (2.26) yield the IRdiv
and IRsec, respectively. The influence of the IRsec due to graviton loops is discussed in Ref. [98].
Meanwhile, the interaction vertices with the graviton can also yield the SG in the same way as the
curvature perturbation.

2.2. Residual gauge degrees of freedom and IR issues

2.2.1. Solving the constraint equations. Eliminating the Lagrange multipliers N and Ni , we
derive the action written solely in terms of the dynamical fields ζ and δγi j [105]. In the gauge defined
by Eqs. (2.2) and (2.5), the constraint equations are given by

sR − 2V − (κ i jκi j − κ2) − N−2φ̇2 = 0, (2.27)

D j (κ
j
i − δ

j
iκ) = 0, (2.28)

where Di is the covariant differentiation associated with the spatial metric gi j , and

κi j ≡ 1

2N
(ġi j − Di N j − D j Ni ) and κ ≡ gi jκi j (2.29)

are the extrinsic curvature and its trace, respectively. We expand the metric perturbations as

ζ = ζI + ζ2 + · · · , (2.30)

δγi j = δγi j I + δγi j2 + · · · , (2.31)

N = 1 + N1 + N2 + · · · , (2.32)

Ni = Ni1 + Ni2 + · · · , (2.33)

where we use the subscript I to express the first-order curvature and graviton perturbations, since
they correspond to the interaction picture fields. Then, the nth-order Hamiltonian constraint and the
momentum constraints are expressed in the form

V Nn − 3ρ̇ζ̇n + e−2ρ∂2ζn + ρ̇e−2ρ∂ i Nin = Hn, (2.34)

4∂i
(
ρ̇Nn − ζ̇n

) − e−2ρ∂2 Nin + e−2ρ∂i∂
j N jn = Min, (2.35)
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where ∂2 denotes the Laplacian. For n = 1, H1 and Mi1 are 0 and for n ≥ 2, Hn and Min consist of
n interaction picture fields (either ζI or δγi j I ).

Since the constraint equations (2.34) and (2.35) are elliptic-type equations, we need to employ
a (spatial) boundary condition to determine a solution for Nn and Nin . A general solution for
Eqs. (2.34) and (2.35) in the absence of the graviton perturbation can be found in the Appendix
of Ref. [66]. An extension to include the graviton perturbation proceeds in a straightforward manner
and the general solution is given as

Nn = 1

ρ̇
ζ̇n + V

4ρ̇
e−2ρ

(
e2ρ∂−2∂ i Min − Gn

)
, (2.36)

Nin = ∂i∂
−2

[
φ̇2

2ρ̇2 e2ρζ̇n − 1

ρ̇
∂2ζn + e2ρ

ρ̇
Hn − V

4ρ̇2

{
e2ρ∂−2∂ j M jn − Gn

}]

−
(
δ

j
i − ∂i∂

−2∂ j
){

e2ρ∂−2
(

M jn − 4ρ̇

V
∂ j Hn

)

− G jn

}

, (2.37)

where Gn(x) and Gin(x) are arbitrary solutions of the Laplace equations

∂2Gn(x) = 0, ∂2Gin(x) = 0, (2.38)

and are nth order in perturbation. Since the function Gin(x) contributes only through its transverse
part, the number of introduced independent functions is three. By employing the appropriate bound-
ary conditions at spatial infinity, the solutions of elliptic-type equations are uniquely determined.
Substituting the thus-obtained expression for N and Ni , the action S = ∫

d4xL[ζ, δγi j , N , Ni ] can
be, in principle, expressed only in terms of the dynamical fields ζ and δγi j . Then, the evolution of
ζ and δγi j is governed by the non-local action with the inverse Laplacian.

As was pointed out in Refs. [62,63], the inverse Laplacian ∂−2 may enhance the singular behavior
of perturbation in the IR limit by introducing a term with the factor 1/k2 where k is a comoving
momentum of the constituent fields. (A detailed explanation of this is given in the review article
[67].) We will return to this issue in Sect. 4.2.2.

2.2.2. Observable local patch. To discuss the observable quantities, we introduce the observable
region as the region causally connected to us. We express the observable region on the time slice at
the end of inflation t f and its comoving radius as Ot f and Lt f , respectively. The causality requires
that Lt f should satisfy

Lt f �
∫ t0

t f

dt

eρ(t)
,

where t0 is the present time. The cosmological observations can measure the n-point functions of the
fluctuation with the arguments (t f , x) contained within the observable region Ot f . For later use, we
refer to the causal past of Ot f as the observable region O and refer to the intersection between O and
a t-constant slice t as Ot . We approximate the comoving radius of the region Ot as

Lt ≡ Lt f +
∫ t f

t

dt ′

eρ(t ′)  Lt f + 1

eρ(t)ρ̇(t)
. (2.39)

8/47
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As Lt is approximated by Lt  1/(eρρ̇) in the distant past, the effects of the superH modes with
k � eρ(t)ρ̇(t) can be understood as the influence from the outside of the observable region O. These
modes potentially affect the fluctuations in Ot f in two ways. One is due to the non-local interaction
through the inverse Laplacian ∂−2, while the other is through the Wightman functions

G+s(x1, x2) ≡ 〈ζI (x1)ζI (x2)〉 (2.40)

and

G+t
i jkl(x1, x2) ≡ 〈δγi j I (x1)δγkl I (x2)〉. (2.41)

Even if the spatial distance |x1 − x2| is bounded from above by confining both x1 and x2 within
the observable region, the contribution to the Wightman functions from the superH modes with
k ≤ |x1 − x2|−1 is not suppressed. The superH modes make these Wightman functions divergent
for a scale-invariant or red-tilted spectrum. (See Eqs. (2.16) and (2.26).) The regularity of the contri-
bution from the superH modes can be verified only if their contribution is suppressed by an additional
factor of k.

2.2.3. Residual gauge degrees of freedom. In Sect. 2.2.2, we introduced the observable region
O, which is a limited portion of the whole universe. We claim that the observable quantities must
be composed of fluctuations within O. Since only the fluctuations within O are relevant, there is no
reason to request the regularity of the fluctuations at spatial infinity in solving the elliptic-type con-
straint equations (2.34) and (2.35) (at least, at the level of the Heisenberg equations of motion). Then,
there arise degrees of freedom in choosing the boundary conditions, which are described by arbitrary
homogeneous solutions of the Laplace equation, Gn(x) and Gin(x) in Eqs. (2.36) and (2.37). These
arbitrary functions in N and Ni can be understood as the degrees of freedom in choosing the coor-
dinates. Since the time slicing is fixed by the gauge condition (2.2), the residual gauge degrees of
freedom can reside only in the spatial coordinates xi .

Let us consider these residual coordinate transformations associated with Gn(x) and Gin(x). We
add the subscript gl to the original global coordinate for the flat Friedmann–Lemaître–Robertson–
Walker universe with metric perturbations in order to reserve the simple notation x for the coordinates
after transformation. As we have shown in Refs. [62,63], the coordinate transformations xgl → x are
specified as

xi
gl = xi −

∞∑

m=1

si
j1... jm (t)x j1 . . . x jm + · · · , (2.42)

where si
j1... jm (t) is symmetric over js with s = 1, . . . , m and satisfies δ j j ′si

j1... j ... j ′... jm (t) = 0. Here,
we abbreviated the non-linear terms in Eq. (2.42). These transformations diverge at spatial infinity, no
matter how small the coefficients are. Nevertheless, within the local region O, the magnitude of the
coordinate transformations (2.42) can be kept perturbatively small. Since the transformations (2.42)
are nothing but coordinate transformations, the Heisenberg equations for a diffeomorphism invariant
theory remain unchanged under these transformations.

We should note that, once we substitute the expressions for N and Ni to obtain the equation of
motion solely written in terms of the curvature perturbation ζ and the graviton perturbation δγi j , the
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symmetry under the residual coordinate transformations is lost, because N and Ni depend on the
specified boundary conditions. In this sense the coordinate transformations (2.42) should be distin-
guished from the standard gauge transformations that leave the overall action invariant. Therefore,
to avoid confusion, we distinguish the coordinate transformations (2.42), writing it in italics as the
gauge transformation.

Among the residual gauge transformations, we focus on

xi
gl = e−s(t)

[
e−S(t)/2

]i

j
x j + O

(
S2

)
, (2.43)

which is concerned with the IR contributions of the curvature and graviton perturbations. Here,
s(t) is a time-dependent function and Si j (t) is a time-dependent traceless tensor. When we perform
the time-dependent dilatation transformation, the homogeneous part of the curvature perturbation
transforms as

ζ → ζ − s(t). (2.44)

(The precise meaning of this transformation will be explained later.) In Refs. [65,66], we showed
that preserving the invariance under the dilatation transformation parametrized by s(t) is crucial
in proving the regularity of the loops of the curvature perturbation. Intriguingly, the transformation
(2.43) shifts the graviton perturbation as

δγi j → δγi j − Si j (t) + O
(
δγ S, S2

)
(2.45)

at the linear level, which is analogous to the shift for ζ . Although the non-linear extension of the
above transformation is rather non-trivial, this observation suggests that an analogous proof of the
IR regularity may also work for graviton loops. The relation between the IRdiv due to graviton loops
and the homogeneous shift (2.45) has been pointed out several times. Gerstenlauer et al. [69] and
Giddings and Sloth [70] showed that the leading IRdiv of the graviton loops can be attributed to
the change of the spatial coordinates (2.43) with s(t) = 0 due to the accumulated effect of the IR
graviton.

2.3. Genuine gauge invariance and quantization

The observable fluctuations should not be affected by the residual gauge degrees of freedom, which
were discussed in the preceding subsection. In this subsection we discuss how to introduce a quantity
that is invariant under the residual gauge transformations. We call such a quantity a genuinely gauge

invariant quantity. One may think that the genuine gauge invariance will be preserved by fixing the
residual gauge degrees of freedom completely. If we could perform a complete gauge fixing by
employing appropriate boundary conditions for N and Ni at the boundary of the observable regionO,
the IRdiv and IRsec will not appear, because the maximum wavelength of fluctuations in such a gauge

would be bounded approximately by the size ofO. We pursued this possibility in Refs. [61,67]. When
we perform the quantization after complete gauge fixing or, equivalently, perform the quantization
within the local observable region O, the global translation invariance is not easily preserved any
longer, leading to technical complexities. To avoid the complexities, in Ref. [61], first we performed
the quantization in the whole universe, and then we fixed the coordinates by carrying out the residual
gauge transformation. In this manner we showed that the absence of the IRdiv and IRsec is guaranteed
if the initial fluctuation does not suffer from these IR pathologies. However, it turned out that the IRdiv
can arise even in the initial fluctuation after we perform the residual gauge transformation to employ
complete gauge fixing [67].
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Here, following Refs. [62,63], we perform the quantization, taking into account the whole universe
without fixing the residual gauge degrees of freedom, which allows us to keep the global translation
invariance manifestly. Then, we construct a genuine gauge invariant operator and choose an initial
state that will be understood as the genuine gauge invariant state. Since the time slice is uniquely
specified by the gauge condition (2.2), the genuine gauge invariance will be ensured when a quantity
preserves the invariance under a change of spatial coordinates.

To construct a genuinely gauge invariant operator, we consider correlation functions for the scalar
curvature of the induced metric on a φ = constant hypersurface, sR. Since sR itself transforms as
a scalar quantity under spatial coordinate transformations, the correlation functions of sR are not
invariant. However, the n-point function of sR will become gauge invariant, if we specify its n argu-
ments in a coordinate-independent manner. The distances measured by the spatial geodesics that
connect all the pairs of n points characterize the configuration in a coordinate-independent manner.
Here, we adopt a slightly easier way, specifying the n spatial points by the geodesic distances and
the directional cosines that are measured from an arbitrarily chosen reference point. Although the
choice of the reference point and the frame is a part of the residual gauge, this ambiguity will not
matter as we will choose a quantum state that does not break the spatial homogeneity and isotropy
of the universe.

Our geodesic normal coordinates are introduced by solving the spatial geodesic equation on each
time slice:

d2xi
gl

dλ2 + s�i
jk

dx j
gl

dλ

dxk
gl

dλ
= 0, (2.46)

where s�i
jk is the Christoffel symbol for the 3D spatial metric e2ζ γi j , and λ is the affine parameter.

The initial “velocity” is given by

dxi
gl(x, λ)

dλ

∣
∣
∣
∣
λ=0

= e−ζ(λ=0) [γ (λ = 0)]i
j x j . (2.47)

A point x in the geodesic normal coordinates is identified with the end point of the geodesic xi
gl

(x, λ = 1) in the original coordinates. Perturbatively expanding xi
gl in terms of xi , we obtain

xi
gl = xi + δxi (x).

Notice that the relation between xgl and x depends on the metric perturbations, which become quan-
tum operators after quantization. Finally, we find that, by means of the geodesic normal coordinates,
the genuinely gauge invariant variable is given by

gR(x) ≡ sR(t, xi
gl(x)) = sR(t, xi + δxi (x)). (2.48)

In order to calculate the n-point functions of gR, we also need to specify the quantum state that
is invariant under the residual gauge transformations. However, in the present approach, we cannot
directly discuss this invariance as a condition for allowed quantum states. This is because the residual
gauge degrees of freedom cease to exist when we quantize fields in the whole universe. Let us recall
the discussion in the case of the curvature perturbation ζ [65–67]. By construction, the operator
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gR is not affected by the residual gauge degrees of freedom. However, the n-point functions of gR
can be correlated to the fields in the causally disconnected region. In Sect. 2.2.3, we discussed two
ways in which the outside of the observable region O can affect the fluctuation in O. One is through
the boundary conditions for the inverse Laplacian ∂−2. Since changing these boundary conditions
is nothing but performing the residual gauge transformation (see Sect. 4.2.2), the n-point functions
of the genuine gauge invariant curvature perturbation gR are not affected even if we restrict the
integration region of ∂−2 to the region O. Therefore, as long as we consider a genuinely gauge

invariant operator, the inverse Laplacian ∂−2 never gives the conjunction between the inside and the
far outside of O. The other leak of the influence from the outside of O is due to the long-range
correlation through the Wightman functions, which can remain even if we consider genuinely gauge

invariant variables. Therefore, this long-range correlation may give a possible origin for the IRdiv and
IRsec. In the case with the curvature perturbation ζ , it is shown that requesting the IR regularity by
suppressing the long-range correlation constrains the quantum state of the inflationary universe [65].
Interestingly, the IR regularity condition on quantum states can be interpreted as the condition that
requests the quantum states to be unaffected by the time-dependent dilatation transformation, which
is one of the residual gauge degrees of freedom [65]. In Appendix A, we show that a similar genuine
gauge invariance condition on quantum states is derived from the IR regularity condition for the
graviton perturbation as well.

