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1 Introduction

The inflation scenario predicts primordial gravitational waves and curvature perturbations
stemming from the quantum fluctuations of the inflaton. The tensor to scalar ratio and
the spectral index of the curvature perturbation are parameters constrained by current and
future observations of the cosmic microwave background. The power law shape of the inflaton
potential written as V [φ] ∝ φn with a positive integer n gives a typical slow roll inflation
model. According to the latest results of Planck observations [1, 2], the quartic potential
∝ φ4 is almost excluded and the quadratic potential ∝ φ2 is also out of the 2σ confidence
region on the ns–r plane.

Possibility that gravitons are massive is one of natural modifications of gravity theory
and is worthwhile to be considered. Recent progress in massive gravity is driven by the
construction of a consistent model [3–7], which is free from the Boulware-Deser ghost [8].
The model only with a massive graviton, however, has no stable homogeneous isotropic
cosmological solution [9] and general covariance is manifestly violated. Extension to bimetric
theory of gravity with an additional metric recovers general covariance and, moreover, we
can easily have stable homogeneous isotropic cosmological solutions [10–19]. At least, at low
energies compared with the energy scale of the interaction terms between two metrics, there is
a cosmological background solution which is free from ghost and gradient instabilities [16, 20].
Since bimetric theory has not only a massive graviton, which decays rapidly during inflation,
but also a massless graviton, which survives in contrast, we can have a spectrum of primordial
gravitational waves similar to the one predicted by general relativity [21] (see also [22]).

The aim of this paper is to reveal whether bimetric theory can be consistent with
observations or not and, if the answer is “yes”, how the theory is constrained by observations.
We adopt the simplest setup of inflation where a scalar field is coupled to the physical metric
as the inflaton. In this paper, we extend the previous results on primordial gravitational
waves in the following sense: (i) to general model parameters of dRGT bimetric theory at
the leading order in slow roll, and (ii) to primordial curvature perturbations. The latter
extension is essential in order to compare the results with the current constraints on inflation
models obtained from cosmic microwave background observations. In particular, we discuss
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how the constraints on the inflaton potential for the single-field slow roll inflation are modified.
We can easily anticipate that, for some models, the already tight constraints on the power
law potentials might be relaxed due to the effects of modified gravity. Contrary to the naive
expectation, we will find that the constraint on the tensor to scalar ratio becomes even tighter
in any choice of the bimetric model parameters, except when the graviton’s mass is very close
to the Higuchi bound [14, 20, 23]. This exceptional case is not discussed in detail here.

We organize this paper as follows. In section 2, we show the general action of dRGT
bimetric model of gravity with an inflaton. In section 3, we derive background equations in
this model and define slow roll parameters characterizing the inflaton potential. In section 4,
we argue that the perturbed action can be simplified in the slow roll approximation to evaluate
the late time spectra of cosmological perturbations owing to the decay of massive gravitons.
In section 5, we calculate the spectra of the primordial tensor and curvature perturbations
with the aid of the reduced action to the leading order in slow roll. In section 6, as a
concrete example, we evaluate how the tensor to scalar ratio and the spectral index of the
curvature perturbation are modified from the general relativity counterparts for the power
law potentials. Section 7 is devoted to the summary of our results.

2 Action

The bimetric action with a scalar field φ coupled to the physical metric gµν , which is consid-
ered as the inflaton, is1

S =
M2
g

2

∫
d4x
√
−gR[gµν ] +

∫
d4x
√
−g
(
−1

2
gµν∂µφ∂νφ− V [φ]

)

+
M2
f

2

∫
d4x
√
−fR[fµν ]−m2M2

g

∫
d4x
√
−g

4∑
k=0

ckFk[Y
µ
ν ] , (2.1)

where m is the coupling constant between the metrics. {ck} are bimetric model parameters,
which are basically free parameters. Mg and Mf are the gravitational coupling energy scales
of g-metric and f -metric, respectively. R[gµν ] is the Ricci scalar constructed from g-metric
and R[fµν ] is defined in a similar manner. V [φ] is the potential of the scalar field. Y µ

ν is
defined by Y µ

α Y α
ν = gµαfαν , and

Fk[X
µ
ν ] =

1

k!

