Title	Constructing Q－Fano 3－folds｀ala Prokhorov \＆Reid
Author（s）	Tom，Ducat
Citation	代数幾何学シンポジウム記録（2016），2016：144－144
Issue Date	2016
URL	http：／hdl．handle．net／2433／218284
Right	Departmental Bulletin Paper
Type	publisher
Textversion	

Constructing \mathbb{Q}-Fano 3-folds à la Prokhorov \& Reid
 Tom Ducat, RIMS, Kyoto University, taducat@kurims.kyoto-u.ac. jp

Introduction

A \mathbb{Q}-Fano 3-fold X is a normal projective 3-dimensional variety over \mathbb{C} with $-K_{X}$ ample, at worst \mathbb{Q}-factorial terminal singularities and Picard rank $\rho_{X}=1$. The (\mathbb{Q}-Fano) index of X is:

$$
q_{X}:=\max \left\{q \in \mathbb{Z}_{\geq 1}: \exists A \in \mathrm{Cl}(X),-K_{X}=q A\right\}
$$

and, given a Weil divisor A for which $-K_{X}=q_{X} A$, we consider X to be polarised by A, i.e. with an embedding into weighted projective space given by Proj of the graded ring

$$
R(X, A)=\bigoplus_{k \geq 0} H^{0}\left(X, \mathcal{O}_{X}(k A)\right)
$$

Some of the basic numerical invariants of (X, A) are the codimension of this embedding, the index q_{X} and the degree A^{3}.
The graded ring database contains a list of 1964 possible Hilbert series for a \mathbb{Q}-Fano 3-fold (X, A) of index ≥ 2. However it is not known if a \mathbb{Q}-Fano 3-fold actually exists with each Hilbert series.

Main result [2]

For each case in Table 1 we can construct a Sarkisov link:

$$
\begin{array}{ccc}
\sigma & X^{\prime} & \pi \\
X & Y
\end{array}
$$

where σ is a divisorial extraction from a certain kind of irreducible singular curve $\Gamma \subset X$ and π is the Kawamata blowdown of a divisor $E^{\prime} \subset X^{\prime}$ to a terminal cyclic quotient singularity.

Table 1: The \mathbb{Q}-Fano 3-folds Y we can construct.

$\operatorname{deg} \Gamma$	E	X	Y
7	$\mathbb{P}(1,2,1)$	\mathbb{P}^{3}	$Y \subset \mathbb{P}\left(1^{4}, 2^{2}, 3\right)$
5	$\mathbb{P}(1,2,1)$	$X_{2} \subset \mathbb{P}^{4}$	$Y \subset \mathbb{P}\left(1^{5}, 2^{2}, 3\right)$
14	$\mathbb{P}(1,3,2)$	$\mathbb{P}\left(1^{3}, 2\right)$	$Y \subset \mathbb{P}\left(1^{3}, 2^{2}, 3,4,5\right)$
9	$\mathbb{P}(1,2,3)$	$X_{4} \subset \mathbb{P}\left(1^{2}, 2^{2}, 3\right)$	$Y \subset \mathbb{P}\left(1^{2}, 2^{2}, 3^{2}, 4,5\right)$

The first two cases were constructed by Prokhorov \& Reid [3]. We generalise their construction to get the remaining cases. We can also get two more examples, however in these cases Γ is necessarily reducible and hence Y will have large Picard rank $\rho_{Y}>1$.

A generalisation of Prokhorov \& Reid's construction

(1) Embed $E=\mathbb{P}(1, r, r a-1)$ into a \mathbb{Q}-Fano 3-fold (X, A) such that $\left.A\right|_{E}=\mathcal{O}_{E}(r)$. The point of considering such an embedding is that E has a $\frac{1}{r}(1,-1)$ type A_{r-1} singularity $P \in E$ which is supported at a smooth point $P \in X$.
Lemma. Suppose that (X, A) admits an embedding $E \subset X$ such that $E \in|e A|$ and $\left.A\right|_{E}=\mathcal{O}_{E}(r)$. Then X is either of the form $\mathbb{P}(1,1, a, r a-1)$ or $X_{r a} \subset \mathbb{P}(1,1, a, r a-1, e)$. By an explicit classification there are precisely $\mathbf{1 0}$ cases with terminal singularities.
(2) Let $\Gamma \subset E \subset X$ be an irreducible curve of degree d passing through $P \in X$ which is contained in the smooth locus of X.