3. Preliminaries

In this section, as preparation for analyzing the n-point functions of the genuine gauge invariant
curvature perturbation, we introduce a family of canonical variables. First, in Sect. 3.1, we describe
the basic formulation for the canonical quantization in terms of the original set of variables ζ , δγi j

and their conjugate momenta. In Sect. 3.2, we introduce a family of alternative sets of canonical
variables, in terms of which the proof of the IR regularity becomes more transparent.

3.1. Canonical quantization

For notational simplicity, we suppress the subscript “gl” in this subsection. In the following discus-
sion, we express the action for the curvature perturbation ζ and the graviton perturbation δγi j derived
by solving the Hamiltonian and momentum constraint equations as

S =
∫

dt
∫

d3xLdyn
[
ζ(x), ∂tζ(x), δγi j (x), ∂tδγi j (x)

]
, (3.1)

which includes the non-local integration operator ∂−2. Here, Ldyn denotes the functional form of
the Lagrangian density obtained after we eliminate the Lagrange multipliers N and Ni . We also
introduce the Hamiltonian H and the Hamiltonian density H as

H(t) ≡
∫

d3xπ(x)∂tζ(x) +
∫

d3xπ i j (x)∂tδγi j (x)

−
∫

d3xLdyn
[
ζ(x), ∂tζ(x), δγi j (x), ∂tδγi j (x)

]

≡
∫

d3xH[ζ(x), π(x), δγi j (x), πi j (x)], (3.2)
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where we have introduced the conjugate momenta as

π(x) ≡ ∂Ldyn(x)

∂ (∂tζ(x))
, π i j (x) ≡ ∂Ldyn(x)

∂
(
∂tδγi j (x)

) . (3.3)

This set of canonical variables � ≡ {ζ, π, δγi j , πi j } should satisfy the standard commutation
relations

[ζ(t, x), π(t, y)] = iδ(3)(x − y), [ζ(t, x), ζ(t, y)] = [π(t, x), π(t, y)] = 0, (3.4)

and

[
δγi j (t, x), πkl(t, y)

]
= iδ(3)kl

i j (x − y),
[
δγi j (t, x), δγkl(t, y)

] =
[
π i j (t, x), πkl(t, y)

]
= 0,

(3.5)

where

δ
(3)kl
i j (x − y) ≡ 1

2

∑

λ=±

∫
d3k

(2π)3 eik·(x−y)ei j (k, λ)ekl(k, λ) (3.6)

is the tensorial delta function with the transverse traceless projection.

3.2. Canonical transformation associated with residual gauge transformations

In this subsection, we introduce a family of alternative sets of canonical variables

�̃ ≡ {ζ̃ , π̃ , δγ̃i j , π̃i j } (3.7)

whose Hamiltonian H̃(t) is written only in terms of

ζ̃ (x) − s(t), π̃(x), δγ̃i j (x) − Si j (t), π̃ i j (x), (3.8)

where s(t) and Si j (t) are an arbitrary time-dependent function and a symmetric-traceless matrix,
respectively. We treat both s(t) and Si j (t) perturbatively, assuming that they are as small as metric
perturbations. We also show that s(t) and Si j (t) without time differentiation are only contained in
the Hamiltonian H̃(t) only in the combination described in Eq. (3.8).

3.2.1. Introducing new canonical variables. For illustrative purposes, we first consider a coor-
dinate transformation with s and Si j time independent, which induces constant shifts ζ̃ (x) − s and
δγ̃i j (t, x) − Si j . To be concrete, we consider the coordinate transformation xgl → x with

xi
gl ≡ e−s�i

T j x
j ≡ �i

j x
j , (3.9)

where �i
T j is a functional of Si j that satisfies

det �T = 1 (3.10)
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and

�i
T j = δi

j − 1

2
Si

j + O(S2). (3.11)

Notice that the coordinate transformation xgl → x does not change the boundary condition of N and
Ni , and hence it is one of the gauge transformations that leave the action invariant. For the time being,
we will not specify the terms of O(S2) in �i

T j .
Next, we consider the change of the spatial metric gi j under the gauge transformation (3.9). As

addressed in Ref. [65], when we neglect the graviton perturbation, setting �i
T j = 0, the dilatation

transformation changes the spatial metric as

e2(ρ+ζ(xgl))δi j dxi
gldx j

gl = e2(ρ+ζ̃ (x)−s)δi j dxi dx j ,

where we have defined ζ̃ (x) ≡ ζ(xgl). We find that the curvature perturbation ζ(xgl) transforms to
ζ̃ (x) − s, which suggests that this scaling transformation can be used to find the canonical variables
�̃ that are subjected to the necessary constant shift.

Compared with the curvature perturbation, finding a transformation that shifts the graviton pertur-
bation by −Si j is much more non-trivial, particularly at non-linear order. Therefore, introducing
the transverse traceless tensor δγ̃i j , we express the spatial metric obtained after the coordinate
transformation (3.9) as

g̃i j (x) ≡ e2{ρ+ζ̃ (x)−s}γ̃i j (x) ≡ e2{ρ+ζ̃ (x)−s}
[
eδγ̃ (x)−S

]

i j
, (3.12)

with the requested shift by −Si j . In the following, we assume that s(t) and Si j (t) are of the same order
as ζ̃ and δγ̃i j . From gi j dxi

gldx j
gl = g̃i j dxi dx j , we find that δγ̃i j (x) should be related to δγi j (xgl) as

γ̃i j (x) = γkl(xgl)(�T )k
i (�T )l

j . (3.13)

Once the functional form of �i
T j is determined, Eq. (3.13) specifies δγ̃i j order by order in

perturbation. By expanding the inverse matrix of �i
T j as

(�−1
T )i j = δi j + 1

2
Si j + O(S2),

Eq. (3.13) leads to

δγi j (xgl) = δγ̃i j (xgl) + O
(
δγ S, S2

)
. (3.14)

On the right-hand side, we have explicitly written only the linear order in perturbation. Since the
left-hand side of Eq. (3.14) is independent of Si j , the field δγ̃i j should be defined so that the Si j

dependence on the right-hand side is canceled. In particular, Eq. (3.14) states that δγi j (xgl) should
agree with δγ̃i j (xgl) at the linear order in perturbation. Since the diffeomorphism invariance of the
action implies that the Lagrangian densities for gi j and g̃i j should take the same functional form,
using the Lagrangian density Ldyn in Eq. (3.1), we can express the action for g̃i j as

S =
∫

dt
∫

d3xLdyn

[
ζ̃ (x) − s, ∂t ζ̃ (x), δγ̃i j (x) − Si j , ∂tδγ̃i j (x)

]
. (3.15)
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Next, we extend the above argument to time-dependent transformations with

xi
gl ≡ e−s(t)�i

T j (t)x j ≡ �i
j (t)x j , (3.16)

where �i
T j (t) is a functional of Si j (t) whose explicit form will be specified later. Similarly to the

case of constant �i
j , we introduce a new set of canonical variables �̃ by

ζ̃ (x) ≡ ζ(xgl), (3.17)

γ̃i j (x) ≡
[
eδγ̃ (x)−S(t)

]

i j
≡ γkl(xgl)(�T )k

i (�T )l
j , (3.18)

with the formal definition of the conjugate momenta given by

π̃(x) ≡ ∂Ldyn(x)

∂(∂t ζ̃ (x))
, π̃ i j (x) ≡ ∂Ldyn(x)

∂(∂tδγ̃i j (x))
. (3.19)

In general, the residual gauge transformation is not well defined in the whole universe, since the
transformation can diverge at spatial infinity. However, the residual gauge transformations (3.16),
exceptionally, keep the variables finite in the whole universe, as is manifest from the above relations.
Therefore, we can consistently discuss quantum theory in terms of the set of canonical variables �̃

as well.

3.2.2. Commutation relations. Next, we will show that the variables �̃ = {ζ̃ , π̃ , δγ̃i j , π̃i j },
defined in Eqs. (3.17), (3.18), and (3.19), satisfy the standard commutation relation. Because of
the time variation of �i

j , the partial time derivative with the original global spatial coordinates xgl

fixed differs from the one with the new coordinates x fixed. We choose the transformation matrix
�i

T j such that the difference between the two partial time derivative operations does not give Si j (t)

without the time derivative. Then, we find that �i
T j should satisfy

d

dt
�T [S(t)]i

j = −1

2
�T [S(t)]i

k Ṡ(t)k
j , (3.20)

or equivalently

d

dt
�−1

T [S(t)]i
j = 1

2
Ṡ(t)i

k�
−1
T [S(t)]k

j . (3.21)

In fact, with this choice of �i
T j , we obtain

∂tζ(t, xgl) = ∂t ζ̃ (x) +
[

ṡ(t)1 + Ṡ(t)

2

]n

m
xm ∂

∂xn
ζ̃ (x), (3.22)

∂tγi j (t, xgl) =
{

∂t γ̃kl(x) + Ṡ(km(t)γ̃l )m(x) +
[

ṡ(t)1 + Ṡ(t)

2

]n

m
xm ∂

∂xn
γ̃kl(x)

}
(
�−1

T

)k
i

(
�−1

T

)l
j ,

(3.23)

where 1 denotes the unit matrix and the round brackets on indices represent symmetrization. The
terms with spatial derivatives on the right-hand sides of Eqs. (3.22) and (3.23) stem from the
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difference between the two partial time derivative operators. Since Eq. (3.20) implies

d

dt
det �T [S(t)] = 0, (3.24)

the condition (3.10) can be extended to the time-dependent case as

det �T [S(t)] = 1. (3.25)

Using Eq. (3.22), we find that the conjugate momentum π̃ is related to π as

π̃(x) = ∂Ldyn(x)

∂[∂t ζ̃ (x)]
= e−3s(t) ∂Ldyn(xgl)

∂[∂tζ(xgl)]
= e−3s(t)π(xgl). (3.26)

In the second equality we have used

[det �−1(t)]Ldyn(x) = e3s(t)Ldyn(x) = Ldyn(xgl), (3.27)

which is derived by changing the spatial coordinates in the action from x to xgl. Deriving the relation
between π̃ i j and π i j is more non-trivial, but using

∂(∂tδγi j (xgl))

∂(∂tδγ̃kl(x))
= ∂(∂t γ̃mn(x))

∂(∂tδγ̃kl(x))

∂(∂tγpq(xgl))

∂(∂t γ̃mn(x))

∂(∂tδγi j (xgl))

∂(∂tγpq(xgl))
= ∂δγi j (xgl)

∂δγ̃kl(x)
, (3.28)

where in the second equality we have used

∂(∂tγi j (xgl))

∂(∂tδγkl(xgl))
= ∂γi j (xgl)

∂δγkl(xgl)
,

∂(∂t γ̃i j (x))

∂(∂tδγ̃kl(x))
= ∂γ̃i j (x)

∂δγ̃kl(x)
, (3.29)

and

∂(∂tγi j (xgl))

∂(∂t γ̃kl(x))
= ∂γi j (xgl)

∂γ̃kl(x)
= (

�−1
T

)k(

i
(
�−1

T

)l

j

), (3.30)

which can be derived by using Eq. (3.23), we obtain

π̃ i j (x) = ∂Ldyn(x)

∂(∂tδγ̃i j (x))
= e−3s(t) ∂(∂tδγkl(xgl))

∂(∂tδγ̃i j (x))

∂Ldyn(xgl)

∂(∂tδγkl(xgl)
= e−3s(t) ∂δγkl(xgl)

∂δγ̃i j (x)
πkl(xgl).

(3.31)

Here, we simply assume that the operator ordering is properly chosen.
Once we establish the relations between the two sets of the canonical variables, � and �̃, the

commutation relations for � yield the commutation relations for �̃. Using Eqs. (3.4), (3.17), and
(3.26), we obtain

[
ζ̃ (t, x), π̃(t, y)

]
= ie−3s(t)δ(3)(xgl − ygl) = iδ(3) (x − y) . (3.32)
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Similarly, using Eqs. (3.5), (3.18), and (3.31), we find

[
δγ̃i j (t, x), π̃kl(t, y)

]
= ie−3s(t) ∂δγ̃i j (t, x)

∂δγmn(t, xgl)

∂δγpq(t, ygl)

∂δγ̃kl(t, y)
δ
(3)pq
glmn (xgl − ygl)

= iδ(3)kl
i j (x − y) . (3.33)

In the second equality we have noted that the tensorial delta function δ
(3) kl
gli j (xgl − ygl), given in

Eq. (3.6), can be expressed as

δ
(3) kl
gli j (xgl − ygl) = 1

2

∑

λ=±

∫
d3k

∂δγi j (t, xgl)

∂�(λ)(t, k)

∂�(λ)(t, k)

∂δγkl(t, ygl)
= 1

2

δ(δγi j (t, xgl))

δ(γkl(t, ygl))
,

by expanding δγi j (xgl) as

δγi j (t, xgl) =
∑

λ=±

∫
d3k

(2π)3/2 eik·xglei j (k, λ)�(λ)(t, k),

and we have used the factor e−3s(t) to change the argument from xgl to x. The remaining commutation
relations can be shown in a similar way and hence we can verify that �̃ actually qualifies as a set of
canonical variables.