∑
σ∈Sk

sgn(σ)X
µσ(1)
µ1 X

µσ(2)
µ2 · · ·Xµσ(k)

µk , (2.2)

where Sk is the permutation group of degree k and sgn(σ) is +1 for even number permutations
while −1 for odd number permutations. More explicitly, the functions Fk are written as

F0[Xµ
ν ] = 1 , F1[Xµ

ν ] = [X] , F2[Xµ
ν ] =

1

2
([X]2 − [X2]),

F3[Xµ
ν ] =

1

6
([X]3 − 3[X][X2] + 2[X3]) , F4[Xµ

ν ] = det(X) , (2.3)

where [Xk] on the right hand sides means the trace of Xk.

1We mention that there is another description including the metric description of bimetric theory, which
is referred to as the vierbein formulation [24–30].
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We called g-metric the physical metric since it is directly coupled to the ordinary matter
fields. The scalar field is also assumed to be coupled to g-metric so as to decay to the
ordinary matter fields during reheating since the decay through gravitational couplings will
be inefficient if the scalar field is coupled only to f -metric. Of course, the scalar field can be
coupled to both of g-metric and f -metric [31–33]. One possibility is the potential couplings.
Another possibility is the kinetic coupling through the effective metric constructed from
g-metric and f -metric. Otherwise, Boulware-Deser ghost reappears. These cases are not
considered and we discuss the simplest case that the scalar field is coupled only to the
physical metric.

3 Inflationary spacetime in bimetric theory

Inflationary background spacetime in bimetric theory is described by

ds2 ≡ gµνdxµdxν = −N2dt2 + a2(dx2 + dy2 + dz2) , (3.1)

ds′2 ≡ fµνdxµdxν = −M2dt2 + b2(dx2 + dy2 + dz2) . (3.2)

After substitution of them into the action (2.1), we find that the action does not contain
time derivatives of N and M . From the variations with respect to them, we obtain two
constraints: [20]

H2 ≡
(
ȧ

a

)2

=
1

3M2
g

[
U − ξ

4
U ′ + ρφ

]
, (3.3)

H2
f ≡

(
Nḃ

Mb

)2

=
U ′

12κξ3M2
g

, (3.4)

and, from the variations with respect to dynamical variables, three equations of motion:

Ḣ =
(M/N − ξ)J

6M2
g

−
ρφ + pφ

2M2
g

, (3.5)

Ḣf = −(M/N − ξ)J
6κξ3M2

g

, (3.6)

φ̈+ 3Hφ̇+ Vφ = 0 , (3.7)

where ρφ is the matter energy density, pφ is the pressure of matter and

˙ ≡ d

Ndt
. (3.8)

We introduced also the ratio of two gravitational couplings κ ≡M2
f /M

2
g and the ratio of two

scale factors ξ ≡ b/a. U and J are functions of ξ, defined by

U(ξ) = m2M2
g (c0 + 4c1ξ + 6c2ξ

2 + 4c3ξ
3 + c4ξ

4) , (3.9)

and

J(ξ) =

[
U − ξ

4
U ′
]′

= 3m2M2
g (c1 + 2c2ξ + c3ξ

2) , (3.10)

– 3 –
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respectively. In order for the constraints (3.3) and (3.4) to be satisfied after the time evolution
using eqs. (3.5), (3.6) and (3.7), an additional constraint,

J(H −Hfξ) = 0 , (3.11)

is required. Although there is still a room for debate, the branch with J = 0, which lacks
scalar (= helicity-0) and vector (= helicity-1) mode perturbations at the level of linear
perturbation, is likely to be pathological in general [12, 34–37]. Here in this paper, we
concentrate on the background that satisfies

H = Hfξ , (3.12)

which we call the healthy branch. With the additional constraint, we can rewrite the two
constraints (3.3) and (3.4) as

H2 =
U + ρφ

3(1 + κξ2)M2
g

=
U ′

12κξM2
g

. (3.13)

The latter equality can be rearranged as

F = ρφ =
1

2
φ̇2 + V [φ] , (3.14)

where

F (ξ) = −U +
(1 + κξ2)

4κξ
U ′ . (3.15)

We can read off the effective Planck constant from the Friedmann equation (3.13) as

M2
eff =

(1 + κξ2)

(1 + U/ρφ)
M2
g . (3.16)

The ratio of the scale factors ξ is determined by ρφ through eq. (3.14).
We introduce c̃ as c̃ = M/ξN , which describes the difference between two light cones.

