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PAPER Special Section on Design Methodologies for System on a Chip

Efficient Aging-Aware SRAM Failure Probability Calculation via
Particle Filter-Based Importance Sampling

Hiromitsu AWANO†a), Student Member, Masayuki HIROMOTO†, and Takashi SATO†, Members

SUMMARY An efficient Monte Carlo (MC) method for the calculation
of failure probability degradation of an SRAM cell due to negative bias
temperature instability (NBTI) is proposed. In the proposed method, a par-
ticle filter is utilized to incrementally track temporal performance changes
in an SRAM cell. The number of simulations required to obtain stable par-
ticle distribution is greatly reduced, by reusing the final distribution of the
particles in the last time step as the initial distribution. Combining with
the use of a binary classifier, with which an MC sample is quickly judged
whether it causes a malfunction of the cell or not, the total number of simu-
lations to capture the temporal change of failure probability is significantly
reduced. The proposed method achieves 13.4× speed-up over the state-of-
the-art method.
key words: SRAM cell yield, failure probability calculation, NBTI, impor-
tance sampling, particle filter, Monte Carlo method

1. Introduction

Miniaturization of semiconductor devices have enabled
manufactures to integrate billions of transistors into a sin-
gle silicon chip. On the other hand, as the manufacturing
variability continues to increase, circuit design using such
“unreliable” components is increasingly becoming a diffi-
cult challenge. One example of such challenges is a bit cell
design of a static random access memory (SRAM). Consid-
ering the fact that a modern microprocessor embeds tens of
mega bytes of on-chip cache, extremely low failure proba-
bility is required for a single SRAM cell. A typical failure
probability required for an SRAM cell is reported to be as
low as 10−8 to 10−6, or below [1].

Numerical estimations of such small failure probabil-
ity is known to be a difficult task. A naive Monte Carlo
(MC) method, which directly generates random samples in
a variability space, requires millions or billions of circuit
simulations to obtain only a single failure sample. Hence,
it is almost impossible for the naive MC methods to ac-
curately calculate the small failure probability. Importance
sampling techniques are definitely required to overcome this
problem [2]–[4].

The variability of transistor-parameters is mostly orig-
inated in the course of manufacturing process. As the
shrinkage of semiconductor manufacturing process contin-
ues, even an atomic level bump on a gate terminal or a fluc-
tuation of the number of dopant ions have large impact on
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the electrical property of transistors. In addition to such
“static” variability, we are currently forced to cope with an
increasing impact of “dynamic” variability that originates
from transistor aging. Thin gate-oxide layer in highly scaled
transistors poses various new problems on the reliability
of large-scale integration (LSI) circuits. Among various
degradation mechanisms, negative bias temperature instabil-
ity (NBTI) is an increasing concern [5]. NBTI is observed
as gradual increase in the threshold voltage (VTH) of tran-
sistors. Operational temperature, supply voltage, and stress
period are the three major factors determining the magni-
tude of NBTI induced VTH shift: high operational tempera-
ture, high stress voltage, and long stress period promote the
NBTI-induced VTH degradation. To improve the reliability
of the LSI, designers must take the impact of the NBTI in-
duced device degradation into consideration as early in the
design phase as possible. Development of computer aided
design (CAD) tools that accurately evaluate and counter-
measure the device degradation has thus emerged as an ur-
gent issue.

SRAM cells are considered to be one of the most vul-
nerable circuit components to the NBTI-induced VTH shift
for two reasons. First, a long stress period is frequently ob-
served. Because of data-storage functionality, switching ac-
tivity of an SRAM cell is usually lower than that of com-
binational circuits. Hence, a pMOS transistor in one of the
coupled inverters is more likely to be exposed to constant
stress, deteriorating the stability of the cell. Second, the
heat produced by components surrounding an SRAM cell
further complicates the problem. Although the SRAM cell
itself produces only small amount of heat, components such
as register files are typically surrounded by highly active cir-
cuits, such as instruction dispatchers, reorder buffers, etc.
Heat generated by these components accelerates the NBTI-
induced degradation. Circuit designers have to be extremely
careful to optimize the circuit structure of an SRAM cell and
memory placement in order to improve the total reliability
of LSI.

In this paper, we propose a novel and efficient fail-
ure probability calculation method of SRAM cells under the
NBTI stress. A considerable amount of efforts have been
paid to accelerate the failure probability calculation of an
SRAM cell [2]–[4]. Those methods, however, only consider
the static variability such as the one caused in the manu-
facturing process and invariant thereafter. In order to keep
track the change of failure probability due to dynamic vari-
ability, failure probability calculations have to be conducted
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repetitively at different aging time. Even if a single failure
probability calculation is accelerated using advanced sam-
pling techniques, a large simulation effort is still required.