Solving Eq. (3.20), we can determine the transformation matrix �i
T j (t). As a boundary condition

to solve the first-order differential equation, we employ the condition

�i
T j (t f ) =

[
e−S(t f )/2

]i

j
, (3.34)

at the end of inflation t f . Since we have chosen �i
T j (t) so as to satisfy det �T (t f ) = 1, Eq. (3.24)

guarantees that the condition (3.25) holds for all t . Notice that we can formally solve Eq. (3.20) as

�i
T j (t) =

[

�T (t f )T e
1
2

∫ t f
t dt ′ Ṡ(t ′)

]i

j
, (3.35)

using the time-ordered product denoted by the operator T . Perturbatively expanding �i
T j (t) with

respect to Si j (t) to the next to leading order, we obtain

�i
T j (t) = δi

j − 1

2
Si

j (t) + O
(

S2
)

. (3.36)

3.2.3. Hamiltonians. Next, we compute the Hamiltonian for �̃ defined by

H̃(t) ≡
∫

d3xπ̃(x)∂t ζ̃ (x) +
∫

d3xπ̃ i j (x)∂tδγ̃i j (x) −
∫

d3xLdyn(x). (3.37)
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Using Eqs. (3.22), (3.23), (3.26), and (3.31), we can relate the Hamiltonian H̃(t) to H(t) as

H̃(t) = H(t) −
[

ṡ(t)1 + Ṡ(t)

2

]l

k

∫
d3x

[

π̃(x)xk ∂

∂xl
ζ̃ (x) + π̃ i j (x)xk ∂

∂xl
δγ̃i j (x)

]

−
∫

d3xπ̃ i j (x)

[

Ṡm
k (t)

∂δγ̃i j (x)

∂γ̃kl(x)
γ̃ml(x) − Ṡi j (t)

]

. (3.38)

Equation (3.38) reveals that, when s(t) or Si j (t) is time-dependent, the Hamiltonian H̃(t) differs from
H(t). However, this difference does not appear in the quadratic terms of the perturbed variables. In
fact, the linear terms in the square brackets on the second line cancel each other. Using Eqs. (3.17),
(3.18), (3.26), and (3.31), we can express the Hamiltonian H(t) in terms of �̃ as

H(t) =
∫

d3xH
[
ζ̃ (x) − s(t), π̃(x), δγ̃i j (x) − Si j (t), π̃

i j (x)
]
, (3.39)

where H is the Hamiltonian density defined in Eq. (3.2). Rewriting the graviton part is slightly non-
trivial, but this can be confirmed as follows. When we express H(t) in terms of

γi j (xgl) and
∂Ldyn(xgl)

∂(∂tγi j (xgl))
= ∂δγkl(xgl)

∂γi j (xgl)
πkl(xgl),

these two variables transform as standard tensors in three dimensions into

γ̃i j (x) and
∂Ldyn(x)

∂(∂t γ̃i j (x))
= ∂δγ̃kl(x)

∂γ̃i j (x)
π̃kl(x),

leaving aside the factor e3s(t), which will be absorbed to make the combination ζ̃ (x) − s(t) (see
Ref. [66]). Then, since γi j and γ̃i j are given by [exp(δγ )]i j and [exp(δγ̃ − S)]i j , respectively, we
can verify Eq. (3.39).

Next, collecting the quadratic terms in �̃ from the Hamiltonian, we identify the non-interacting
Hamiltonian,

H̃0(t) =
∫

d3xH0

[
ζ̃ (x), π̃(x), δγ̃i j (x), π̃ i j (x)

]
, (3.40)

which is exactly the same form as the one for �. Since both ζ̃ and δγ̃i j , which are massless fields,
appear with spatial derivative operators in the non-interacting Hamiltonian, the shifts by −s(t) and
−Si j (t), respectively, are eliminated. We also introduce the interaction Hamiltonian as

H̃I (t) ≡ H̃(t) − H̃0(t) ≡
∫

d3xH̃I [ζ̃ (x) − s(t), π̃(x), δγ̃i j (x) − Si j (t), π̃
i j (x)], (3.41)
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with

H̃I

[
ζ̃ (x) − s(t), π̃(x), δγ̃i j (x) − Si j (t), π̃

i j (x)
]

= HI

[
ζ̃ (x) − s(t), π̃(x), δγ̃i j (x) − Si j (t), π̃

i j (x)
]

−
[

ṡ(t)1 + Ṡ(t)

2

]l

k

×
[

π̃(x)xk ∂

∂xl
ζ̃ (x) + π̃ i j (x)xk ∂

∂xl
δγ̃i j (x)

]

− π̃ i j (x)

[

Ṡm
k (t)

∂δγ̃i j (x)

∂γ̃kl(x)
γ̃ml(x) − Ṡi j (t)

]

, (3.42)

where

HI [�] ≡ H[�] − H0[�] (3.43)

is the interaction Hamiltonian density for �.

3.2.4. Short summary of the strategy. It will be instructive to note the two important properties
of the interaction Hamiltonian density H̃I , given in Eq. (3.42), which will become crucial in the dis-
cussion of the IR regularity: First, the fields ζ̃ (x) and δγ̃i j (x) always accompany the time-dependent
parameters s(t) and Si j (t) as ζ̃ (x) − s(t) and δγ̃i j (x) − Si j (t). Second, s(t) and Si j (t), which are
not accompanied by ζ̃ (x) and δγ̃i j (x), respectively, are always differentiated with respect to time.
When we consider only the adiabatic perturbation, we can provide a new set of canonical variables
that fulfills these two properties simply by considering the time-dependent dilatation transformation
xgl → x with xgl = e−s(t)x, which is one of the residual gauge transformations [65,66]. At the linear
order, the residual gauge transformation with Eq. (2.43) shifts the spatially homogeneous part of the
graviton perturbation. However, at non-linear order, due to the non-commutativity between matri-
ces, the residual gauge transformation with (2.43) does not immediately introduce the shift of all the
graviton perturbation in the action.

To provide a new set of canonical variables with their homogeneous parts shifted, we have intro-
duced a more non-trivial transformation (3.16). By choosing δγ̃i j as in Eq. (3.18), the first property
can be ensured. To guarantee the second property, we have determined (the time dependence of)
�i

T j (t), requesting Eq. (3.20). Then, s(t) and Si j (t) without the time derivative appear neither on

the right-hand sides of Eqs. (3.22) and (3.23) nor in the Hamiltonian H̃(t). Using these proper-
ties, we later show the IR regularity of graviton loops in a parallel way to the case of the curvature
perturbation.

3.3. Coarse-grained gauge invariant operator

In Sect. 2.3, we introduced the genuine gauge invariant variable gR, using the geodesic normal coor-
dinates. Changing the spatial coordinates to the geodesic normal coordinates also modifies the UV
contributions. Tsamis and Woodard [106] pointed out that using the geodesic normal coordinates can
introduce an additional origin of UV divergence, yielding contributions that may not be renormalized
by local counter terms [107]. This is presumably because specifying the spatial distance precisely in
the presence of the gravitational perturbation requires taking account of all short-wavelength modes.
In any realistic observations, what we actually observe is a smeared field with a finite resolution.
However, it is not so trivial to describe a realistic smearing in a genuinely gauge invariant manner.
Here, in order to remove the UV contribution in the measurement of the position, we replace the
geodesic normal coordinates with approximate ones that are not affected by the UV contributions.
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In this paper, we compute the n-point functions at the end of inflation t = t f . Then, in place of the
geodesic normal coordinates, we use the “smeared” coordinates xi , which are related to the global
coordinates x̂ i

gl as1

x̂ i
gl ≡ e−g ζ̄ (t f )

[
e−δg γ̄ (t f )/2

]i

j
x j , (3.44)

where we have replaced s(t f ) and Si j (t f ) in the transformation matrix �i
j (t f ) with the smeared

metric perturbations:

g ζ̄ (t f ) ≡
∫

d3xWt f (x)ζ(t f , x̂gl)∫
d3xWt f (x)

, (3.45)

δgγ̄ i j (t f ) ≡
∫

d3xWt f (x)δγSi j [t f , x̂gl, δ
gγ̄ (t f )]

∫
d3xWt f (x)

. (3.46)

Here, Wt (x) is a window function that takes a non-vanishing value in the local region Ot and

δγSi j [t, xgl; S] ≡ [
ln
(
γ (t, xgl)�T (t)�T (t)

)]
i j + Si j , (3.47)

which implicitly depends on the values of Si j (t ′) with t ≤ t ′ ≤ t f through �i
T j (t). Notice that �i

T j
at t = t f is exceptionally determined by the value of Si j only at t = t f owing to the boundary con-
dition (3.34). Although g ζ̄ and δgγ̄ i j appear on the right-hand sides of Eqs. (3.45) and (3.46), we
can iteratively define g ζ̄ and δgγ̄ i j by these expressions. Using the quantities introduced above, we
define gζ (t f , x) and δgγ i j (t f , x) as

gζ (t f , xi ) ≡ ζ(t f , x̂gl), (3.48)

δgγ i j (t f , xi ) ≡ δγSi j [t f , x̂gl; δgγ̄ (t f )]. (3.49)

Notice that xgl includes ζ and δγi j but does not include their canonical conjugate momenta. Hence,
we can define g ζ̄ (t f ), δgγ̄ i j (t f ), gζ (t f , x), and δgγ i j (t f , x) without ambiguity of the operator
ordering.

The fields gζ (t f , x) and δgγ i j (t f , x) introduced above are not genuinely gauge invariant. How-
ever, we can show that Rx

gζ (t f , x) and Rxδ
gγ i j (t f , x) preserve the invariance under the particular

residual gauge transformation given in Eq. (3.44), where

Rx � ∂t

ρ̇
,

∂x

eρ(t)ρ̇(t)
,

(

1 −
∫

d3xWt (x)
∫

d3yWt (y)

)

, . . . (3.50)

represents an operator that manifestly suppresses the IR contributions by acting on the fields gζ (t, x)

and δgγ i j (t, x). Here, the subscript associated with Rx specifies the argument of the fields on which
the operator acts. In the following, we will address the IR regularity of the n-point functions of
Rx

gζ (t f , x) and Rxδ
gγ i j (t f , x).

1 Precisely speaking, the coordinates “x”, which will be used in the rest of this paper, are not the geodesic
normal coordinates x. However, for notational simplicity, we also use the same symbol x for the coarse-grained
version of the geodesic coordinates.
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4. Euclidean vacuum and regularization scheme

In order to compute genuinely gauge invariant quantities, we also need to specify the quantum state
so as not to be affected by the residual gauge degrees of freedom. However, as we mentioned in
Sect. 2.3, the genuine gauge invariance of the quantum state cannot be directly discussed in our
current approach. Hence, focusing on the invariance under the restricted class of transformations
(3.16), we discuss the equivalence among quantum states specified in terms of the set of variables
�̃ with various values of s(t) and Si j (t). As discussed in Ref. [66], the boundary condition of the
Euclidean vacuum selects the unique quantum state irrespective of the choice of canonical variables
connected by the dilatation transformation. Namely, as long as we choose the Euclidean vacuum,
the quantum state is unaltered by the dilatation scaling. In this section, we extend this argument to
include the graviton perturbation, using different sets of the canonical variables � and �̃, introduced
in the previous section, by performing the residual gauge transformation from xi

gl to xi . We will show
that, employing the boundary condition of the Euclidean vacuum, we can select the unique quantum
state irrespective of the choice of the canonical variables. In Sect. 4.2, using this property of the
Euclidean vacuum, we will reformulate the perturbative expansion.

4.1. Euclidean vacuum

In this subsection, we briefly summarize the basic properties of the Euclidean vacuum. In the case of
a massive scalar field in de Sitter space, the boundary condition specified by rotating the time path
on the complex plane can be understood as requesting the regularity of correlation functions on the
Euclidean sphere that can be obtained by the analytic continuation from those on de Sitter space.
The vacuum state defined in this way is called the Euclidean vacuum state. Here, we denote by the
Euclidean vacuum the state specified by a similar boundary condition in more general spacetime.

To be more precise, we define the Euclidean vacuum by requesting the regularity of the n-point
functions,

〈Tcδγi1 j1(xgl1) . . . δγim jm (xglm)ζ(xglm+1) . . . ζ(xgln)〉E < ∞ for η(ta) → −∞(1 ± iε), (4.1)

where a = 1, . . . , n and Tc represents the path ordering along the closed time path, −∞(1 − iε) →
η(t f ) → −∞(1 + iε), in terms of conformal time

η(t) ≡
∫ t dt

eρ(t)
. (4.2)

For simplicity, here we assume that eρ(t)ρ̇(t) is rapidly increasing in time so that

|η(t)| = O
(

1/eρ(t)ρ̇(t)
)

. (4.3)

We add the subscript E to the expectation values for the Euclidean vacuum defined in terms of the
canonical variables �.

For the canonical variables �̃, the boundary condition of the Euclidean vacuum is similarly given
by

〈Tcδγ̃i1 j1(x1) . . . δγ̃im jm (xm)ζ̃ (xm+1) . . . ζ̃ (xn)〉Ẽ < ∞ for η(ta) → −∞(1 ± iε). (4.4)

The Euclidean vacuum is expected to be invariant under the residual gauge transformations, since
the above boundary conditions of the Euclidean vacuum are formally independent of the choice of
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canonical variables. In fact, we can show the equivalence between the expectation values,

〈TcO〉E = 〈TcÕ〉Ẽ , (4.5)

where the operators O and Õ are related to each other by the relations (3.17) and (3.18). A more
detailed explanation regarding the uniqueness of the Euclidean vacuum can be found in Ref. [66]
and the argument there can be extended to include the graviton modes in a straightforward manner.
We will find that the distinctive property (4.5) is crucial in showing the IR regularity for the Euclidean
vacuum.