We can show the relation between c̃ and ξ,

c̃− 1 =
ξ̇

Hξ
, (3.17)

from the definition of ξ and the constraint (3.12). The time derivative of (3.12) followed by
eqs. (3.5) and (3.6) gives us

c̃− 1 =
ρφ + pφ
M2
gW

=
φ̇2

M2
gW

, (3.18)

where

W (ξ) =
(1 + κξ2)

3κξM2
g

J − 2H2 . (3.19)

We note that the absence of the Higuchi ghost requires W > 0 [20] and, consequently, c̃
is larger than unity and ξ̇ is positive. In de Sitter case, where energy density of matter is

– 4 –
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constant and ρφ + pφ = 0 is satisfied, we have a constant ξ and c̃ is just unity. Furthermore,
we need to assume the coupling constant, m, is larger than the Hubble scale, i.e., m & H,
after inflation in order to avoid gradient instability [20].

A cosmological solution can be realized with ξ chosen as a root of eq. (3.15) depending
on the energy density of matter. The number of the roots are determined by the parameters
{ck} and κ. As we will see later, the generalized Higuchi bound is reduced to the condition
F ′ < 0, which is easily realized. We also have the freedom to set the root of F = 0, ξ0, to
unity with the following transformation: ξ → ξ/ξ0, ck → ckξ

n
0 , and κ→ κξ2

0 . Therefore, even
if there are several different roots with the same model parameters, they can be absorbed by
different choices of the model parameters.

We use the slow roll approximation in the following discussion. We introduce slow roll
parameters by

ε =
M2

eff

2

(
Vφ
V

)2

, η = M2
eff

Vφφ
V

. (3.20)

Under the slow roll conditions, ε, |η| � 1, the background equations reduce in the leading
order to

H2 =
V

3M2
eff

, 3Hφ̇+ Vφ = 0 , F = V , (3.21)

where

M2
eff =

1 + κξ2

1 + U/V
M2
g . (3.22)

From eqs. (3.20) and (3.21), the time derivative of the scalar field is evaluated as

φ̇ = −
√

2εMeffH . (3.23)

Therefore, from eq. (3.18), we obtain

c̃− 1 =
2εM2

effH
2

M2
gW

=
2εV

3M2
gW

, (3.24)

i.e., the deviation of c̃ from unity is suppressed as O(ε) under the slow roll approximation,
unless W is tuned to be extraordinary small compared with V/M2

g ≈ H2. Also, ξ̇/ξ has the
same suppression according to eq. (3.17).

Here we briefly mention the exceptional case. If we choose such parameters exhibiting
W � V/M2

g , namely, the Higuchi bound is saturated, the analysis we perform is not valid
any more even in the background level. This is because the other light cone largely deviates
from the physical one and the relation between the spatial scales ξ rapidly changes in spite
of slow roll of the inflaton, which means the inflationary spacetime is not well-approximated
by de Sitter spacetime and the slow roll limit cannot be taken. That behavior can be seen
in the right hand side of (3.24) enhanced due to the smallness of W . We exclude this finely
tuned situation in the following discussion.

4 Cosmological perturbations

In the slow roll limit, ε, η → 0, tensor (= helicity-2) modes are decomposed into massless
modes and massive modes. The massless modes obey usual equations of motion and the

– 5 –
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Figure 1. The leading corrections to the tensor and scalar spectra including massive propagators
are shown. The upper diagram is the leading correction to the tensor spectrum. The solid line means
the propagation of massless graviton and the dashed line means the propagation of massive graviton
there. The vertex is O(ε) because of the time derivative of ξ and the deviation of c̃ from unity. The
lower diagram is the leading correction to the scalar spectrum. The solid line means the propagation
of massless scalar modes and the dashed line again means the propagation of massive graviton there.
The vertex is O(ε1/2), which leading contribution comes from φ̇.

massive modes follow the equations of motion with the effective mass [20],

m2
eff =

(1 + κξ2)

3κξM2
g

J . (4.1)