Our proposed method solves this problem by applying
the concept of the particle filter to incrementally track the
time-changing characteristics of an SRAM cell. The con-
cept of particle filter is first introduced into the CAD com-
munity in [6] to enhance the efficiency of the importance
sampling (IS) based failure probability calculation. In the
IS-based MC, random samples are generated from the dis-
torted distribution, which is called “alternative distribution,”
not from the original distribution. The alternative distribu-
tion is selected such that more failure samples are drawn
(i.e., samples drawn from the alternative distribution is more
likely to cause circuit failure). Due to the complicated shape
of the pass/fail border, its analytical representation is diffi-
cult to obtain while the approximation of the distribution
using a simple distribution will deteriorate the efficiency.
Hence, in [6], particles were used to represent the complex
shape of the alternative distribution to achieve drastic speed-
up over conventional importance sampling approaches. Our
contribution in this paper is to extend the method in [6] so as
to efficiently handle the aging effect. Due to NBTI-induced
device degradation, the shape of the optimal alternative dis-
tribution changes as device ages. Because construction of
the alternative distribution from scratch is a computation-
ally heavy task, we exploit the characteristics of the NBTI-
induced device degradation. Specifically, when the change
of VTH is gradual, the change of the optimal alternative dis-
tribution is also gradual. Hence, in the proposed method,
the temporal change of the optimal alternative distribution
is followed by the particles moving around the variability
space. This procedure substantially accelerates the total cal-
culation time of failure probability along aging time steps;
it eliminates the independent explorations of the optimal al-
ternative distribution for different aging time.

We also integrate a support vector machine (SVM)
based binary classifier with the particle filter. Firstly, the bi-
nary classifier is trained using a small subset of random sam-
ples to roughly judge whether a sample causes circuit failure
or not. Using the classifier, the majority of the random sam-
ples are classified as either pass or fail without executing
time-consuming transistor-level simulations. Because the
classifier is based on a linear model, the time required for
the classifications is negligibly small. The reduction of the
total calculation time is significant even though the time to
train the classifier is newly introduced.

An adoption of a two-stage MC flow further reduces
the calculation time while maintaining accuracy. In the first
stage, a rough estimation of the optimal alternative distribu-
tion is obtained using a small number of random samples.
Then, in the second stage, a failure probability is accurately
calculated using the samples generated from the alterna-
tive distribution. With the above modifications, our method
achieves 1.8× speed-up of the failure probability calcula-
tion on a single aging time step compared to the state-of-
the-art method [6]. Total calculation time required to obtain

the temporal change of the failure probability is further re-
duced, achieving 13.4× speed up compared to the conven-
tional method.

The rest of this paper is constructed as follows. In
Sect. 2, related works are reviewed. In Sect. 3, we explain
background that forms the basis of our method. In Sect. 4,
we explain the details of the proposed method. Then in
Sect. 5, we describe experimental procedures and its results.
Finally in Sect. 6, conclusion remarks are provided.

2. Related Work

There are frameworks that analyze the impact of NBTI on
the circuit operation. In [7] and [8], the methods that can
consider both static and dynamic variability is proposed. In
[9], the impact of NBTI on the stability of an SRAM cell
is analyzed and an efficient method to estimate the failure
probability of the cell is proposed. However, those meth-
ods are based on approximation models. In [7] and [8], a
response surface model (RSM) is used to approximate the
circuit response to process variability. In [9], a noise margin
of an SRAM cell is assumed to follow a normal distribution
and the failure probability is calculated under that assump-
tion. A normal distribution provides a good approximation
of the target distribution around its average. On the other
hand, its rightmost tail is not so accurate. As we mentioned,
the failure probability required for modern SRAM cells is
extremely low and hence rightmost tail of the distribution
must be analyzed very accurately. Introduction of such ap-
proximations may lead to the probability estimation that is
unacceptably inaccurate.

MC-based methods are therefore required to accurately
analyze the failure probability. The naive MC is one of
the most popular way to estimate the probability, in which
random samples corresponds to variabilities of transistors
are drawn from a probabilistic distribution and transistor
level simulations are performed to see whether those vari-
abilities cause malfunctions of the circuit or not. Theoreti-
cally, the naive MC can give an accurate estimation of the
failure probability. However, in solving the problem with
extremely small failure probability, millions or billions of
circuit simulations are required to obtain sufficient number
of failed samples and hence the naive MC can not calcu-
late the failure probability in a reasonable time. To solve
this problem, importance sampling techniques are usually
used [2]–[4]. The selection of the alternative distribution
in importance sampling is crucial to the acceleration rate of
the failure probability calculation. Because determination
of a good alternative distribution requires significant com-
putational efforts, many attempts are made to accelerate the
construction process. Authors of [10] proposed a mean-shift
method in which the alternative distribution is approximated
with a distribution whose mean is shifted to the most prob-
able failure point. In [11], a method known as “Markov
chain Monte Carlo (MCMC)” is used to explore the process
variability space efficiently. Authors of [6] utilized particles
that moves in the process variability space to automatically
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construct an alternative distribution.
In order to see how the failure probability changes