4.2. Rewriting the n-point functions

In this subsection, we rewrite the expression for the n-point functions into a more suitable form to
examine the regularity of the IR contributions. Namely, we perform the perturbative expansion of the
n-point functions of gζ (t f , xa) and δgγ i j (t f , xa) with a = 1, . . . , n, using the canonical variables �̃.
In this subsection, we adopt the Schrödinger picture. Since all the operators will be in the Schrödinger
picture, they do not have time dependence. Introducing the unitary operator of the time evolution

U (t, t ′) ≡ Tc exp

[

−i
∫ t

t ′
dt H(t)

]

, (4.6)

the n-point functions are expressed as

〈0|U (−∞(1 + iε), t f )
gζ (x1) . . . gζ (xn)U (−∞(1 − iε), t f )|0〉. (4.7)

Here, we introduce the eigenstate of ζ and δγi j , |ζ c, δγ c〉. For given values of s and Si j , |ζ c, δγ c〉
also becomes the eigenstate of g ζ̄ and δgγ̄ . That is,

g ζ̄ (t)
∣
∣ζ c, δγ c〉 =

∫
d3xWt (x)ζ(xgl)∫

d3xWt (x)

∣
∣ζ c, δγ c〉 = s(ev)[t, ζ c, δγ c, s; S]

∣
∣ζ c, δγ c〉 , (4.8)

δgγ̄ i j (t)
∣
∣ζ c, δγ c〉 =

∫
d3xWt (x)δγSi j [t, xgl; S]

∫
d3xWt (x)

∣
∣ζ c, δγ c〉 = S(ev)

i j [t, ζ c, δγ c, s; S]
∣
∣ζ c, δγ c〉 ,

(4.9)

where ζ c and δγ c denote the eigenvalues of ζ and δγi j . Here the time dependence of the opera-
tors g ζ̄ and δgγ̄ i j appears through Wt (x), xgl, and Si j , while ζ(x) and δγi j (x) are time-independent
Schrödinger operators. Since xgl and δγS,i j depend on the value of s(t) and the path for picked-up
values of Si j (t ′) with t ≤ t ′ ≤ t f , the eigenvalues of the operators g ζ̄ and δgγ̄ i j , s(ev)(t) and S(ev)

i j (t),
also depend on s(t) and Si j (t ′).

Using the eigenstate |ζ c, δγ c〉, we construct a decomposition of unity:

1 =
∫

Dζ cDδγ c
∣
∣
∣ζ c, δγ c

〉〈
ζ c, δγ c

∣
∣
∣. (4.10)

22/47



PTEP 2014, 073E01 T. Tanaka and Y. Urakawa

Discretizing the time coordinate along the closed time path in Eq. (4.7), as is usually done in the path
integral, we insert the unit operator (4.10) at each intermediate time step as

Eq. (4.7) =
〈

0

∣
∣
∣
∣Tc

( ∞∏

a=0

∫
Dζ cDδγ cU (ta+1, ta)

∣
∣
∣ζ c, δγ c

〉〈
ζ c, δγ c

∣
∣
∣

)

× ζ(x̂gl1) . . . ζ(x̂gln)

(
0∏

b=−∞

∫
Dζ cDδγ c

∣
∣
∣ζ c, δγ c

〉〈
ζ c, δγ c

∣
∣
∣U (tb, tb−1)

) ∣
∣
∣
∣0

〉

, (4.11)

where we have labeled the discretized time coordinate from the distant past to t f by negative integers
and that from t f to the distant past by positive integers, with t0 = t f . For the time being, we focus
on the n-point functions for a particular time path of ζ c and δγ c, picking up, at each time step, one
representative state among the summed eigenstates in the unit operator (4.10) in Eq. (4.11). Namely,
we consider the expectation value

〈

0

∣
∣
∣
∣Tc

( ∞∏

a=0

U (ta+1, ta)
∣
∣
∣ζ c, δγ c

〉〈
ζ c, δγ c

∣
∣
∣

)

ζ(x̂gl1) . . . ζ(x̂gln)

×
(

0∏

b=−∞

∣
∣
∣ζ c, δγ c

〉〈
ζ c, δγ c

∣
∣
∣U (tb, tb−1)

) ∣
∣
∣
∣0

〉

. (4.12)

Once the path of ζ c and δγ c is specified, we can choose self-consistent values of s(t) and Si j (t) that
satisfy

s(t) = s(ev)[t, ζ c, δγ c, s; S], Si j (t) = S(ev)
i j [t, ζ c, δγ c, s; S], (4.13)

for all t order by order. Then, using the corresponding values of s and Si j , we introduce the canonical
variables �̃(x) as defined in the preceding section. Using �̃, we can replace ζ(x̂gl) in Eq. (4.12) with
ζ̃ (x). Notice that, in the canonical system with �̃, we should use the unitary operator of time evolution
defined by the Hamiltonian H̃(t), which differs from H(t), as

Eq. (4.12) =
〈

0

∣
∣
∣
∣Tc

( ∞∏

a=0

Ũ (ta+1, ta)
∣
∣
∣ζ c, δγ c

〉〈
ζ c, δγ c

∣
∣
∣

)

× ζ̃ (x1) . . . ζ̃ (xn)

(
0∏

b=−∞

∣
∣
∣ζ c, δγ c

〉〈
ζ c, δγ c

∣
∣
∣Ũ (tb, tb−1)

) ∣
∣
∣
∣0

〉

, (4.14)

with

Ũ (t, t ′) ≡ Tc exp

[

−i
∫ t

t ′
dt H̃(t)

]

. (4.15)
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Here, s and Si j are different between the forward and backward paths, and hence the new canonical
variables �̃(x) will differ between them. Furthermore, Eqs. (4.8) and (4.9) imply

g ζ̄ (ta)
∣
∣ζ c, δγ c〉 = s(ta)

∣
∣ζ c, δγ c〉 , (4.16)

δgγ̄ i j (ta)
∣
∣ζ c, δγ c〉 = Si j (ta)

∣
∣ζ c, δγ c〉 , (4.17)

with

g ζ̄ (t) ≡
∫

d3xWt (x)ζ̃ (x)
∫

d3xWt (x)
, (4.18)

δgγ̄ i j (t) ≡
∫

d3xWt (x)δγ̃i j (x)
∫

d3xWt (x)
. (4.19)

Next, we write down the expression (4.12) in the interaction picture. Using the unitary operator

Ũ0(t) ≡ Tc exp

[

−i
∫ t

dt
∫

d3xH̃0

]

, (4.20)

with an appropriate choice of lower boundary for the t-integration, the Schrödinger picture fields
ζ̃ (x) and δγ̃i j (x) are related to the interaction picture fields ζ̃I (t, x) and δγ̃i j I (t, x), respectively, as

ζ̃ (x) = Ũ0(t)ζ̃I (t, x)Ũ †
0 (t), (4.21)

δγ̃i j (x) = Ũ0(t)δγ̃i j I (t, x)Ũ †
0 (t). (4.22)

Similarly to Eqs. (4.16) and (4.17), we define the eigenstate for the interaction picture fields as

∣
∣t; ζ c, δγ c〉

I = Ũ †
0 (t)

∣
∣ζ c, δγ c〉 . (4.23)

In the interaction picture, we obtain

Eq. (4.14) =
〈

0

∣
∣
∣
∣Tc

( ∞∏

a=0

ŨI (ta+1, ta)
∣
∣
∣ta; ζ c, δγ c

〉

II

〈
ta; ζ c, δγ c

∣
∣
∣

)

ζ̃I (t f , x1) . . . ζ̃I (t f , xn)

×
(

0∏

b=−∞

∣
∣
∣tb; ζ c, δγ c

〉

II

〈
tb; ζ c, δγ c

∣
∣
∣ŨI (tb, tb−1)

) ∣
∣
∣
∣0

〉

, (4.24)

with

ŨI (t, t ′) ≡ Tc exp

[

−i
∫ t

t ′
dt H̃I (t)

]

. (4.25)

With g ζ̄ I (t) and δgγ̄ i j I (t) defined as

g ζ̄ I (t) ≡
∫

d3xWt (x)ζ̃I (t, x)
∫

d3xWt (x)
, (4.26)

δgγ̄ i j I (t) ≡
∫

d3xWt (x)δγ̃i j I (t, x)
∫

d3xWt (x)
, (4.27)
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Eqs. (4.16) and (4.17) indicate

g ζ̄ I (ta)
∣
∣ta; ζ c, δγ c〉

I = s(ta)
∣
∣ta; ζ c, δγ c〉

I , (4.28)

δgγ̄ i j I (ta)
∣
∣ta; ζ c, δγ c〉

I = Si j (ta)
∣
∣ta; ζ c, δγ c〉

I . (4.29)

Next, we will show that, when we choose the Euclidean vacuum as the initial state, the n-point
functions for gζ (x) and δgγ i j (x) can be expanded only in terms of the interaction picture fields
ζ̃I (x) and δγ̃i j I (x) with the IR-suppressing operators Rx . While the interaction Hamiltonian density
H̃I is messy, the IR regularity can be shown just by using the fact that, as given in Eq. (3.42), H̃I is
expressed only in terms of

ζ̃I (x) − s(t), δγ̃i j I (x) − Si j (t), (4.30)

and

π̃I (x) = 2M2
ple

3ρε1
˙̃
ζI (x), π̃

i j
I (x) =

M2
pl

4
e3ρδ ˙̃γ i j

I (x), (4.31)

and also with the parameters

ṡ(t), Ṡi j (t). (4.32)

Notice that the terms in (4.30) are not suppressed by Rx and also that the inverse Laplacian ∂−2,
which arises from N and Ni , may decrease the power of k by 1/k2, depending on the choice of the
boundary conditions.

4.2.1. Interaction picture fields without the IR-suppressing operator. We begin with discussing
the first term in Eq. (3.42), i.e.,

HI [ζ̃I (x) − s(t), π̃I (x), δγ̃i j I (x) − Si j (t), π̃
i j
I (x)]. (4.33)

If we can simply replace s(t) and Si j (t) with g ζ̄ I (t) and δgγ̄ i j I (t), respectively, in the above expres-
sion, ζ̃I (x) − s(t) and δγ̃i j I (x) − Si j (t) are reduced to ζ̃I (x) − g ζ̄ I (t) and δγ̃i j I (x) − δgγ̄ i j I (t),
which are combinations suppressed by the IR-suppressing operator Rx . We will show that the dis-
tinctive property of the Euclidean vacuum given in Eq. (4.5) allows us to perform this replacement
just by adding terms that are composed only of Rx ζ̃I (x) and Rxδγ̃i j I (x).

To perform the replacement, we notice that the operator |ta; ζ c, δγ c〉I I 〈ta; ζ c, δγ c| is located next
to the interaction Hamiltonian H̃I (ta) as

. . . H̃I (ta)
∣
∣
∣ta; ζ c, δγ c

〉

I I

〈
ta; ζ c, δγ c

∣
∣
∣ . . . ,

where the abbreviation on the right-hand side of H̃I denotes operators in the past of ta along the
closed time path and that on the left-hand side denotes operators in the future of ta . For notational
simplicity, we abbreviate the subscript a in the following discussion. Picking up a single ζ̃I (x) − s(t)
or δγ̃i j I (x) − Si j (t) from the first term of H̃I , given in Eq. (4.33), and using Eqs. (4.28) and (4.29),
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we rewrite each term as

(
ζ̃I (x) − s(t)

)
A(x)

∣
∣t; ζ c, δγ c〉

I =
(
ζ̃I (x) − g ζ̄ I (t)

)
A(x)

∣
∣t; ζ c, δγ c〉

I

+ [g ζ̄ I (t),A(x)
] ∣∣t; ζ c, δγ c〉

I , (4.34)

or

(
δγ̃i j I (x) − Si j (t)

)
A(x)

∣
∣t; ζ c, δγ c〉

I =
(
δγ̃i j I (x) − δgγ̄ i j I (t)

)
A(x)

∣
∣t; ζ c, δγ c〉

I

+ [
δgγ̄ i j I (t),A(x)

] ∣∣t; ζ c, δγ c〉
I , (4.35)

where, using A(x), we have schematically expressed the operators sandwiched between ζ̃I (x) − s(t)
or δγ̃i j I (x) − Si j (t) and |t; ζ c, δγ c〉I . Since A(x) is part of the Hamiltonian density in Eq. (4.33),
it can be expressed solely in terms of the combinations in Eq. (4.30) and the conjugate momenta π̃I

and π̃
i j
I . Since g ζ̄ I (t) commutes with ζ̃I (x) − s(t), δγ̃i j I (x) − Si j (t), and π̃

i j
I (x), the non-vanishing

contributions in [g ζ̄ I (t),A(x)] arise only from the commutator

[g ζ̄ I (t), π̃I (t, x)
] = 1

∫
d3x Wt (x)

∫
d3y Wt (y)

[
ζ̃I (t, y), π̃I (t, x)

]
= i

Wt (x)
∫

d3x Wt (x)
, (4.36)

which yields a local function whose Fourier mode is regular in the IR limit. Repeating this procedure,
we can rewrite (ζ̃I (x) − s(t))A(x) solely in terms of

ζ̃I (x) − g ζ̄ I (t), π̃I (x), δγ̃i j I (x) − δgγ̄ i j I (t), π̃
i j
I (x). (4.37)

The same argument can apply to (δγ̃i j I (x) − Si j (t))A(x). In this way all the interaction picture fields
in the first term of H̃I are now expressed by Rx ζ̃I and Rxδγ̃i j I .