Key claim: If Γ is has an 'appropriately singular' point at $\overline{P \in X \text {, then there exists a terminal divisorial extraction }}$

$$
\sigma:\left(F \subset X^{\prime}\right) \rightarrow(\Gamma \subset X)
$$

such that σ induces an isomorphism $E^{\prime} \cong E$, where E^{\prime} is the birational transform of E.
If σ exists then it is given by the blowup of the symbolic powers of the ideal sheaf $\mathcal{I}_{\Gamma / X}$. We take $\sigma: X^{\prime} \rightarrow X$ to be the left-hand side of our Sarkisov link.
(3) If we make the clever choice $d=q r-1$ then, following the 2-ray game that starts with σ, we find a nef divisor B^{\prime} which is numerically trivial along E^{\prime}. We check that the corresponding morphism $\pi: X \rightarrow Y$ contracts E^{\prime} to a $\frac{1}{r a+r-1}(1, r, r a-1)$ singularity.
Conclusion. This construction is valid provided the divisorial extraction σ exists as in the Key claim. In this case we construct a Sarkisov link from (X, A) to a $\overline{\mathbb{Q}}$-Fano 3-fold (Y, B) of index $q_{Y}=q-e$ and degree $B^{3}=\frac{d}{r a+r-1} A^{3}$.

Divisorial extractions from singular curves

A type A_{r-1} Du Val singularity $P \in E$ has a resolution given by a chain of (-2)-curves. We call $P \in \Gamma \subset E$ a curve singularity of type $\Gamma_{\left(a_{1}, \ldots, a_{r-1}\right)}$ if the strict transform of Γ on this resolution is smooth with a_{i} branches intersecting the i th exceptional divisor transversely. We now explain what 'appropriately singular' means:
Proposition. For the 10 cases found in the Lemma, $P \in E$ is either an A_{1}, A_{2} or $A_{3} \mathbf{D u}$ Val singularity. If a divisorial extraction σ from $\Gamma \subset X$ exists as in the Key claim, then $P \in \Gamma$ has one of the following singularity types (up to a degeneration):

This follows from the unprojection method for constructing divisorial extractions explicitly [1] and by excluding cases according to $\operatorname{deg} \Gamma$.
Now we can check that the only cases admitting one of these singularity types (for Γ irreducible) are the four cases of Table 1 . In the third case of Table 1 both of the A_{2} singularity types are possible. In all other cases the singularity type is unique.

Unprojection construction for Y

We can construct Y explicitly using unprojection. Prokhorov \& Reid [3] did this for the first two cases in Table 1. The third case $Y \subset \mathbb{P}\left(1^{3}, 2^{2}, 3,4,5\right)$ is interesting as there are two possible constructions, given by the Tom and Jerry. We have one 36-dimensional family of Tom unprojections and one 34-dimensional family of Jerry unprojections which correspond to Sarkisov links $Y \rightarrow \mathbb{P}\left(1^{3}, 2\right)$ ending in a contraction to a curve with singularity $\Gamma_{(1,3)}$ and $\Gamma_{(4,0)}$ respectively.

Figure 1: Two families of $Y \subset \mathbb{P}\left(1^{3}, 2^{2}, 3,4,5\right) \mathbb{Q}$-Fano 3-folds.
They intersect in a 31-dimensional family, where the general member has a Sarkisov link $Y^{\prime} \rightarrow \mathbb{P}\left(1^{3}, 2\right)$ ending in a contraction to a curve with singularity $\Gamma_{(3,2)}$ (a common degeneration of $\Gamma_{(1,3)}$ and $\Gamma_{(4,0)}$). However such Y^{\prime} has a non-terminal singularity of index 1 .

Further directions. Construct Sarkisov links with flips, flops and antiflips in the middle, or Sarkisov links which end with a Mori fibre space contractions, or a different type of divisorial contraction.

References

[1] T. Ducat, Divisorial extractions from singular curves in smooth 3-folds. Int. J Math., 27, Issue 01 (2016), 23 pp.
[2] T. Ducat, Constructing Q-Fano 3-folds à la Prokhorov \& Reid, preprint, arxiv:1610.01773, 15 pp .
[3] Y. Prokhorov and M. Reid, On Q-Fano threefolds of Fano index 2, in Minimal Models and Extremal Rays (Kyoto 2011), Adv. Stud. in Pure Math., 70, 2016, 397-420