On the other hand, there is no massless dynamical gravitational degree of freedom in the
scalar modes, but the massive graviton has a scalar mode. On de Sitter background, which
is realized in the slow roll limit, three different helicity modes of massive graviton take the
same effective mass (4.1). It is known that a factor W = m2

eff − 2H2 appears in front of
the kinetic term of the scalar massive graviton, and hence a ghost instability takes place
if m2

eff ≤ 2H2 [23, 38], which is referred as the Higuchi ghost. (More precisely, the strong
coupling occurs in the perturbative expansion when m2

eff = 2H2.) Therefore, we assume
that the model parameters are chosen so that m2

eff > 2H2 is satisfied. In the slow roll limit,
perturbations in the matter sector are decoupled from the gravitational sector, obey the
equation of motion of a massless field and have a flat spectrum as in general relativity. As a
result, in the present setup, both tensor perturbations and scalar perturbations have massive
modes and massless modes. The massive modes are heavy enough to decay during inflation
just like usual matter without pressure. Therefore they are irrelevant for the generation of
seeds of structure formation during inflation. Only the massless modes contribute to the
perturbation spectra observed after the inflation.

Under the slow roll approximation, the mixing between the massless tensor modes and
the massive tensor modes appears in O(ε). This is because the time derivative of ξ and the
deviation of c̃ from unity are involved in the mixing terms, and they are O(ε). Therefore, the
leading order correction to the amplitude of the tensor spectrum comes from the diagram
schematically shown in figure 1, where a solid line represents the massless graviton propagator
and a dashed line represents the massive graviton propagator. The external lines should end
with a massless graviton since the amplitude decays otherwise. Since this diagram contains
two slow roll suppressed vertices, the contribution becomes O(ε2). As we concentrate on the
leading order effects, we neglect such higher order corrections.

– 6 –
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The massive scalar modes and the scalar field modes are also coupled when we expand
the perturbations with respect to the slow roll parameters. In contrast to the tensor modes,
the mixing vertex in the scalar modes appears in O(ε1/2) because the leading order terms are
slow roll suppressed only by φ̇. Hence, the correction to the amplitude of the scalar spectrum
can appear in O(ε), which is also a sub-leading effect in slow roll. The above discussion allows
us to ignore slow roll suppressed terms in the perturbed action. Then, the modifications on
the spectra coming from the massive modes, which decay rapidly, can be simply neglected,
and therefore we are allowed to assume

fµν = ξ2gµν , (4.2)

as long as we are concerned with the leading order effects in the amplitude of the spectra and
the spectral index, where ξ is determined by the value of φ through the last equation of (3.21).
The difference of ξ from the background value is estimated as ξ[φ] = ξ[φ0] + (dξ/dφ)|φ0δφ,
where φ0 and δφ are the background value and the perturbation of φ, respectively. (dξ/dφ)|φ0
is slow roll suppressed as ε1/2, since φ̇0 is O(ε1/2) and ξ̇/ξ is O(ε), which we saw in section 3.
Therefore, the perturbation of ξ arising from δφ is neglected. We can insist that the manifestly
slow roll suppressed corrections are not enhanced since we have discarded the situation that
the Higuchi bound is saturated.

We then obtain an action similar to the Einstein theory with a non-minimally coupled
scalar field.

S =
M2
g

2

∫
d4x
√
−gR[gµν ] +

M2
g

2

∫
d4x
√
−g κξ2(R[gµν ] + 6gµν∂µ log ξ ∂ν log ξ)

+

∫
d4x
√
−g
(
−1

2
gµν∂µφ∂νφ− V [φ]

)
−
∫
d4x
√
−gU(ξ) . (4.3)

We can see that (∂ log ξ)2 is slow roll suppressed as ε compared to (∂φ)2 as follows.

d log ξ

dφ
=

1

ξ

dξ

dφ
=

Vφ
ξF ′ = −

Vφ
3M2

gW
= −

√
2ε

Meff

V

3M2
gW

, (4.4)

where we have used a background equation in (3.21), the relation between F ′ and W ,

F ′ = −
3M2

gW

ξ
, (4.5)

found by combining eqs. (3.10), (3.13), (3.15) and (3.19), and the definition of ε. The sup-
pression is effective and (∂ log ξ)2 can be neglected in the action (4.3), as long as W is not
exceptionally small compared to V/M2

g , which we already required at the end of section 3.
From eq. (4.5), the positivity of W required for the absence of the Higuchi ghost is equiva-
lent to

F ′ < 0 , (4.6)

which we use in section 6. We also see dξ/dφ < 0 from (4.4). The action reduces to

S =
M2
g

2

∫
d4x
√
−g(1 + κξ[φ]2)R[gµν ] +

∫
d4x
√
−g
(
−1

2
gµν∂µφ∂νφ− (V [φ] + U(ξ[φ]))

)
.