Next, we consider the second term of the interaction Hamiltonian (3.42) with ṡ and Ṡi j . When
we discretize the time coordinate, the time derivative should be regarded as the difference between
the values at two adjacent time steps. We can express the second term in Eq. (3.42) sandwiched by

I 〈ta+1; ζ c, δγ c| and |ta; ζ c, δγ c〉I as

I

〈
ta+1; ζ c, δγ c

∣
∣
∣
[
π̃I (xa)xl∂m ζ̃I (xa) + π̃

i j
I (xa)xl∂mδγ̃i j I (xa)

] (
ṡ(ta)δ

m
l + Ṡm

l (ta)/2
) ∣∣
∣ta; ζ c, δγ c

〉

I

= I

〈
ta+1; ζ c, δγ c

∣
∣
∣
[
π̃I (xa)xl∂m ζ̃I (xa) + π̃

i j
I (xa)xl∂mδγ̃i j I (xa)

]

× {s(ta+1) − s(ta)}δm
l + {Sm

l (ta+1) − Sm
l (ta)}/2

ta+1 − ta

∣
∣
∣ta; ζ c, δγ c

〉

I
,

with xa = (ta, x). Here, we neglect the terms irrelevant in the continuous limit. Using Eqs. (4.28) and
(4.29), we can replace s(ta) and Si j (ta) with g ζ̄ I (ta) and δgγ̄ i j I (ta) placed next to |ta; ζ c, δγ c〉I , and
s(ta+1) and Si j (ta+1) with g ζ̄ I (ta+1) and δgγ̄ i j I (ta+1) next to I 〈ta+1; ζ c, δγ c|. For the same reason
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as in the previous case, the terms coming from the commutator between [π̃I (xa)xl∂m ζ̃I (xa) + · · · ]
and g ζ̄ I (ta) or δgγ̄ i j I (ta) only give the IR-regular contributions, while the remaining part becomes

I

〈
ta+1; ζ c, δγ c

∣
∣
∣
[

g ˙̄ζ I (ta)δ
m
l + δg ˙̄γ m

l I (ta)/2
]

×
[
π̃I (xa)xl∂m ζ̃I (xa) + π̃

i j
I (xa)xl∂mδγ̃i j I (xa)

] ∣∣
∣ta; ζ c, δγ c

〉

I
.

Similarly, we can replace Ṡi j (t) in the third term of the interaction Hamiltonian (3.42) with δg ˙̄γ i j I (t).

Notice that g ˙̄ζ I (t) is recast into

g ˙̄ζ I (t) =
∫

d3x∂t

{
Wt (x)

∫
d3xWt (x)

}

ζ̃I (x) +
∫

d3xWt (x)∂t ζ̃I (x)
∫

d3xWt (x)

=
∫

d3x∂t

{
Wt (x)

∫
d3xWt (x)

}{
ζ̃I (x) − g ζ̄ I (t)

}
+

∫
d3xWt (x)∂t ζ̃I (x)
∫

d3xWt (x)
, (4.38)

which is manifestly expressed in the IR-suppressed form, Rx ζ̃I (x). To make the IR regularity mani-
fest, in the last equality we have added 0 = g ζ̄ I (t)∂t

{∫
d3xWt (x)/

∫
d3xWt (x)

}
. In a similar manner

we can show that δg ˙̄γ i j I (t) is also in the IR-suppressed form.
In this way, we can show that all ζ̃I and δγ̃i j I in the interaction vertices are multiplied by the

IR-suppressing operator Rx . The argument so far proceeds irrespective of the choice of the initial
quantum states. Now, we focus on the distinctive property of the Euclidean vacuum given in Eq. (4.5),
which states that the initial states chosen by the boundary condition of the Euclidean vacuum are
specified uniquely and are independent of the canonical variables used for quantization. Therefore,
requesting the Euclidean vacuum uniquely determines the initial state irrespective of the picked-
up particular path of ζ c and δγ c. Therefore, after the above-mentioned replacements, the possible
dependence of the n-point functions on the picked-up path remains only in |t; ζ c, δγ c〉I I 〈t; ζ c, δγ c|,
and hence we can remove the decomposition of unity.

4.2.2. Restricting the interaction vertices to the local region. Next, we will address the inverse
Laplacian ∂−2. If we choose the boundary conditions for ∂−2 in N and Ni appropriately, N and
Ni with their argument (t, x) in the region Ot can be specified by the fluctuations only within Ot .
In the general solutions of N and Ni given in Eqs. (2.36) and (2.37), the residual gauge degrees
of freedom are expressed by arbitrary homogeneous solutions of the Laplace equation, Gn(x) and
(δ

j
i − ∂i∂

−2∂ j )G jn(x). We determine the homogeneous solution Gn(x) such that the solution in the
observable regionOt is given by the convolution between the Green function and the source restricted
to the local region, i.e.,

− 1

4π

∫
d3y

|x − y|Wt (y)∂
i Mi,n(t, y) = ∂−2∂ i Mi,n(x) − e−2ρGn(x). (4.39)

Similarly, using the transverse part of Gin(x), we can determine the boundary conditions for the
remaining ∂−2 so as to shut off the influence from the region far outside of Ot . (For a detailed expla-
nation, see Refs. [66,67].) Then, since all the interaction vertices are confined to the neighborhood
of O, the operation of the non-local operator ∂−2 no longer reduces the power law index with respect
to k. Thus, when we choose the Euclidean vacuum as the initial states, we can expand the n-point
functions for Rx

gζ (t f , x) and Rxδ
gγ i j (t f , x) only in terms of the interaction picture fields Rx ζ̃I (x)

and Rxδγ̃i j I (x).
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Since Rx
gζ (x) and Rxδ

gγ i j (x) are not invariant under all the residual gauge transformations,
their n-point functions can depend on the boundary conditions of N and Ni . However, if we calculate
n-point functions for the genuinely gauge invariant operator gR, changing the boundary conditions
should not affect the result.

5. Regularity of loops

In this section, we will show that, when we choose the Euclidean vacuum as the initial state, the n-
point functions of Rx

gζ and Rxδ
gγ i j no longer suffer from the IRdiv, IRsec, and SG. The discussion

in this section goes almost in parallel with that in Sect. 3.2.4 of Ref. [66], where the regularity of the
scalar loops is shown. Here, we briefly highlight the discussion, leaving the more detailed discussion
to Ref. [66].

5.1. Euclidean vacuum from the iε prescription

In the preceding section, we introduced the Euclidean vacuum, which satisfies the boundary condi-
tions (4.1). Here, following Ref. [66], we show that these conditions lead to the iε prescription in
the ordinary perturbative description. For our current purpose, the explicit form of the interaction
Hamiltonian density H̃I is not necessary. We simply note that all the interaction vertices in H̃I can
be formally expressed as

M2
ple

3ρ(t)ρ̇2(t)λ(t)
N s
∏

ms=1

R(ms)
x ζ̃I (x)

N t
∏

mt=1

R(mt )
x δγ̃imt jmt I (x), (5.1)

where N s and N t are non-negative integers with N s + N t ≥ 3. Here, λ(t) is a dimensionless time-
dependent function that can be expressed only in terms of the horizon flow functions. To discriminate
different IR-suppressing operators Rx , we added a subscript (ms) or (mt ) to Rx . The spatial indices
imt and jmt will be contracted with other indices imt ′ and jmt ′ or with indices in Rx , which are
abbreviated for notational simplicity. In the following, we use the formal expression (5.1) as the
interaction vertices.

Since the boundary conditions for the Euclidean vacuum should also hold at tree level, the asymp-
totic form of the positive frequency mode function vα

k (t) with α = s or t , in the limit η → −∞,
should be proportional to e−ikη(t). Factoring out this time dependence, we express vα

k (t) as

vα
k (t) = Aα(t)

k3/2 f α
k (t)e−ikη(t), (5.2)

where we have introduced

As(t) ≡ ρ̇(t)√
ε1(t)Mpl

, (5.3)

At (t) ≡ ρ̇(t)

Mpl
(5.4)

as approximate amplitudes of the curvature perturbation and the graviton perturbation. The function
f α
k (t) satisfies the regular second-order differential equation with the boundary condition

f α
k (t) ∝ k

eρρ̇
for − kη(t) → ∞. (5.5)
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Since both the differential equation and the boundary condition of f α
k (t) are analytic in k for any t ,

the resulting function should be analytic as well. In fact, f α
k (t) does not have any singularity such as a

pole on the complex k-plane as a consequence of the boundary conditions of the Euclidean vacuum.
On the other hand, in the limit −kη(tk) 	 1, the function f α

k (t) is proportional to Aα(tk)/Aα(t),
where tk is the Hubble crossing time defined by −kη(tk) = 1, because the curvature and graviton
perturbations should be constant in this limit. Hence, the expansion for small k is in general given by

Aα(t) f α
k (t) = Aα(tk)

[
1 + O(k2|η(t)|2)

]
. (5.6)

By using Eq. (5.2), the Wightman function for the curvature perturbation is given by

G+s(x, x ′) =
∫

d3k

(2π)3 eik·(x−x′)vs
k(t)v

s∗
k (t ′)

= As(t)As(t ′)
∫

d3k

(2π)3

1

k3 eik·(x−x′) f s
k (t) f s∗

k (t ′)eik(η(t ′)−η(t)), (5.7)

and the Wightman function for the graviton is given by

G+t
i jkl(x, x ′) =

∑

λ=±

∫
d3k

(2π)3 eik·(x−x′)e(λ)
i j (k)e(λ)

kl (k)vt
k(t)v

t∗
k (t ′)

= At (t)At (t ′)
2

∫
d3k

(2π)3

(PikP jl + PilP jk − Pi jPkl
)

× 1

k3 eik·(x−x′) f t
k (t) f t∗

k (t ′)eik(η(t ′)−η(t)), (5.8)

where in the second equality we have assumed that the quantum state is isotropic.
Using the in–in formalism, the n-point functions can be expanded by the Wightman functions

G+s(x, x ′), G+t
i jkl(x, x ′), and their complex conjugates. When we impose the boundary conditions

of the Euclidean vacuum, we need to start the vertex integrals at η = −∞. Although the vertex
integrals are infinitely oscillating in the limit η → −∞, the time integration can be made conver-
gent by adding a small imaginary part to the time coordinate, which is nothing but the ordinary
iε prescription. To see the convergence of the time integration more explicitly, using the formal
expression for the interaction vertex (5.1), we first consider the integral for the vertex that is closest
to the past infinity η → −∞(1 − iε). The interaction picture field ζ̃I (x) included in this vertex is
contracted with ζ̃I (xms ) in vertices labeled by ms = 1, 2, . . . , N s , and gives the Wightman function
G+s(xms , x). Similarly, the interaction picture field δγ̃I imt jmt (x) included in the vertex is contracted
with δγkmt lmt I (xmt ) in vertices labeled by mt = 1, 2, . . . , N t , and gives the Wightman function
G+t

kmt lmt imt jmt
(xmt , x). Then, the vertex integration with N s ζ̃I and N t δγ̃i j I gives

V (1)(t ′, {xmα }) ≡ M2
pl

∫ t ′

ti
dt

∫
d3xe3ρ(t)ρ̇(t)2λ(t)

N s
∏

ms=1

Rxms R(ms)
x G+s(xms , x)

×
N t
∏

mt=1

Rxmt R(mt )
x G+t

kmt lmt imt jmt
(xmt , x), (5.9)
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where xmα denotes either xms or xmt . The Euclidean vacuum condition requires the convergence of
this integral in the limit η(ti ) → −∞. Since the Wightman functions contain the exponential factor

e
iη(t)

(
∑

ms kms +∑
mt kmt

)

,

the integral can be made convergent by adding +iε to η(t), which is again exactly what is known as
the iε prescription. Here, kms denotes the momentum of G+s(xms , x) and kmt denotes the momentum
of G+t

kmt lmt imt jmt
(xmt , x).

The vertex integration second-closest to the past infinity

V (2)(t ′′, {xmα }, {xmα ′ }) ≡ M2
pl

∫ t ′′

ti
dt ′

∫
d3x′e3ρ(t ′)ρ̇(t ′)2λ(t ′)

N s ′
∏

ms ′=1

Rxms ′R(ms ′)
x ′ G+s(xms ′, x ′)

×
N t ′
∏

mt ′=1

Rxmt ′R(mt ′)
x ′ G+t

kmt ′ lmt ′ imt ′ jmt ′ (xmt ′, x ′)V (1)(t ′, {xmα ′ }) (5.10)

can be done in a similar manner, where N s ′ and N t ′ are the numbers of scalar and graviton propaga-
tors that connect between this second vertex and vertices other than the first one. If we perform the
integration over the time coordinate of the first vertex t up to t ′, the exponential factor in G+s(xms , x)

or G+t
kmt lmt imt jmt

(xmt , x) can be replaced as

eikmα (η(t)−η(tm)) → eikmα (η(t ′)−η(tm)). (5.11)

Therefore, all the Wightman functions connecting the vertices at t ′ or in the past of t ′ with the vertices
in the future of t ′ give an exponential factor that is suppressed by adding +iε to η(t ′). (Here, we mean
the future and past in the chronological sense, and not those in the sense of the Closed Time Path.)
This is again consistent with the boundary condition of the Euclidean vacuum. The same argument
can be made for the other vertices as well.

In this subsection, considering the time integration at vertices with fixed momenta of the Wightman
propagators, we have shown that the boundary condition of the Euclidean vacuum can be imposed
in a perturbative expansion by employing the iε prescription. However, as we will describe in the
next subsection, in our proof of the IR regularity, we will perform the momentum integration of the
propagator ahead of the vertex integration.