over time, multiple failure probability calculations are re-
quired. Because conventional methods [6], [10], [11] do
not consider the effect of NBTI-induced device degradation,
the alternative distribution is constructed from scratch at
each repetitive calculation. Here, we notice that the NBTI-
induced device degradation is a gradual process and hence
the reconstruction of the alternative distribution is clearly
inefficient. Therefore, we propose to “reuse” the particles
that lie close to pass/failure boundary in the calculation of
the most recent aging time step. This enables the particles
incrementally track the temporal change of the alternative
distribution. Multiple explorations in the process variability
space are thus eliminated, contributing the increase of the
efficiency.

3. Background

3.1 Failure Probability Calculation

Failure probability calculation is generally formulated as

Pfail =

∫
I(x)P(x)dx. (1)

Here, Pfail is the failure probability and x is the D-
dimensional random variable which corresponds to random
variations of the transistor parameters, such as VTH, channel
length, gate oxide thickness, etc. P(x) is the probability den-
sity function (PDF) over the process variability. I(x) is an
indicator function that returns “1” if the given random vari-
able x causes a malfunction of an SRAM cell, and “0” oth-
erwise. We hereafter call regions in which failure samples
(xfail such that I(xfail) = 1) distribute as “failure regions.”

Because the indicator function does not have an ana-
lytical form in general, we rely on an MC approximation to
evaluate (1). The above integral is calculated using random
samples drawn from P(x), i.e. xi∼P(x):

Pfail ≈
1
N

N∑
i=1

I(xi). (2)

A naive MC method in (2) can not be applied to the calcula-
tion of (1) in low failure probability problems because very
few or no samples that cause a malfunction of an SRAM cell
can be generated in practical time.

In order to improve the sampling efficiency, importance
sampling techniques is developed. The key idea of the im-
portance sampling is to calculate (1) using samples drawn
from an alternative distribution Q(x). The following equa-
tion is obtained by modifying (1):

Pfail =

∫
I(x)

P(x)
Q(x)

Q(x)dx. (3)

The MC approximation of (3) using the samples drawn from
Q(x) is obtained as:

Pfail ≈
1
N

N∑
i=1

I(xi)
P(xi)
Q(xi)

. (4)

The optimal alternative distribution is known to be

Qopt(x) ∝ I(x)P(x). (5)

If we can draw samples from Qopt(x), a perfect approxi-
mation of (3) with zero variance can be achieved because
I(x)P(x)/Qopt(x) becomes a constant. This means that, in
order to improve the efficiency, we have to select Q(x)
whose shape is close to Qopt(x). However, this is an in-
feasible task because we do not know the exact shape of the
indicator function I(x). We here introduce a particle filter
to enable an automatic estimation of the optimal alternative
distribution.

3.2 Particle Filter

Particle filter is an on-line estimator of non-Gaussian dis-
tributions [12], [13]. A probabilistic density is approxi-
mated using the density of particles that move in the D-
dimensional variability space. The positions of the particles
are updated iteratively using the following steps as shown in
Fig. 1.

Prediction

The locations of the candidate particles in the next itera-
tion are drawn from the proposal distribution q(x). A usual
choice is a mixture of normal distributions with each com-
ponent centered at each position of the particles generated in
the previous iteration so that the regions where the previous
particles existed are more likely to be visited.

Measurement

The weights that represent the goodness of fit of each can-
didate particle are calculated. In the context of the failure
probability calculation of an SRAM cell, the weight is cal-
culated as I(x) · P(x). In case that P(·) is a normal distribu-
tion, large weights are assigned to the particles that are in
the failure region and close to the origin of the variability
space.

Resampling

The particles are resampled from the candidate particles ac-

Fig. 1 Particle filter.
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cording to the probabilities proportional to the weight as-
signed in the Measurement step. Hence, the candidate par-
ticles with the larger weights attain more number of copies
while the particles with the smaller weights attain smaller
number of copies. Those outside the failure region are elim-
inated because I(x) returns “0” for those samples and their
weights become zero. The particle density becomes grad-
ually closer to the distribution I(x) · P(x) by repeating the
above procedures. The approximation of the optimal alter-
native distribution can be obtained as the distribution of par-
ticles.

3.3 Support Vector Machine

Although a large portion of the samples generated from the
particle-approximated alternative distribution are in the fail-
ure region, a small amount of pass samples are also gen-
erated due to the approximation error. If we could obtain
the optimal alternative distribution, all of the random sam-
ples drawn from the distribution will be the failure samples
and hence no transistor-level simulations to calculate I(x)
are required. Unfortunately, however, only an approxima-
tion of the optimal alternative distribution can be obtained
in practice and the evaluations of the indicator function are
required for all of the random samples generated.