(4.7)

– 7 –
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This is nothing but the Einstein theory with a non-minimal coupling scalar field. The equa-
tions of motion (3.21) are obtained even if we forget that ξ is a function of φ and consider ξ
as an independent variable under the slow roll approximation.

Let us make a conformal transformation

gµν = Ω2ḡµν , where Ω =

(
1

1 + κξ2

)1/2

, (4.8)

to remove the non-minimal curvature coupling term. In terms of the new metric ḡ defined
by the above relation, the action is rewritten as

S =
M2
g

2

∫
d4x
√
−ḡR̄

+

∫
d4x
√
−ḡ

(
−1

2

[
Ω2+6M2

g

(
κξ2

1+κξ2

)2(
dlogξ

dφ

)2
]
ḡµν∂µφ∂νφ−Ω4(V [φ]+U(ξ[φ]))

)
.

(4.9)

Again, we neglect (d log ξ/dφ)2 by the same discussion as above. We define a new scalar field
to absorb the conformal factor:

ψ ≡
∫
dφ Ω . (4.10)

Then, we obtain the standard action with a single inflaton as

S =
M2
g

2

∫
d4x
√
−ḡR̄+

∫
d4x
√
−ḡ
(
−1

2
ḡµν∂µψ∂νψ − Ω4[V (φ[ψ]) + U(ξ)]

)
. (4.11)

To summarize, taking into account the decay of massive modes and concentrating on
the leading effects in slow roll, the original bimetric action reduces to the Einstein theory
with a non-minimally coupled scalar field, which is equivalent to the minimally coupled scalar
system through a conformal transformation.

5 Primordial spectra in bimetric theory

In this section, we derive the formulae for the spectral index of the scalar spectrum and the
tensor to scalar ratio in bimetric theory. Since the reduced action is exactly the same as the
Einstein theory with a minimally coupled scalar field, the spectra can be calculated following
the standard way. Furthermore, metric perturbations after factoring out the background scale
factor are not changed under the conformal transformation. Therefore, the power-spectra for
the curvature perturbation and the tensor perturbation obtained in the reduced system are
identified with those in the original system. These power-spectra are known to be given by

PT = 2

(
H̄

πMg

)2

, PR =
1

8ε̄

(
H̄

πMg

)2

, (5.1)

where we define the Hubble expansion rate H̄ in the reduced system, which is evaluated as

H̄2 =
V̄

3M2
g

, (5.2)

– 8 –
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and a slow roll parameter

ε̄ =
M2
g

2

(
V̄ψ
V̄

)2

, (5.3)

with

V̄ = Ω4[V + U ] . (5.4)

In addition, we define another slow roll parameter as

η̄ = M2
g

V̄ψψ
V̄

. (5.5)

The tensor to scalar ratio, the spectral index of the tensor perturbation and that of the scalar
perturbation are defined by

r =
PT
PR

, nT =
d logPT
d log k

, ns − 1 =
d logPR
d log k

. (5.6)

We can obtain the expressions of them in terms of the slow roll parameters in the usual
manner.

r = 16ε̄ , nT = −2ε̄ , ns − 1 = −6ε̄+ 2η̄ . (5.7)

The consistency relation

r = −8nT , (5.8)

is not modified from the general relativity case. It is straightforward to relate the slow roll
parameters appearing above to those in the original system which are defined in eq. (3.20).

The first derivative of the new potential is calculated as

V̄ψ =
d

dψ
Ω4[V + U ] = Ω3Vφ , (5.9)

where we have used (3.15), (4.10) and a background equation in (3.21). Then, the relation
between ε̄ and ε is

ε̄ =
M2
gV

2
φ

2Ω2(V + U)2
=

1

(1 + U/V )
ε . (5.10)

Similarly, the second derivative of V̄ is

V̄ψψ =
d

dψ
V̄ψ = −

3Ω2U ′V 2
φ

4F ′(V + U)
+ Ω2Vφφ , (5.11)

followed by the relation between η̄ and η,

η̄ = −
3M2

gU
′V 2
φ

4Ω2F ′(V + U)2
+

M2
gVφφ

Ω2(V + U)
= −3

2

U ′

F ′
1

1 + U/V
ε+ η . (5.12)

– 9 –
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The tensor spectrum and the scalar spectrum (5.1) are written in terms of the original
potential as