5.2. IR/UV-suppressed Wightman function

Since all ζ̃I (x) and δγ̃i j I (x) in the interaction Hamiltonian are multiplied by the IR-suppressing
operators Rx , the n-point functions of Rx

gζ (x) and Rxδ
gγ i j (x) can be expanded by the Wightman

functionsRxRx ′G+s(x, x ′) andRxRx ′G+t
i jkl(x, x ′) and their complex conjugates. In this subsection,

we calculate the Wightman functions multiplied by the IR-suppressing operatorRxRx ′G+(x, x ′) and
RxRx ′G+t

i jkl(x, x ′) for t > t ′. After integration over the angular part of the momentum, the Wightman
function RxRx ′G+s(x, x ′) is given as

RxRx ′G+s(x, x ′) = 1

2π2

∫ ∞

0

dk

k
RxRx ′As(t) f s

k (t)As(t ′) f s∗
k (t ′)

[
eikσ+(x,x ′) − eikσ−(x,x ′)

ik(σ+(x, x ′) − σ−(x, x ′))

]

,

(5.12)
where we have introduced

σ±(x, x ′) ≡ η(t ′) − η(t) ± |x − x′|.
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The Wightman function RxRx ′G+t
i jkl(x, x ′) is given by a similar expression as

RxRx ′G+t
i jkl(x, x ′) = 1

4π2

∫ ∞

0

dk

k
Rx ′

(
P(d)

ik P(d)
jl + P(d)

il P(d)
jk − P(d)

i j P(d)
kl

)

× RxAt (t) f t
k (t)At (t ′) f t∗

k (t ′)

[
eikσ+(x,x ′) − eikσ−(x,x ′)

ik(σ+(x, x ′) − σ−(x, x ′))

]

. (5.13)

Here, before we integrate over the angular coordinates, we replace the projection tensor Pi j with the
derivative form:

P(d)
i j = δi j − ∂x ′i ∂x ′ j ∂

−2
x′ , (5.14)

which commutes with Rx .
We first show the regularity of the k integration in Eqs. (5.12) and (5.13). The regularity of the

Wightman function G+s(x, x ′) is shown in Ref. [66]. We will see that the same argument also leads to
the regularity of G+t

i jkl(x, x ′). Since the functions f α
k (t) with α = s, t are not singular, the regularity

can be verified if the integration converges both in the IR and UV limits. The regularity in the IR
limit is guaranteed by the presence of the IR-suppressing operator. The IR-suppressing operators Rx

add at least one extra factor of k|η(t)| or eliminate the leading t-independent term in the IR limit,
and yield

RxAs(t) f s
k (t)

[
eikσ+(x,x ′) − eikσ−(x,x ′)

ik(σ+(x, x ′) − σ−(x, x ′))

]

= As(tk)e
ikη(t ′)O (k|η(t)|)

= As(t)eikη(t ′)O
(
{k|η(t)|}(ns+1)/2

)
, (5.15)

and

RxAt (t) f t
k (t)

[
eikσ+(x,x ′) − eikσ−(x,x ′)

ik(σ+(x, x ′) − σ−(x, x ′))

]

= At (t)eikη(t ′)O
(
{k|η(t)|}(nt+2)/2

)
, (5.16)

where we have introduced the spectral indices ns and nt as

ns − 1 ≡ d ln(|As(tk)|2)/d ln k, (5.17)

nt ≡ d ln(|At (tk)|2)/d ln k. (5.18)

Thus, the operation of Rx makes the k integration in Eqs. (5.12) and (5.13) regular in the IR limit,
ensuring the IR regularity. Next, we consider the convergence in the UV limit. When we choose the
Euclidean vacuum, the iε prescription facilitates the regularization of the UV modes in Eqs. (5.12)
and (5.13), because adding a small imaginary part to all the time coordinates as η → η × (1 − iε)
leads to the replacement

η(t ′) − η(t) → η(t ′) − η(t) + iε|η(t ′) − η(t)|
with η(t ′) − η(t) < 0. Then, the manifest exponential suppression factor is introduced for large
k. This UV regulator makes the integral finite for the large k contribution, except for the case
σ±(x, x ′) = 0, where x and x ′ are mutually light-like. Since the expression of the Wightman func-
tions obtained after the k integration is independent of the value of ε, this regulator makes the UV
contributions convergent even after ε is sent to zero. For σ±(x, x ′) = 0, the integral becomes diver-
gent in the limit ε → 0, but the divergence related to the behavior of the Wightman functions in this
limit is to be interpreted as ordinary UV divergences, whose contribution to the vertex integrals must
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be renormalized by introducing local counter terms. Thus, the Wightman functionsRxRx ′G±s(x, x ′)
and RxRx ′G±t

i jkl(x, x ′) are now shown to be regular functions.
Since the amplitudes of the Wightman functions with the IR-suppressing operator are bounded

from above, we can show the regularity of the n-point functions, if the non-vanishing support of
the integrands of the vertex integrals is effectively restricted to a finite spacetime region. Since
the causality has been established with the aid of the residual gauge degrees of freedom (see
Sect. 4.2.2), the question to address is whether contributions from the distant past are shut off or
not. In short, this question can be rephrased as whether the SG due to the time integral exists or
not. To address such a long-term correlation, we discuss the asymptotic behavior of the Wightman
functions RxRx ′G±s(x, x ′) and RxRx ′G±t

i jkl(x, x ′), sending t ′ to a distant past. Recall that when
σ±(x, x ′) �= 0, we can rotate the integration contour with respect to k even toward the direction par-
allel to the imaginary axis, making ε finite. Rotating the direction of the path appropriately depending
on the sign of σ±(x, x ′), the integrand shows an exponential decay for k � 1/|σ±(x, x ′)|  1/|η(t ′)|.
Since we send t ′ to the past infinity, where |η(t ′)| 
 |η(t)|, σ±(x, x ′) becomes O(|η(t ′)|), except for
the region where the two points are mutually light-like (see Ref. [66] regarding the estimation of the
contribution from this region). The rotation of the k integration contour can be done without hitting
any singularity in the complex k-plane, because the functions f α

k (t) are guaranteed to be analytic
by construction. If we choose other vacua, this operation yields extra contributions from singular-
ities. After the rotation, the integrations of k on the right-hand sides of Eqs. (5.12) and (5.13) are
totally dominated by wavenumbers with k � 1/|η(t ′)| 	 1/|η(t)|. Using Eq. (5.15), which gives the
asymptotic expansion in the limit k|η(t)| 	 1, we obtain

RxRx ′G+s(x, x ′) = As(t) × O
[∫ ∞

0

dk

k
{k|η(t)|}(ns+1)/2 Rx ′As(t ′) f s∗

k (t ′)eikη(t ′)
]

= As(t)As(t ′)O
(( |η(t)|

|η(t ′)|
) ns+1

2
)

, (5.19)

where in the second equality we have performed the k integration, rotating the integration contour.
Similarly, using Eq. (5.16), we obtain

RxRx ′G+t
i jkl(x, x ′) = At (t)At (t ′)O

⎛

⎝
( |η(t)|

|η(t ′)|
) nt +2

2

⎞

⎠ . (5.20)

We should emphasize that we do not employ the long-wavelength approximation regarding the
Hubble scale at t ′ to properly evaluate the modes k of O(1/|η(t ′)|) as well.

5.3. Secular growth (SG) due to the time integral

In this subsection, focusing on the long-term correlation, we discuss the convergence of the vertex
integrals of the n-point functions for the Euclidean vacuum. We start with the integration of the
n-point interaction vertex that is closest to η = −∞(1 − iε). By inserting the expression of the
Wightman functions RxRx ′G+(x, x ′) and RxRx ′G+t

i jkl(x, x ′) with t 
 t ′, given in Eqs. (5.19) and
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(5.20), into Eq. (5.9), the vertex integral V (1) can be estimated as

V (1)(t ′, {xmα }) = O
[

M2
pl

∫ t ′

ti
dt

∫
d3xe3ρ(t)ρ̇(t)2λ(t){As(t)}N s

N s
∏

ms=1

As(tms )

(
η(tms )

η(t)

) ns+1
2

× {At (t)}N t
N t
∏

mt=1

At (tmt )

(
η(tmt )

η(t)

) nt +2
2

]

. (5.21)

As we explained in Sect. 4.2.2, the interaction vertices are confined within the observable region, i.e.,
the non-vanishing support of the integrand is bounded by |x| � Lt , where Lt can be approximated
by |η(t)| in the distant past. Thus, we obtain

V (1)(t ′, {xmα }) = O
[∫ η(t ′)

−∞
dη

η
λ(η){As(η)}N s {At (η)}N t−2

×
N s
∏

ms=1

As(tms )

(
η(tms )

η

) ns+1
2

N t
∏

mt=1

At (tmt )

(
η(tmt )

η

) nt +2
2

]

. (5.22)

Since we have performed the momentum integral first, the exponential suppression for large |η|,
required for the Euclidean vacuum, no longer remains. However, picking up the η dependence of the
integrand of Eq. (5.22), we still find that the contribution from the distant past is suppressed if

∣
∣
∣
∣λ(η)

{As(η)
}N s {At (η)

}N t−2
η− Ns (ns+1)+Nt (nt +2)

2

∣
∣
∣
∣ → 0 as η → −∞. (5.23)

When this condition is satisfied, the time integral converges, and the amplitude of V (1)
n (η′, {xm}) is

estimated by the value of the integrand at the upper end of the integration as

V (1)(t ′, {xmα })

= O
⎡

⎣λ(t ′){As(t ′)}N s {At (t ′)}N t−2
N s
∏

ms=1

As(tms )

(
η(tms )

η(t ′)

) ns+1
2

N t
∏

mt=1

At (tmt )

(
η(tmt )

η(t ′)

) nt +2
2

⎤

⎦ .

(5.24)

Then, when one of the Wightman propagators is connected to a vertex located in the future of x ′, i.e.,

tm > t ′, the t-integration yields the suppression factor {η(tms )/η(t ′)} ns+1
2 or {η(tmt )/η(t ′)} nt +2

2 . We
denote the numbers of such scalar and graviton propagators by Ñ s and Ñ t , respectively.

Similarly, we can evaluate the amplitude of V (2) as

V (2)(t ′′, {xmα }, {xmα ′ })

= O
[∫ η(t ′′)

−∞
dη′

η′ λ′(η′){As(η′)}N s ′ {At (η′)}N t ′−2

×
N s ′
∏

ms ′=1

A(tms ′)

(
η(tms ′)

η′

) ns+1
2

N t ′
∏

mt ′=1

A(tmt ′)

(
η(tmt ′)

η′

) nt +2
2

V (1)(t (η′), {xm})
]

. (5.25)

Extracting the η′-dependent part in the above expression, we obtain
∫ η(t ′′)

−∞
dη′

η′ λ(η′)λ′(η′){As(η′)}N s+N s ′ {At (η′)}N t+N t ′−4|η′|− ns+1
2 (N s ′+Ñ s)− ns+2

2 (N t ′+Ñ t ). (5.26)
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Now the generalization proceeds in a straightforward way. For the Nvth vertex, the temporal
integration becomes

∫
dηNv

ηNv

λ̂(ηNv ){As(ηNv )}N s
f {At (ηNv )}N t

f −2Nv |ηNv |−
(ns+1)Ms+(nt +2)Mt

2 , (5.27)

where N s
f and N t

f , respectively, denote the numbers of ζ̃I and δγ̃i j I contained in the vertices that have
been integrated before the Nvth vertex, Ms and Mt denote the numbers of the Wightman propagators
connected to a vertex with η > ηNv , and λ̂ is the product of all the interaction coefficients contained
in the integrated vertices. Thus, the convergence condition is derived as

∣
∣
∣
∣λ̂(η){As(η)}N s

f {At (η)}N t
f −2Nvη− (ns+1)Ms+(nt +2)Mt

2

∣
∣
∣
∣ → 0 as η → −∞. (5.28)

As a simple example, we consider the case where ε1 is constant. In this case, λ̂ is expressed
only in terms of ε1 and takes a constant value. By assuming M = 1 and using ns − 1 = −2ε1, the
convergence condition yields

(1 − ε1)
2 M − ε1 N > 0, (5.29)

where N ≡ N s
f + N t

f − 2Nv and M ≡ Ms + Mt . In the slow-roll limit ε1 	 1, the above condition
is recast into

N < O
(

M

ε1

)

. (5.30)

Since all interaction vertices contain at least one propagator that is connected to a vertex in their
future, M should be M ≥ 1. Therefore, unless an extremely high order in perturbation with N >

O(1/ε1) is concerned, the contributions from the distant past are suppressed and hence the time
integrals at the interaction vertices do not yield the SG.

The presence of the above suppression can be intuitively understood in the same way as in the
discussion for the loops of the curvature perturbation [66]. When we choose the Euclidean vacuum
as the initial state, both the IR and UV modes in the Wightman functions are suppressed and then
only the contributions around the Hubble scale at each time are left unsuppressed. Being affected
only by the modes around the Hubble scale, i.e., k|η|  k/eρρ̇ = O(1), the Wightman functions
RxRx ′G±s(x, x ′) and RxRx ′G±t

i jkl(x, x ′) are necessarily suppressed when η(t)/η(t ′) 	 1. This is
because, if the spacetime points x and x ′ are largely separated in time, any Fourier mode in the
Wightman function cannot be of the order of the Hubble scale simultaneously at t and t ′. When we
consider the contribution of vertices located far in the past, at least one Wightman function should
satisfy η(t)/η(t ′) 	 1, and therefore it is suppressed. Equation (5.28) shows such suppression by
Ms scalar propagators and Mt graviton propagators. As shown in Eq. (5.28), as we increase the
number of operators included in or connected to the interaction vertex, denoted by N s

f and N t
f , the

contributions from the distant past become less suppressed. On the other hand, as we increase the
number of propagators connected to the vertices around the observation time, labeled by Ms and
Mt , the contributions from the distant past are more suppressed. When N is sufficiently large, i.e.,
N > O(M/ε1), the suppression due to M propagators can be overwhelmed by the large amplitude
of the fluctuation, which increases when the energy scale of inflation increases, as in the far past.
However, we should also stress that the SG never appears in slow-roll inflation, unless the order of
perturbative expansion N takes an extremely large value, such as 1/ε1  O(102).
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6. Concluding remarks

In this paper, we have addressed the regularity of the graviton loops. We have shown that, when we
choose the Euclidean vacuum as the initial state, similar to the curvature perturbation, the graviton
perturbation does not cause the IRdiv and IRsec in the n-point functions of genuine gauge invariant
operators. In the absence of the graviton, simply performing the dilatation transformation provides
a new set of canonical variables in which all ζ in the Hamiltonian are shifted by the free parameter
s. The presence of this new set of canonical variables is important to show the IR regularity for the
Euclidean vacuum. Extending this previous result to the graviton perturbation, we have provided a
new set of canonical variables whose Hamiltonian includes the curvature perturbation and the gravi-
ton perturbation with the shifts by arbitrary time-dependent parameters s and Si j , respectively. Then,
following a similar argument to the one in Ref. [66], we established the IR regularity, i.e., the absence
of the IRdiv and IRsec for the Euclidean vacuum to any order of perturbation. We also showed the
absence of the SG in slow-roll inflation, at least, unless extremely high orders in perturbation are
involved.