Each time the indicator function I(x) is evaluated, a
transistor-level simulation is performed. This step occupies
almost all of the total calculation time because the transistor-
level simulation is a computationally heavy task. To accel-
erate the calculation of I(x), we introduce a binary classifier
based on a support vector machine (SVM). SVM is a super-
vised training model for binary classification [14]. Given
a set of training examples that consist of feature vectors
and corresponding labels, SVM learns a classification model
which categorizes a new feature vector into one of the two
classes, i.e., pass or fail.

SVM assumes a linear classification model:

c =
∑

i

wi fi. (6)

Here, wi is a coefficient of a particular feature quantity and
fi is the i-th element of a feature vector f . The signa-
ture of c represents the class label of the feature vector. In
other words, SVM learns a hyper plane in a feature space,
which separates training examples into two classes as shown
in Fig. 2. A good separation for a new feature vector is
achieved when the distances between training examples and
the hyper-plane are the largest.

3.4 NBTI-Induced VTH Shift and Its Variability

NBTI is a gradual VTH increase observed on pMOS transis-
tors. When a negative bias is applied to the gate terminal
of the pMOS transistor, its VTH starts to increase gradually.
Most part of the increased VTH recovers as soon as the tran-
sistor is released from the stress state. However, there is

Fig. 2 Support vector machine.

an unrecoverable component of degraded VTH. Hence, re-
peatedly applying stress will gradually increase VTH of the
pMOS transistor and will finally cause a malfunction of the
circuit.

In spite of the intensive researches on NBTI, its phys-
ical mechanism is still a controversial topic. Currently pro-
posed physical models of NBTI are divided into two groups:
one based on a reaction diffusion (RD) theory and the other
based on a trap detrap (TD) theory. RD-theory explains the
NBTI induced VTH shift as follows. First, a negative bias
applied to the gate terminal forms an electric field, which
breaks a Si-H bond at the silicon-oxide interface. Then, the
released H atom migrates in the oxide and forms a fixed
positive charge, which contributes to the VTH shift. The re-
maining bond of a silicon (Si-) captures an electron, which
also contributes to the VTH shift. Based on this model, the
relationship between device age and VTH shift can be written
using a power law model [15]:

∆VNBTI
TH = k · tn

age. (7)

Here, k is a model parameter which reflects the stress con-
dition, operational temperature, and fabrication process. tage
is an age of a transistor. n is also a model parameter that
varies from transistor to transistor [15].

Meanwhile, in small transistors, researchers noticed a
stair-like recovery of VTH when a transistor is released from
the negative stress condition [16]. This observation leads
to a TD-theory, in which pre-existing defects located inside
the gate oxide film are considered to be the origin of the VTH
shift [17]. When a negative bias is applied, the defects cap-
ture electrons, causing VTH to increase. The defects then
release the electrons when the transistor is released from
the stress condition and the degraded VTH starts to recover.
The following is a compact model derived from the TD-
theory [15]:

∆VNBTI
TH = ϕ

[
A + log(1 +C · tage)

]
. (8)

Here, A and C are parameters that reflect the stress condi-
tion or a manufacturing process, and thus they are relatively
constant for the transistors on a same chip. ϕ is also a model
parameter reflecting the number of defects included in the
transistor.

Now, let us take a look at actual VTH shifts acquired in
a silicon measurement. Figure 3 shows examples of NBTI-
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Fig. 3 Examples of NBTI-induced VTH shift observed in 50 pMOS tran-
sistors.

induced VTH shifts observed from 50 pMOS transistors fab-
ricated using a commercial 180-nm CMOS process [18].
The results of two sizes of transistors are shown. The VTH
shift varies widely among transistors just like the initial VTH
variation. It is clear from Figs. 3(a) and (b) that VTH shift
of smaller transistors varies widely while the overall trend
of the degradations on both types of transistors are almost
the same. The objective of this study is to propose a fail-
ure probability calculation method which can handle NBTI-
induced device degradation. However, as it is clear from
Fig. 3(a), we are also required to take the variability in de-
vice degradation into account.

In the compact model equations in (7) and (8), the
model parameters that reflect the variability of the degra-
dation are n for the RD-based model and ϕ for the TD-based
model [15]. In this study, we employ the RD-based model
because it is simpler than the TD-based model and easy to
extract the model parameters from silicon measurements.
However, since our proposal is based on an MC approach,
other models such as the TD-based model can be used com-
pletely in the same way.