PT =
2V

3π2M4
eff

1

(1 + U/V )
, PR =

V

24επ2M4
eff

. (5.13)

The resulting tensor to scalar ratio and spectral index are

r = 16ε
1

(1 + U/V )
, nT = −2ε

1

(1 + U/V )
, ns−1 = −6ε

(
1 + U ′/2F ′

1 + U/V

)
+2η . (5.14)

Furthermore, the effective ratio of the slow roll parameters is

η̄

ε̄
= −3U ′

2F ′ +

(
1 +

U

V

)
η

ε
. (5.15)

We evaluate the relation between the tensor to scalar ratio and the spectral index of the
scalar spectrum. It is obtained from eqs. (5.7) and (5.15) as

ns − 1 = −3

8
r

(
1− 1

3

η̄

ε̄

)
= −3

8
r

(
1− 1

3

η

ε
+

1

2

U ′

F ′ −
1

3

η

ε

U

V

)
. (5.16)

We find that the slope on the ns–r plane drawn when we vary the e-folding number becomes
either steeper or more gradual depending on the sign of

1

2

U ′

F ′ −
1

3

η

ε

U

V
. (5.17)

6 Power law potential case

Here we adopt the power law form φn as the scalar field potential to show a concrete example.
This simple potential form is attractive to lead to a chaotic inflation scenario [39]. However,
in the standard inflation based on general relativity, the observational constraint now almost
excludes n = 4 case, and n = 2 quadratic potential is also in tension. The question is whether
or not such tension can be relaxed by considering the bimetric modification of gravity.

We will find that the tensor to scalar ratio is always larger than that in general relativity
when the e-folding number is fixed though the spectral index can smaller or larger depending
on the details of the bimetric potential. Therefore, the bimetric modification of gravity does
not cure the tension mentioned above.

For V (φ) ∝ φn, the ratio of η to ε is a constant determined only by the power law
index n:

η

ε
=

2V Vφφ
V 2
φ

=
2(n− 1)

n
, (6.1)

while the respective slow roll parameters are given by

ε =
M2

eff

2

n2

φ2
, η = M2

eff

n(n− 1)

φ2
. (6.2)
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The e-folding number, which measures how long inflation continues, is evaluated as

N =

∫ te

t
Hdt =

∫ φ

φe

3H2

Vφ
dφ =

∫ φ

φe

V

VφM
2
eff

dφ , (6.3)

where te and φe are the time and the field value at the end of inflation. The dependence
of ξ on φ is found in (4.4), which means that ξ moves slower than φ as O(ε1/2) since we
assumed that V/M2

gW is not enhanced. Therefore, the effective gravitational constant can
be approximated by a constant in the integral over φ. Then, the e-folding number is given by

N =
φ2

2nM2
eff

. (6.4)

If we eliminate φ2 from the expressions of ε and η (6.2) using this relation, we gain

ε =
n

4N
, η =

n− 1

2N
, (6.5)

which are the same as those in general relativity. From (5.14), we find

r =
4n

N

1

(1 + U/V )
> rGR , (6.6)

where rGR = 4n/N . The inequality is verified under a reasonable assumption that Minkowski
spacetime is realized in the low-energy regime, which means H2 = 0 when the matter energy
density is zero, ρ = 0. This implies U = U ′ = 0 at ρ = 0 from eq. (3.13). We also find that
U ′ is positive from eq. (3.13) as long as H2 > 0. Combining this with (4.6), equivalent to
dρ/dξ < 0, we find that

U < 0 , (6.7)

for any finite positive ρ in the healthy branch. The positivity of U + V , which is also
verified from eq. (3.13), guarantees the positivity of 1/(1 +U/V ) and it is larger than unity.
Consequently, the tensor to scalar ratio in bimetric theory is larger than rGR for a fixed
e-folding number. For the same reason, we also have a larger absolute value for the spectral
index of tensor perturbation compared with the case of general relativity as you can see in
eq. (5.14). It is surprising that such an inequality holds irrespective of the choice of the model
parameters {ck}.