As is also argued in Ref. [66], when we evaluate the SG, considering only the superH modes is not
sufficient, because all modes are subH modes when we send the initial time ti to the past infinity. In
Sect. 5.3, to evaluate the SG, we used the Wightman functions obtained in Sect. 5.2. These Wight-
man functions RxRx ′G±s(x, x ′) and RxRx ′G±t

i jkl(x, x ′) are shown to take finite values, as long as
the two arguments x and x ′ are not mutually light-like. In this paper and also in Ref. [66], assum-
ing that these UV divergences will be renormalized by local counter terms, we have not explicitly
examined the contributions from the singular UV modes. We leave a detailed discussion about the
UV renormalization for future study. (See Refs. [76,108], where the UV regularization is discussed.)

In this paper, we considered the inflationary universe as the background spacetime. When we take
an exact de Sitter space as the background spacetime without introducing a scalar field, the curvature
perturbation will disappear, while the graviton perturbation can still exist. For the pure gravity in the
de Sitter limit, the accumulation of residual gauge degrees of freedom is still an issue of debate. It has
been claimed that the IR graviton can become a trigger for the running of the coupling constant. For
instance, in Ref. [10], Tsamis and Woodard claimed that the IR graviton can screen the cosmological
constant, suggesting the possibility that the cosmological constant problem might be dynamically
solved. In our forthcoming publication, we will address the IR issues of the graviton in the exact de
Sitter background and discuss whether the screening of the cosmological constant can still exist even
if we request the genuine gauge invariance.

Finally, we make several comments on the quantum states allowed from the IR regularity con-
ditions. We have seen that, when we choose the Euclidean vacuum as the initial state, the n-point
functions of the genuine gauge invariant operator become IR regular. Then, the question is whether
the regularity can be maintained for other initial states or not. In the simple setup adopted in
Appendix A, which immediately ensures the standard commutation relations for the interaction pic-
ture fields, we found that requesting the IR regularity of the graviton loops yields the same condition
on the mode function vs

k that was requested from the IR regularity of the loop corrections due to the
curvature perturbation. (In Ref. [63], we claimed that the IR regularity of the graviton loops does
not yield any condition on vs

k . However, as mentioned in Appendix A, in Ref. [63], we chose an
alternative heuristic iteration scheme that does not immediately guarantee the standard commutation
relations for the interaction picture fields. Therefore there is no contradiction with the current result.)
It will be intriguing to elaborate how strictly the IR regularity condition constrains the quantum state
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in the inflationary universe. We will also leave this issue for future study. (See also the studies on the
scalar field by Einhorn and Larsen in Refs. [109,110] and by Marolf et al. in Ref. [111].)
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Appendix A: Constraining the initial states from the IR regularity

When we set the initial state to the Euclidean vacuum, as we mentioned in Sect. 4.1, the equivalence
between the two sets of canonical variables that are connected by the residual gauge transformations
is ensured. Making use of the privileged property of the Euclidean vacuum, we can write the pertur-
bative expansion in a way that all the interaction picture fields are associated with the IR-suppressing
operator Rx , which plays a crucial role in showing the IR regularity. This consideration suggests that
the IR regularity will not be guaranteed for an arbitrary choice of the initial state. In this section,
we will show that the requirement of IR regularity actually yields a non-trivial restriction on the
quantum state, choosing a simple setup where the interaction is turned on at a finite initial time ti . In
this appendix, all field variables without the subscript I are supposed to be those in the Heisenberg
picture.

A.1. Solving the equations of motion

In this subsection, we compute the two-point function of Rx
gζ (x) up to one-loop order to derive the

IR regularity condition on the initial state. Assuming that the interaction is turned on at the initial
time ti , we set the relation between the Heisenberg fields and the interaction picture fields as

ζ(ti , x) = ζI (ti , x), π(ti , x) = πI (ti , x), (A1)

and

δγi j (ti , x) = δγi j I (ti , x), πi j (ti , x) = πi j I (ti , x), (A2)

where πI and πi j I are the conjugate momenta of the interaction picture fields ζI and δγi j I ,
respectively. The advantage of choosing this initial condition is that the commutation relations
for the Heisenberg field �, given in Eqs. (3.4) and (3.5), also immediately guarantee the standard
commutation relations for the interaction picture fields, i.e.,

[ζI (t, x), πI (t, y)] = iδ(3)(x − y), [ζI (t, x), ζI (t, y)] = [πI (t, x), πI (t, y)] = 0, (A3)

and

[
δγi j I (t, x), πkl

I (t, y)
]

= iδ(3) kl
i j (x − y),

[
δγi j I (t, x), δγkl I (t, y)

] =
[
π

i j
I (t, x), πkl

I (t, y)
]

= 0.

(A4)
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Here, we compute the two-point function ofRx
gζ (x) by solving the Heisenberg operator equations

of motion for ζ and δγi j . Using the retarded Green functions G R(x, x ′) and G Ri jkl(x, x ′) given by

G R(x, x ′) = −iθ(t − t ′)
[
ζI (x), ζI (x ′)

]
, (A5)

G Ri jkl(x, x ′) = −iθ(t − t ′)
[
δγi j I (x), δγkl I (x ′)

]
, (A6)

we can solve the equations of motion for ζ and δγi j , employing the initial conditions (A1) and (A2) as

ζ(x) = ζI (x) + L−1
R,sSNL(x), (A7)

δγi j (x) = δγi j I (x) + L−1
R,tSNLi j (x), (A8)

with

L−1
R,sSNL(t, x) ≡ −2M2

pl

∫
d4x ′ε1(t

′)e3ρ(t ′)G R(x, x ′)SNL(x ′), (A9)

L−1
R,tSNLi j (t, x) ≡ −

M2
pl

4

∫
d4x ′e3ρ(t ′)Gkl

Rkl(x, x ′)SNLi j (x ′), (A10)

where the explicit form of the non-linear source terms SNL(x) and SNLi j (x ′) will be derived later.
Evaluating Eqs. (A9) and (A10) iteratively, we can obtain expressions for ζ and δγi j , respectively.

Inserting the thus-obtained solution ζ and δγi j into Eq. (3.45), we can perturbatively compute
gζ (x) as

gζ (x) = ζI (x) + gζ 2(x) + gζ 3(x) + · · · , (A11)

where gζ n(x) represents the term that consists of n interaction picture fields. Expanding the inter-
action picture fields ζI and δγi j I as in Eqs. (2.9) and (2.19), the initial vacuum state is defined
by

ak|0〉 = a(λ)
k |0〉 = 0. (A12)

Notice that the n-point functions computed by using the Heisenberg operator solved with the retarded
Green function can be formally shown to agree with those calculated in the in–in formalism (see, for
instance, the Appendix of Ref. [65]).

Using Eq. (A11), the one-loop contributions to the two-point function of Rx
gζ (x) are given by

〈Rx1
gζ (x1)Rx2

gζ (x2)〉1loop

= 〈Rx1
gζ 2(x1)Rx2

gζ 2(x2)〉 + 〈Rx1ζI (x1)Rx2
gζ 3(x2)〉 + 〈Rx1

gζ 3(x1)Rx2ζI (x2)〉. (A13)

As discussed in Sect. 4.2.2, after we choose the boundary conditions for ∂−2 appropriately, the inverse
Laplacian does not enhance the singular behavior of the superH modes, and hence the IRdiv and IRsec
can appear only from the variances of ζI (x) and δγi j I (x), whose superH contributions give

〈ζ̄ 2
I (t)〉 =

∫

k≤1/Lt

d3k

(2π)3 Ps(k) ∝
∫

k≤1/Lt

dk

k
, (A14)
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and

〈δγ̄i j I (t)δγ̄kl I (t)〉 =
(

δikδ jl + δilδ jk − 2

3
δi jδkl

)

〈δγ̄ 2
I (t)〉, (A15)

with

〈δγ̄ 2
I (t)〉 ≡ 1

20π2

∫

k≤1/Lt

dk

k
k3 Pt (k) ∝

∫

k≤1/Lt

dk

k
. (A16)

Here ζ̄I (t) and δγ̄i j I (t), respectively, denote ζI and δγi j I with only the superH modes, which mimic
their spatially averaged values in Ot .

When gζ 2 includes terms with ζI or δγi j I without differentiation, the first term in the second line
of Eq. (A13) can give 〈ζ̄ 2

I 〉 or 〈δγ̄ 2
I 〉. These variances can also appear from the second and third terms,

when gζ 3 includes terms with two ζI or two δγi j I without differentiation. To make our discussion
compact and transparent, here, we pick up only the potentially divergent contributions, which yield
〈ζ̄ 2

I 〉 or 〈δγ̄ 2
I 〉. We introduce the symbol

IR≈
to denote the approximate equality neglecting the terms that yield neither 〈ζ̄ 2

I 〉 nor 〈δγ̄ 2
I 〉 at the one-

loop level [62,63].
Now, we derive approximate equations of motion for ζ and δγi j . In the following, we will use

L−1
R,α QIRx Q′

I
IR≈ QIL−1

R,αRx Q′
I , (A17)

with α = s, t . Here, QI and Q′
I are either ζI or δγi j I and Rx is a derivative operator that suppresses

the IR modes. Equation (A17) can be proved as follows. The Fourier transformation ofL−1
R,s QIRx Q′

I
is proportional to

∫
d3p

∫ t

ti
dt ′ε1(t

′)e3ρ(t ′)ρ̇2(t ′){vk(t)v
∗
k (t ′) − v∗

k (t)vk(t
′)}QI p(t

′)
(RQ′

I

)
k−p (t ′),

where QI k and (RQ′
I )k denote the Fourier modes of Q I and RQ′

I . Since (RQI )k−p (t ′) −
(RQ′

I

)
k (t ′) is suppressed and QI,p becomes time-independent in the limit p → 0, the IR-relevant

piece of the integrand of the momentum integral can be recast into

Q I p

∫ t

ti
dt ′ε1(t

′)e3ρ(t ′)ρ̇2(t ′){vk(t)v
∗
k (t ′) − v∗

k (t)vk(t
′)} (RQ′

I

)
k (t ′). (A18)

Similarly, we can also prove Eq. (A17) for L−1
R,t . In the following discussion, we will also use the

approximate identities

L−1
R,α f (x)

IR≈ 0, for f (x)
IR≈ 0. (A19)

In the one-loop corrections to Rx
gζ , δγi j2 contributes only through gζ 3, and the δγi jn with n ≥ 3

do not contribute. Since at least one of the two interaction picture fields included in δγi j2 is suppressed

by Rx , we find δγi j2
IR≈ 0. Then, we find

δγi j (x)
IR≈ δγi j I (x), (A20)

and hence the one-loop corrections can be given without computing the non-linear contributions in
δγi j .
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Next, we derive an approximate equation of motion for ζ . Under the equality
IR≈, the non-linear

action is reduced to

S
IR≈ M2

pl

∫
dtd3xe3(ρ+ζ )ε1

[

(∂tζ )2 − e−2(ρ+ζ )
[
e−δγ

]i j
∂iζ∂ jζ

]

, (A21)

where the terms with more than two fields with differentiation, which give neither 〈ζ̄ 2
I 〉 nor

〈δγ̄i j I δγ̄kl I 〉, are abbreviated. The variation of the above action gives the equation of motion as

Lsζ(x) = SNL(x), (A22)

with

Ls ≡ ∂2
t + (3 + ε2) ρ̇∂t − e−2ρ∂2, (A23)

and

SNL(x)
IR≈ e−2ρ

(
e−2ζ [e−δγ ]i j − δi j

)
∂i∂ jζ(x) − δ(t − ti )(e

3ζ − 1)∂tζ(x), (A24)

where the last term is added so that the solution satisfies the second condition in Eq. (A1) [65].