The red lines in Fig. 3 show the averaged model predic-
tion over the 50 transistors. We can see that the model well
predicts the temporal change of VTH. This justifies the use
of the RD-model for long-term reliability assessment. The
remaining problem is to find the statistical distribution, to
which the parameter n follows. It is experimentally shown
that n follows a log-normal distribution [16], [18]. Accord-
ing to the measurement result, we employ a log-normal dis-
tribution for the statistical distribution of n. Hence, the loga-
rithm of n (nlog) is assumed to follow a normal distribution:

nlog ∼ N(nlog|µn, σn). (9)

Here, N(x|µ, σ) is the PDF of a normal distribution given
by

N(x | µ, σ) =
1
√

2πσ
exp

(
− (x − µ)2

2σ2

)
. (10)

4. Proposed Method

4.1 Variability and Degradation Modeling

Let us first describe the variability and degradation model-
ing. We here deal with variabilities in VTH but other sources

of variabilities, such as those in a channel size or in a gate
oxide thickness, can be easily taken into account. In [19],
the authors measured 11 billion transistors and showed that
the VTH variation of fresh transistors follows a normal dis-
tribution. Based on this evidence, we employ a normal dis-
tribution for the variability model of VTH. Hence, VTH vari-
ation of a fresh transistor is given by

∆V fresh
TH =

AVTH√
L ·W

xfresh. (11)

Here, AVTH is a Pelgrom coefficient, and L and W are channel
length and width, respectively. xfresh is a random variable
which is assumed to follow the standard normal distribution:

xfresh ∼ N
(

xfresh
∣∣∣ 0, 1) . (12)

The NBTI-induced VTH shift is given by (7). Note
again that n is a random variable that represents degrada-
tion variation. As stated in Sect. 3.4, n is represented using
a log-normal distribution. Hence, a logarithm of n (nlog) is
given by

nlog = xbti · σn + µn. (13)

Here, xbti is again a random variable following the standard
normal distribution. σn and µn are the standard deviation
and mean of the distribution of nlog.

A single MC trial proceeds as follows. A set of ran-
dom samples are drawn from a probability distribution. In
the failure probability calculation of an SRAM cell, there are
eight random variables: six for the VTH variation of six tran-
sistors and other two are NBTI-induced degradation of the
two pMOS transistors. We then calculate the corresponding
VTH shift of each transistor using (11), (7), and (13). Note
that simple sum of ∆V fresh

TH and ∆VNBTI
TH gives a total VTH shift

for a pMOS transistor, because the VTH variation of fresh
transistors and their degradations are reported to be inde-
pendent [18]. Then, performance of the circuit (e.g. noise
margin) with the variability of the transistors is calculated
using a transistor-level simulator such as SPICE. Finally, a
pass or fail label, i.e., the value of the index function I(x), is
obtained using the calculated performance value.

4.2 Overview of the Proposed Method

A failure probability of an SRAM cell that includes the im-
pact of NBTI can be calculated as

Pfail(tage) =
∫

I(x|tage)P(x)dx. (14)

Here, x is a vector of random variable and tage is a chip age.
I(x|tage) is an indicator function that returns “1” when the
variability x causes a malfunction of the circuit whose age
is given by tage. From the above discussion, all the random
variables now follow normal distributions. Hence, x follows
a multi-dimensional standard normal distribution.

Let us see how the failure region in the variability space
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Fig. 4 Temporal change of failure samples in the variability space of a
fresh VTH.

Algorithm 1 Proposed calculation flow
1: (1) Initial sample selection
2: for each chip age in list of ages do
3: repeat
4: (2) Prediction
5: (3) Measurement
6: (4) Resampling
7: until Sufficient convergence of the particle density is achieved
8: (5) Importance sampling: construct the alternative distribution

and calculate the failure probability at the current aging time step.
9: end for

of ∆V fresh
TH changes as the chip age increases. Sample points

in Fig. 4 show ∆V fresh
TH of failure cells. Here, we consider

the variability of two pMOS transistors only for simplicity.
The black markers show those of fresh cells while the red
markers show those of 5-year-old cells. In this example, an
SRAM cell who has negative read noise margin is labeled
as a failure cell. We notice that there is no drastic change
in ∆V fresh

TH between fresh and the aged cells. In the proposed
method, the alternative distribution are “reused” by contin-
uously modifying it among the multiple failure probability
calculations along aging time steps. It eliminates time con-
suming initial failure-region explorations conducted repeat-
edly for different chip ages.

The following steps are the overview of the proposed
method. Algorithm 1 summarizes the calculation flow.

Initialization Initialize particles positions. The variability
space is explored in the radial direction to find the fail-
ure regions that are close to the origin. Then, the par-
ticles are generated around the failure regions ((1) in
Algorithm 1).

Particle filter (first stage) The locations of the particles
are then iteratively adjusted so that they best fit the den-
sity of an optimal alternative distribution ((2) to (4)).

Importance sampling (second stage) A large number of
random samples is generated according to the density
of the particles and the failure probability is calculated
accurately in (5).