According to (5.14), the difference of the spectral index from the general relativity case
is also evaluated as

ns − 1 = (−6ε+ 2η) + 6ε
1

1 + U/V

(
−1

2

U ′

F ′ +
U

V

)
= (ns − 1)GR +

3n

2N

1

1 + U/V

(
−1

2

U ′

F ′ +
U

V

)
, (6.8)

where (ns − 1)GR = −(n+ 2)/2N . It depends on the sign of

−1

2

U ′

F ′ +
U

V
, (6.9)

whether the spectral index is larger or smaller than the general relativity counterpart.
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The slope on the ns–r plane when the e-folding number is varied is steeper or more grad-
ual compared with the general relativity case depending on the sign of the expression (5.17),
which in the present case reduces to

1

2

U ′

F ′ −
1

3

η

ε

U

V
=

1

2

U ′

F ′ −
2(n− 1)

3n

U

V
. (6.10)

When this expression is positive, the slope becomes more gradual. At that time, the modifi-
cation to ns − 1 is evaluated as

−1

2

U ′

F ′ +
U

V
<

(n+ 2)

3n

U

V
< 0 , (6.11)

since U < 0 and V > 0. Therefore, ns − 1 is smaller than the general relativity case.

On the other hand, the slope becomes steeper when the expression (6.10) is negative.
In this case, we can give a lower bound on the modification of ns as

(ns − 1)− (ns − 1)GR =
3n

2N

1

1 + U/V

(
−1

2

U ′

F ′ +
U

V

)
>

3n

2N

1

1 + U/V

(
(n+ 2)

3n

U

V

)
.

(6.12)

However, the right hand side of the above inequality is negative. Therefore, the sign is
indefinite and ns − 1 can either decrease or increase.

7 Summary

Introducing an approximation, which is based on the decay of the massive gravitons and is
valid at the leading order in slow roll, we calculated the spectrum of the tensor perturbation
and that of the scalar perturbation generated during inflation. Under the approximation,
the action up to quadratic order in perturbations reduces to the Einstein theory with a
non-minimally coupled inflaton field which has a modified potential. After conformal trans-
formation, the spectra are easily obtained in the standard manner. We found how the tensor
to scalar ratio and the spectral index of the scalar perturbation are modified for general
choice of model parameters in dRGT bimetric gravity except when the Higuchi bound is
saturated. As a concrete example, we examined the power law potential cases. Opposed to
the naive expectation, the tensor to scalar ratio is larger than the general relativity counter-
part in general, while the spectral index can be either larger or smaller than that in general
relativity, depending on e-folding number, power law index of the inflaton potential and the
parameters in the bimetric interaction. The tensor to scalar ratio is observationally con-
strained from above, which is already in tension if we adopt simple power law potentials of
inflaton [2, 40, 41]. Therefore, it becomes more difficult to be consistent with observations
when we consider bimetric extension of gravity. Nevertheless, this fact does not immediately
exclude dRGT bimetric theory since the correction can be small enough depending on model
parameters of bimetric theory. We also saw that the consistency relation is not modified and
the spectral index of the tensor perturbation has a negative larger value in this theory than
in general relativity.

We would like to mention again that we have assumed the coupling constant, m, to
be larger than the expansion rate after inflation, H, to avoid gradient instability. The case
m � H corresponds to the low energy limit, in which, for instance, U/V converges to 0 as

– 12 –
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ξ− ξ0. The effective mass is proportional to the coupling constant m and has the same order
with it unless the parameters are tuned. Then, the bimetric effects in the low energy regime
are suppressed due to the large graviton mass. We can also keep the effective mass small in
the low energy regime by tuning the parameters {ck}, and then observable effects due to the
presence of massive gravitons can appear.

The reason why the tensor amplitude is enhanced relative to the scalar amplitude can
be more intuitively understood as follows. The effective gravitational coupling for the pure
gravity sector,

G(T ) =
1

M2
g (1 + κξ2)

, (7.1)

which determines the tensor amplitude, is different from the effective gravitational coupling
read off from the Friedmann equation,

G(S) =
1 + U/V

M2
g (1 + κξ2)

, (7.2)

which determines the scalar amplitude, in dRGT bimetric theory, while they coincide with
each other in general relativity. As discussed in section 6, under our assumption that
Minkowski spacetime is realized in the low-energy regime, the bimetric correction to the
potential of the inflaton U is always negative and hence 1 + U/V is smaller than unity. As
a result, we have G(T ) > G(S), which leads to the amplification of the tensor to scalar ra-
tio. Consistency of the results with late time evolution of the universe and the perturbation
should be discussed as a succeeding work.
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