A.2. Computation of gζ

Here, we solve the equation of motion (A22), employing the initial conditions (A1) and (A2).
Expanding ζ as in Eq. (2.30), the equation of motion (A22) is recast into

LsζI = 0, (A25)

Lsζ2
IR≈ −(2ζI δ

i j + δγ
i j
I )∇i∇ jδζI − 3δ(t − ti )ζI ∂tζI , (A26)

Lsζ3
IR≈ −2

(
ζ2�ζI + ζI �ζ2 − ζ 2

I �ζI

)

+ 9

2
δ(t − ti )ζ

2
I ∂tζI −

{
δγ

i j
I ∇i∇ jζ2 − 1

2
(δγ 2

I )i j∇i∇ jζI

}
, (A27)

where we have introduced

∇i ≡ e−ρ∂i , � ≡ δi j∇i∇ j . (A28)

In deriving Eq. (A27), we used

∂tζ(ti , x)
IR≈ e−3ζI (ti ,x)∂tζI (ti , x), (A29)

which is derived from the initial conditions (A2). Solving Eqs. (A26) and (A27) formally, we obtain

ζ2
IR≈ −ζ̄IL−1

R,s [2� + 3δ(t − ti )∂t ] ζI − δγ̄
i j
I L−1

R,s∇i∇ jζI , (A30)

ζ3
IR≈ 1

2
ζ̄ 2

I

[
4L−1

R,s�L−1
R,s(2� + 3δ(t − ti )∂t ) + 4L−1

R,s� + 9L−1
R,sδ(t − ti )∂t

]
ζI

+ δγ̄
i j
I δγ̄ kl

I L−1
R,s∇i∇ jL−1

R,s∇k∇lζI + 1

2
(δγ̄ 2

I )i jL−1
R,s∇i∇ jζI , (A31)

using the properties of the retarded integration given in Eqs. (A17) and (A19). Here, we have replaced
ζI and δγi j I with their superH contributions ζ̄I and δγ̄i j I , which contribute to the IRdiv and IRsec.
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Next, using Eqs. (A30) and (A31), we express gζ (t f , x), defined in Eq. (3.48), as

gζ (t f , x) = ζ
(

t f , e−g ζ̄ (t f )[e−δg γ̄ (t f )]i
j x

j
)

. (A32)

Inserting Eq. (A30) into Eq. (A32), we can easily obtain

gζ 2(t f , x)
IR≈ −ζ̄IDs

x ζI − 1

2
δγ̄

i j
I Dt

x i jζI , (A33)

with

Ds
x ≡ 2L−1

R,s� + 3L−1
R,sδ(t − ti )∂t + x · ∂x, (A34)

Dt
x i j ≡ 2L−1

R,s∇i∇ j + xi∂ j . (A35)

The computation of gζ 3 is slightly lengthy but straightforward. Using Eqs. (A30) and (A32), we find

gζ 3(t f , x)
IR≈ ζ3 + ζ̄ 2

I x · ∂xL−1
R,s(2� + 3δ(t − ti )∂t )ζI + 1

2
ζ̄ 2

I (x · ∂x)
2ζI

+ 1

2
δγ̄ i

j I δγ̄
kl
I x j∂iL−1

R,s∇k∇lζI + 1

8
δγ̄ i

j I δγ̄
k
l I x j∂i x

l∂kζI . (A36)

To rewrite the terms with xi∂ jL−1
R,s in gζ 3 into a more tractable form, we use the identity

xi∂ jL−1
R,s = 1

2

(
xi∂ jL−1

R,s + L−1
R,sLs xi∂ jL−1

R,s

)
, (A37)

which obviously holds if L−1
R,sLs can be replaced with unity. In general, for

δR ≡ (1 − L−1
R,sLs)xi∂ jL−1

R,s(· · · ),

we haveLsδR = 0, and hence δR is a homogeneous solution of the second-order differential equation,
i.e., LsδR = 0. Since δR and ∂tδR are both zero at the initial time, which is automatically satisfied
by the definition of the retarded integral L−1

R,s , we can confirm that δR vanishes for all t ≥ ti . Using

[
Ls, xi∂ j

]
= −2∇ i∇ j ,

the right-hand side of Eq. (A37) is further rewritten as

xi∂ jL−1
R,s = 1

2
(xi∂ jL−1

R,s + L−1
R,s xi∂ j ) − L−1

R,s∇ i∇ jL−1
R,s . (A38)

Using Eqs. (A31), (A36), and (A38), we obtain

gζ 3(t f , x)
IR≈ 1

2
ζ̄ 2

I (Ds
x )2ζI + 1

8
δγ̄

i j
I δγ̄ kl

I Dt
x i jDt

x klζI

− 3ζ̄ 2
I L−1

R,sδ(t − ti )∂tL−1
R,s�ζI + 9

2
ζ̄ 2

I {L−1
R,sδ(t − ti )∂t − (L−1

R,sδ(t − ti )∂t )
2}ζI .

(A39)
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Noticing that the definition of L−1
R implies

L−1
R,sδ(t − ti )∂tL−1

R,s�ζI = 0, {L−1
R,sδ(t − ti )∂t − (L−1

R,sδ(t − ti )∂t )
2}ζI = 0, (A40)

we obtain

gζ 3(t f , x)
IR≈ 1

2
ζ̄ 2

I Ds
x

2ζI + 1

8
δγ̄

i j
I δγ̄ kl

I Dt
x i jDt

x klζI . (A41)

In the above expressions (A33) and (A41), ζ̄I multiplied by the delta function δ(t − ti ) in Ds
x should

be understood as ζ̄I (ti ).

A.3. One-loop corrections

Using Eqs. (A33) and (A41) into Eq. (A13), we obtain the one-loop corrections to Rx
gζ (t f , x) as

〈Rx1
gζ (t f , x1)Rx2

gζ (t f , x2)〉1loop

IR≈ 1

2
〈ζ̄ 2

I (ti )〉F s
IRdiv(x1, x2) + 1

2
〈{ζ̄I (t f ) − ζ̄I (ti )}2〉F s

IRsec(x1, x2)

+ 1

8
〈δγ̄ i j

I (t f )δγ̄
kl
I (t f )〉F t

i jkl(x1, x2), (A42)

with

F s
IRdiv(x1, x2) ≡ Rx1Rx2

〈
2Ds

x1 ζI (x1)Ds
x2 ζI (x2) + Ds 2

x1 ζI (x1)ζI (x2) + ζI (x1)Ds 2
x2 ζI (x2)

〉
, (A43)

F s
IRsec(x1, x2) ≡ Rx1Rx2

〈
2Ds′

x1 ζI (x1)Ds′
x2 ζI (x2) + Ds′ 2

x1 ζI (x1)ζI (x2) + ζI (x1)Ds′ 2
x2 ζI (x2)

〉
,

(A44)

F t
i jkl(x1, x2) ≡ Rx1Rx2

〈
2Dt

x1 i jζI (x1)Dt
x2 klζI (x2)

+ Dt
x1 i jDt

x1 klζI (x1)ζI (x2) + ζI (x1)Dt
x2 i jDt

x2 klζI (x2)
〉
, (A45)

where we have introduced xa ≡ (t f , xa) for a = 1, 2 and

Ds′
x ≡ 2L−1

R,s� + x · ∂x, (A46)

which agrees with the trace of Dt
x i j . The first term in Eq. (A42) can yield the IRdiv of the curva-

ture perturbation, which can be removed only if F s
IRdiv(x1, x2) vanishes. The second term, which

accompanies

〈{ζ̄I (t f ) − ζ̄I (ti )}2〉 
∫

1/Lti ≤k≤1/Lt f

d3k

(2π)3 Ps(k) ∝ ln

{
eρ(t f )ρ̇(t f )

eρ(ti )ρ̇(ti )

}

,

appears to yield the IRsec due to the curvature perturbation. This term can be removed only if
F s

IRsec(x1, x2) vanishes. The third term appears to yield the IRdiv and IRsec due to the graviton
perturbation, which can be removed only if F t

i jkl(x1, x2) vanishes.
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A.4. IR regularity condition on the mode function

Next, we discuss a condition that eliminates the IRdiv and IRsec due to the curvature perturbation
and the graviton perturbation. One may think that, if the conditions

Ds
x ζI (x) = 0, (A47)

Ds′
x ζI (x) = 0, (A48)

Dt
x i jζI (x) = 0 (A49)

were fulfilled, F s
IRdiv(x1, x2), F s

IRsec(x1, x2), and F t
i jkl(x1, x2) would vanish, and hence the IR reg-

ularity could be guaranteed without imposing any further conditions. However, these conditions are
immediately contradicted when we insert the mode expansion of ζI , given in (2.9), into Eq. (A47).
Operating x · ∂x on a Fourier mode eik·x yields the factor (x · k)eik·x, which cannot be canceled by
the remaining two terms in Eq. (A47), since the retarded integral L−1

R,s [65] acting on eik·x leaves it
proportional to eik·x. Similarly, Eqs. (A48) and (A49) cannot be compatible with the Fourier mode
decomposition, as long as we use the solution with the retarded Green function L−1

R,s , fixed by the
initial condition (A1) and (A2).

Here, following Ref. [65], we look for a simple alternative way to remove the IRdiv and IRsec of
the curvature and graviton perturbations. In Ref. [65], we pointed out that, when

Ds
x ζI (x) =

∫
d3k

(2π)3/2

(
ak Deik·xvs

k + (h.c.)
)

(A50)

is satisfied, where D is defined as

D ≡ k−3/2e−iφ(k)k · ∂kk3/2eiφ(k), (A51)

and φ(k) is an arbitrary phase function φ(k), F s
IRdiv(x1, x2) can be summarized in the total derivative

form as

F s
IRdiv(x1, x2) = Rx1Rx2

∫
d(ln k)d�k

(2π)3 ∂2
ln k

{
k3|vs

k |2eik·(x1−x2)
}

, (A52)

where
∫

d�k denotes the integration over the angular directions of k. Then, since the integral of a
total derivative vanishes, the IRdiv can be eliminated. Using the mode expansion (2.9), the condition
(A50) can be recast into a condition on mode functions as

L−1
R,k

(
−2(ke−ρ)2 + 3δ(t − ti )∂t

)
vs

k = Dvs
k, (A53)

where L−1
R,k is the Fourier mode of L−1

R,s . Similarly, we can also eliminate the IRsec of the curvature
perturbation, by requesting

Ds′
x ζI (x) =

∫
d3k

(2π)3/2

(
ak Deik·xvs

k + (h.c.)
)

, (A54)

which leads to a slightly different condition from Eq. (A53) as

− 2L−1
R,k(ke−ρ)2vs

k = Dvs
k . (A55)
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Next, we will derive the IR regularity condition for the graviton loop. To compute F t
i jkl(x1, x2),

we first rewrite δγ̄
i j
I Dt

x i jζI (x) as

δγ̄
i j
I Dt

x i jζI (x)

= δγ̄
i j
I

∫
d3k

(2π)3/2 ake−iφ(k)

[
∂

∂ki
k j e

iφ(k)vs
keik·x − eik·x ki k j

k2 (L−1
R,k2(ke−ρ)2 + k · ∂k)e

iφ(k)vs
k

]

+ (h.c.), (A56)

where the terms multiplied by δi j in the square bracket vanish, being contracted with δγ̄ i j . Noticing
that ∂/∂kivs

k = (ki/k)∂/∂kvs
k , since vs

k does not depend on the direction of k, we find that the terms
that potentially yield IRdiv and IRsec due to the graviton vanish as

〈δγ̄ i j
I (t f )δγ̄

kl
I (t f )〉F t

i jkl(x1, x2)

= 〈δγ̄ i j
I (t f )δγ̄

kl
I (t f )〉Rx1Rx2

∫
d3k

(2π)3

∂

∂ki
k j

∂

∂kk
kl{|vs

k(t f )|2eik·(x1−x2)} = 0, (A57)

if the mode function satisfies

− 2L−1
R,k(ke−ρ)2vs

k = e−iφ(k)k · ∂keiφ(k)vs
k . (A58)

Thus, if we require Eq. (A58), we can eliminate the IRdiv and IRsec due to the graviton loops.
In the case with the isotropic graviton spectrum, the IR regularity can be guaranteed if the mode

function satisfies Eq. (A55). In fact, when we request the condition (A55), we find

δγ̄
i j
I Dt

x i jζI (x) = δγ̄
i j
I

∫
d3k

(2π)3/2 ake−iφ(k)

[

k−3/2 ∂

∂ki
k3/2k j e

iφ(k)vs
keik·x

]

+ (h.c.), (A59)

and then the one-loop contribution from the graviton is given by

〈δγ̄ i j
I (t f )δγ̄

kl
I (t f )〉F t

i jkl(x1, x2)

= 〈δγ̄ i j
I (t f )δγ̄

kl
I (t f )〉Rx1Rx2

∫
d3k

(2π)3 k−3 ∂

∂ki
k j

∂

∂kk
kl{k3|vs

k(t f )|2eik·(x1−x2)}. (A60)

Using the following relations:
[

k−3,
∂

∂ki

]

= 3
ki

k5 ,

[
ki k j

k5 ,
∂

∂kl

]

= 5
ki k j kl

k7 − δil k j + δ jl ki

k5 , (A61)

we can rewrite Eq. (A60) as

〈δγ̄ i j
I (t f )δγ̄

kl
I (t f )〉F t

i jkl(x1, x2)

= 〈δγ̄ i j
I (t f )δγ̄

kl
I (t f )〉Rx1Rx2

∫
d3k

(2π)3

{
∂

∂k j

ki

k3

∂

∂kl
kk + 3

∂

∂kl

ki k j kk

k5

}

{k3|vs
k(t f )|2eik·(x1−x2)}

+ 3〈δγ̄ i j
I (t f )δγ̄

kl
I (t f )〉Rx1Rx2

∫
d3k

(2π)3

kk

k4 {5ki k j kl − k2(δil k j + δ jl ki )}|vs
k(t f )|2eik·(x1−x2).

(A62)

Using Eq. (A15), we can show that the terms in the last line cancel among them. Then, since the
terms in the second line, which are total derivatives, vanish, we find that the condition (A55) can
ensure the IR regularity of graviton loops as well.
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As is pointed out in Ref. [65], no mode function can consistently satisfy the IR regularity condi-
tions (A53) and (A55), suggesting the necessity of modifying the initial condition (A1) and (A2).
Apart from that, it is shown that the same conditions as Eqs. (A53) and (A55) are derived from the
requirement that the quantum states, selected operationally in the same way in terms of two different
canonical variables related by the dilatation transformation, should agree with each other. This is in
harmony with our claim that choosing the Euclidean vacuum that guarantees Eq. (4.5) is crucial for
the IR regularity.

In our previous work [63], we computed the one-loop contribution of the graviton in the two-point
function of gR(x), which can be expressed in the form Rx

gζ (x) by neglecting the terms that do not
contribute to the IRdiv or IRsec. Then, we claimed that the one-loop contribution in the two-point
function of gR(x) becomes IR regular without restricting the mode function vs

k . However, in Ref. [63],
to compute the graviton loop, we adopted

ζ2
IR≈ · · · − L−1

s δγ̄
i j
I ∇i∇ jζI

IR≈ · · · + 1

2
δγ̄

i j
I xi∂ jζI (A63)

as the solution for Eq. (A22), where ellipses represent the terms that do not include δγi j I . Notice
that, in Eq. (A63), the solution that satisfies

2L−1
s δγ̄

i j
I ∇i∇ jζI = −δγ̄

i j
I xi∂ jζI

is selected. Based on the discussion after Eq. (A49), we find that this solution cannot be obtained
by using the retarded Green function, L−1

R,s , with the initial conditions (A1) and (A2). Therefore, in
order to eliminate the IRdiv and IRsec from the graviton loops for an arbitrary mode function vs

k , we
need to abandon the initial conditions (A1) and (A2). Then, however, there is no longer any guarantee
that the standard commutation relations also hold for the interaction picture fields.
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