In the failure probability calculation of the second or later
aging time steps, the initialization step is skipped. Instead,
the particles are copied from the previous calculation and
the steps (2) to (4) are conducted so that the positions of the
particles are adjusted according to its age.

Fig. 5 An example of particle filter based failure region tracking. (a)
Particles after initialization step, (b) after prediction and weight calculation
steps and (c) after resampling step.

4.3 Detailed Procedures of the Proposed Method

(1) Initial sample selection

Random samples on the surface of a D-dimensional unit
sphere are generated. The boundary of the failure region
is searched using bi-section algorithm along the radial di-
rections of the generated random samples. Candidates of
initial particles {x(0,i); i = 1, 2, · · · ,N} are allocated near the
boundary as shown in Fig. 5(a). Here, N is the total number
of particles and x(t,i) is the i-th particle at t-th iteration. Note
again that the initialization step is conducted only once. In
the failure probability calculations of the succeeding aging
time steps, particles are copied from the previous calcula-
tions.

Steps from “prediction” to “resampling” are repeated
to let the particles to follow the optimal alternative distribu-
tion. In our experiment, five to ten times of repetitions are
sufficient to achieve convergence in the estimated probabil-
ity.

(2) Prediction step

The candidate particles at the next iteration {x̂(t+1,i); i =
1, 2, · · · ,N} are drawn from a mixture of normal distribu-
tions:

x̂(t+1,i) ∼ 1
N

N∑
j=1

ND(x(t+1,i)|x(t, j),σ). (15)

Here, ND(x|µ,σ) is a D-dimensional normal distribution
whose PDF is given by

ND(x|µ,σ) =
1√

2πD|σ|
exp

(
−1

2
(x−µ)Tσ−1(x−µ)

)
,

(16)

where σ is a diagonal covariance matrix assuming the
“whitening” process has been conducted.

(3) Measurement

For each generated candidate particle x̂(t+1,i), weight w(t+1,i),
which is a scalar value representing the fitness of the particle
to the optimal alternative distribution, is calculated:
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w(t+1,i) = I(x̂(t+1,i)|tage)P(x̂(t+1,i)). (17)

Here, P(x) is the probability that the sample x is ob-
served. In our case, it is represented as the PDF of the D-
dimensional standard normal distribution which is given by
(16) with an identity covariance matrix.

For the computation of I(x|tage), transistor level simu-
lations are required. N samples need to be simulated for the
weight calculations of all particles. We reduce the number
of simulations with the help of the SVM-based classifier.
First, K training examples are randomly selected from N
samples and give labels to them using transistor level sim-
ulations. Then, the classifier is trained using the K training
examples. Finally, the remaining N − K samples are clas-
sified using the trained classifier. The number of transistor
level simulations can be reduced from N to K.

SVM-based classifier was first applied to a failure
probability calculation in [20]. As we have seen, the draw-
back of the naive MC is that very few failure samples are
drawn from the original PDF. Therefore, the authors of [20]
used SVM-based classifier as a blockade so that they can
skip transistor level simulations for the samples that obvi-
ously fall outside the failure region.

The difference between our approach and [20] is that
we combine the classifier with the importance sampling. In
the context of a failure probability calculation, the variabil-
ity space is not equally important, i.e., I(x) · P(x) represents
the importance of the corresponding region. Misclassifica-
tion of samples that are rare in terms of the alternative dis-
tribution, have almost no contribution to the failure proba-
bility. We call the number of misclassification weighted by
I(x) · P(x) as “effective misclassification rate.”

In our proposal, the SVM-based classifier is trained us-
ing the samples drawn from the alternative distribution, with
which the samples are concentrated about the regions that
have large weight. Hence, the performance of the classifier
can be improved with a smaller number of training samples
as compared to the case that the training is conducted by
using uniformly generated samples.

The computational cost required to train the classifier
increases by O(n2) where the number of training samples
is n. To cover the failure regions of fresh and aged cells
with a single classifier, a large number of training samples
is required and eventually the training time of the classifier
becomes unignorable. In our implementation, the old train-
ing samples are discarded and the binary classifier is newly
trained for each aging time step to save the number of train-
ing samples and the time required for the training. This ap-
proach works well because of the monotonic nature of aging
— the particles at the current aging time step are unlikely to
revisit the regions that have been previously explored.

In order to construct a non-linear classification model,
we use a polynomial transform of the variability vec-
tor x as feature quantity f in (6). For example, for a
two-dimensional input vector [x1, x2], the feature vector is
[1, x1, x2, x1x2, x2

1, x
2
2] when degree of the polynomial trans-

form Dpoly is quadratic.

Algorithm 2 Pass or fail label estimation.
1: Let X be the particles whose pass or fail labels need to be determined

and Xtrain be the training data for the binary classifier.
2: Let Acc be the accuracy of the classifier. Here, accuracy is calculated as

the number of samples whose labels match with those obtained using
a SPICE simulator, divided by the total number of samples.

3: while True do
4: Randomly select K samples from X. These samples are then given

random perturbations drawn from a Gaussian distribution to obtain
a test data Xtest.

5: Obtain pass or fail labels for Xtest using a SPICE simulator.
6: if Xtrain is empty then
7: Initialize the accuracy of the classifier (Acc) to be zero.
8: else
9: Calculate the accuracy of the classifier on the test data set Xtest

and Acc is initialized as the calculated accuracy.
10: end if
11: if Acc is greater than θ then
12: Break the while loop.
13: else
14: Append the test data to the training data: Xtrain = Xtrain ∪ Xtest.
15: Retrain the classifier with the extended training data Xtrain.
16: end if
17: end while
18: Obtain the pass or fail labels of X using the trained classifier.

The accuracy of the classifier at every aging time is
tested using a small subset of samples extracted from the
complete set of samples whose pass or fail labels are to be
obtained. The incremental refinement is conducted until the
sufficient classification accuracy can be achieved. Details of
the pass or fail label estimation with the aid of the binary
classifier are summarized in Algorithm 2.

Samples that are close to the separating hyper-plane,
i.e. colored region in Fig. 2, may be misclassified depending
on the accuracy of the classifier. Such samples should be
better classified by using transistor-level simulations. How-
ever, the weights of particles do not have direct impact on
the failure probability calculation. Instead, it only affects to
the estimation of the optimal alternative distribution and the
efficiency of the importance sampling. Hence, the approxi-
mation of I(x|tage) need not to be very accurate in this step.
In our implementation, the target accuracy θ in Algorithm 2
and the size of the test data K are 0.98 and 1000, respec-
tively. Note that the number of samples required to train the
classifier is sufficiently small and hence the total calculation
time can be greatly reduced.

Figure 5(b) shows particles after the prediction and
measurement steps. The marker color represents the weight
of each particle. We notice that the particles located closer
to the origin, where the failure is more likely to occur, have
larger weights.

(4) Resampling

Particles at the next iteration step ({x̂(t+1,i); i = 1, 2, · · · ,N})
are randomly selected from the particles x̂(t+1,i) according to
the probability in proportion to their weights. An example
result of the resampling step is shown in Fig. 5(c).

While particle filters drastically speed up the estima-
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tion of the alternative distribution, we have to consider a
degeneration problem of particles. In the failure probability
calculation of an SRAM cell, there are two major failure re-
gions because of its symmetric structure. Small difference of
the particle weight can make particles to concentrate on one
of the two regions as the number of iterations increases. This
leads to underestimation of the failure probability, which is
undesirable. In the proposed method, we utilize multiple
particle filters. The resampling is limited within each parti-
cle filter in order to avoid the degeneration problem.

In the example in Fig. 5(c), the two major failure re-
gions are tracked by different particle filters.

(5) Importance sampling

Finally, in the second stage, the failure probability is calcu-
lated using an importance sampling. In order to optimize the
alternative distribution, the outcome of the previous stage is
used. Specifically, the distribution of the particles in step (4)
is very close to the optimal distribution, hence it is approxi-
mated as

Q̂(x) ≈ 1
N

N∑
i=1

ND(x|x(t,i),σ). (18)

Then, the failure probability is calculated using random
samples {xk

IS, k = 1, 2, . . . ,NIS} drawn from Q̂(x) as follows:

Pfail ≈
1

NIS

NIS∑
k=1

I(xk
IS|tage)P(xk

IS)/Q̂(xk
IS). (19)

Here, NIS is the number of random samples used for the
approximation. The calculation of the indicator function is
again needed in the evaluation of I(xk

IS|tage). We again use
the SVM-based binary classifier to reduce the number of
simulations. Contrary to the classification in the first stage,
classification accuracy in the second stage directly impacts
on the accuracy of the failure probability calculation. There-
fore, the samples which lie close to the separating hyper-
plane go through the transistor-level simulations to obtain
correct labels. The simulated samples are used to incremen-
tally train the classifier and to increase the classification per-
formance.

5. Numerical Experiment

5.1 Experimental Setup

Figure 6 shows the circuit schematic of an SRAM cell.
In the experiment, failure samples are defined as samples
which have negative read noise margin (RNM). RNM is a
stability measure of the cell, which can be computed as the
maximum size of square embedded within the opening of
the butterfly curve [21] of the cell. Figures 6(b) and (c)
show two examples for defective and non-defective cells.
The mismatch of driving abilities among transistors results
in negative noise margin, which causes the read failure.

Fig. 6 (a) The schematics of the SRAM cell and (b) examples of static
noise margin for a non-defective and (c) a defective cell.

Fig. 7 Examples of NBTI-induced VTH shift assumed in this experiment.

Table 1 Experimental conditions.

Load (Li) Driver (Di) Access (Ai)
AVTH [mV·nm] 5 × 102

Channel length [nm] 16
Channel width [nm] 30 50 30

k [V/sec] 2 × 10−3

µn −1.3
σn 0.1

In the experiment, the 16 nm high-performance model
from predictive technology model (PTM) [22] is used as a
transistor model. Long-term VTH degradation is predicted
using the following model that is slightly modified from the
original RD-model in (7):

∆VNBTI
TH = k ·

(
Ct · tage

)n
, (20)

where tage is a chip age in year and Ct is a constant to adjust
the time scale. The model parameters are selected so that
approximately 20 mV to 30 mV of VTH shift is observed in
the transistors of 5-years old. In this particular case, k and
Ct are assumed to be 2 × 103 and 2 × 105, respectively. The
logarithm of the power-law exponent (nlog) is assumed to
follow a normal distribution (9), where µn and σn are set to
−1.3 and 0.1, respectively. Figure 7 shows example of VTH
shifts of 50 pMOS transistors assumed in this experiment.
Other circuit parameters such as gate length and width are
summarized in Table 1. In order to see the temporal change
of the failure probability at the early ages, where VTH rapidly
increases, the aging time step is selected as follows: tage =

0, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 years.
The degree of the transform polynomial for the SVM-based
classifier, Dpoly, is four and the number of particle filters is
set to ten.

5.2 Experimental Results

We first compare the proposed method with one of the state-
of-the-art methods proposed in [6]. Note that, in this exper-
iment, the failure probability at a single aging time step is
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Fig. 8 The comparison of the proposed and the conventional [6] meth-
ods. (a) The relationship between the calculated failure probability and the
calculation time required. (b) The relationship between the relative error
and the calculation time required.

calculated to see the effectiveness of the two-stage MC and
the SVM-based binary classifier. Figure 8(a) shows the cal-
culated failure probability of the SRAM cell and required
calculation time. The calculation time was measured on a
Linux workstation with 6-core Xeon X5670 processor op-
erated at 2.93 GHz. All of the 6-cores are used to acceler-
ate the calculation. In Fig. 8(a), the filled regions represent
the 95% confidence intervals. We can see that the proposed
method converges faster than the conventional method. Fig-
ure 8(b) shows relative error as a function of calculation
time. The relative error is defined as the ratio of the 95%
confidence interval to the calculated failure probability. In
our experimental setup, the proposed method reduced the
number of simulation runs into 40% of that of the conven-
tional method [6] to achieve relative error of 5%. The pro-
posed method required about 760 seconds to obtain that ac-
curacy. This includes both training time of the classifier
and classification time. The conventional method required
about 1400 seconds to achieve an equal accuracy, which cor-
responds to about 1.8× speed-up. When the acceptable er-
ror is small, the difference in the calculation time becomes
large. For example, the proposed method can achieve 15.2×
speed up over the conventional method when the permissi-
ble error is set to 1%.

We then calculate the temporal change of the failure
probability with the proposed method and summarize the
result in Fig. 9(a). As a comparison, the result of the conven-
tional method is shown in Fig. 9(b). The permissible error is
set to 5%. We can see that the results of both methods are
almost equal, from which we can confirm the correctness of
the proposed method. The total calculation time required to
obtain Fig. 9 is about 5700 seconds for the proposed method
while 76700 seconds for the conventional method. The pro-
posed method, hence, achieves 13.4× speed up compared to
the conventional method. The magnitude of the speed up
is increased from the comparison in Fig. 8 because the com-
parison in Fig. 9 includes the effect of the particle reusing. In
the conventional method, the alternative distribution is con-
structed from scratch at each aging time step while in the
proposed method, the construction is conducted only once,
which further reduced the total calculation time.

Fig. 9 The temporal change in the failure probability.

6. Conclusion

In this paper, we proposed a novel method to efficiently
calculate the failure probability of an SRAM cell that can
take the impact of NBTI-induced device degradation into
account. To see the temporal change of the failure prob-
ability at different device ages, multiple failure probability
calculations are required by changing threshold voltages of
transistor at an aging time step. Considering the gradual
VTH change due to aging, we proposed a method that uti-
lizes particle filter to keep track the change of the near op-
timal alternative distribution for importance sampling. With
this idea, time consuming repetitive explorations in the vari-
ability space has been eliminated. Combined with a bi-
nary classifier and two-stage MC approach to further reduce
the calculation time, the proposed method achieved 13.4×
speed-up over one of the state-of-the-art method [6]. With
the aid of the proposed method, circuit designers can effi-
ciently see the impact of device degradation. Reliability of
highly scaled LSIs can be improved, contributing to broader
adoption of LSIs.
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