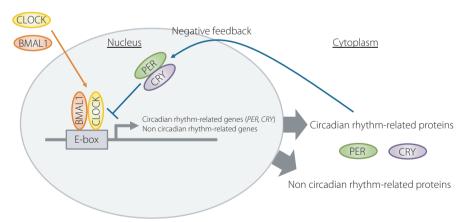
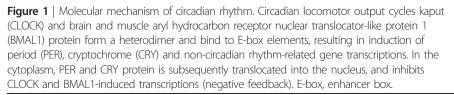


Title	Role of clock genes in insulin secretion
Author(s)	Harada, Norio; Inagaki, Nobuya
Citation	Journal of Diabetes Investigation (2016), 7(6): 822-823
Issue Date	2016-11
URL	http://hdl.handle.net/2433/217349
Right	© 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Туре	Journal Article
Textversion	publisher

Role of clock genes in insulin secretion


Circadian locomotor output cycles kaput (CLOCK) and brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 (BMAL1) are master clock genes that regulate circadian rhythm in the hypothalamus and peripheral tissues in mammals; and control not only sleep cycle, but also many other physiological functions, such as body temperature, heart rate and hormone secretion. CLOCK and BMAL1 protein form a heterodimer and bind to enhancer box (E-box) elements located upstream of circadian rhythm-related genes, which are period (PER) and cryptochrome (CRY), and non-circadian rhythm-related genes, resulting in production of PER, CRY and other non-circadian rhythm-related proteins. In the cytoplasm, PER and CRY protein form a heterodimer that is subsequently translocated into the nucleus and inhibits CLOCK and BMAL1-induced transcriptions. This negative feedback loop is an important part of mammalian circadian rhythm (Figure 1)¹.


Recent studies of CLOCK-mutant and BMAL-knockout mice show that circadian rhythm influences the development of metabolic syndrome. Locomotor activity of CLOCK-mutant mice was higher than that of wild-type mice in the light phase condition, and the feeding pattern of the mutant mice was apparently different from that of wild-type mice². Energy expenditure was decreased and bodyweight was increased in the mutant mice compared with that in wild-type mice. Furthermore, plasma triglyceride and low-density lipoprotein cholesterol concentrations were decreased in mutant mice. In contrast, bodyweight and adipose tissue size were significantly decreased in systemic BMAL1-knockout

*Corresponding author. Norio Harada Tel.: +81-75-751-3560 Fax: +81-75-751-4244 E-mail address: nharada@kuhp.kyoto-u.ac.jp Received 2 March 2016; revised 7 March 2016; accepted 8 March 2016

mice compared with wild-type mice.³ BMAL1-knockout mice had higher plasma triglyceride and low-density lipoprotein cholesterol concentrations compared with wild-type mice. These results show that CLOCK and BMAL1 are involved in lipid metabolism and bodyweight control. However, there was a large difference in phenotype between CLOCK-mutant and BMAL-knockout mice. It is speculated that CLOCK and BMAL1 regulates different non-circadian proteins, which are associated with lipid metabolism and obesity.

Previously, β-cell-specific BMAL1knockout mice were generated to evaluate the effect of BMAL1 on insulin secretion⁴. Plasma insulin concentrations after intraperitoneal glucose injection were significantly lower in β -cell-specific BMAL1-knockout mice compared with those in wild-type mice, resulting in hyperglycemia. Insulin secretion in response to glucose, adenylyl cyclase activator (forslolin), glucagon-like peptide-1 receptor agonist (exendin-4), cyclic adenosine 3', 5'-monophosphate (8-bromocvclic adenosine 3', 5'-monophosphate) and hyperdepolarization (KCl) were significantly decreased in the isolated islets of β-cell-specific BMAL1-knockout mice compared with wild-type mice. These results show that BMAL1 is also involved in insulin secretion. However, the detailed mechanism of BMAL1-mediated regulation of insulin secretion from pancreatic β -cells is unclear. Perelis *et al.*⁵ clearly showed the regulatory role of BMAL1 in insulin secretion by genome-wide analysis of isolated islets. They generated tamoxifen-induced β-cell-specific BMAL1knockout mice, and showed that acquired BMAL1 deficiency in β-cells decreases insulin secretion in response to glucose, forskolin, 8-bromo-cyclic adenosine 3', 5'-monophosphate and KCl. Genomicwide analysis using ribonucleic acid sequence suggested reduction of not only circadian rhythm-related genes, but also genes associated with transport and membrane fusion of insulin vesicle in the islets. Additionally, data of chromatin immunoprecipitation-sequence showed that CLOCK and BMAL1 bind at distal regulatory sites of circadian rhythmrelated genes in β -cells. This region also

J Diabetes Investig Vol. 7 No. 6 November 2016 @ 2016 The Authors, Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

contained the active enhancer at which pancreatic transcriptional factor pancreatic and duodenal homeobox 1 bind. Thus, clock genes regulate the genes (Pdx1) that are associated with insulin secretion and production in β -cells.

DISCLOSURE

The authors declare no conflict of interest.

Norio Harada^{*}, Nobuya Inagaki Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Kyoto, Japan

REFERENCES

- 1. Preitner N, Damiola F, Lopez-Molina L, *et al.* The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. *Cell* 2002; 110: 251–260.
- 2. Turek FW, Joshu C, Kohsaka A, *et al.* Obesity and metabolic syndrome in circadian Clock mutant mice. *Science* 2005; 308: 1043–1045.
- 3. Shimba S, Ogawa T, Hitosugi S, *et al.* Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1),

induces dyslipidemia and ectopic fat formation. *PLoS One* 2011; 6: e25231.

- 4. Marcheva B, Ramsey KM, Buhr ED, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. *Nature* 2010; 466: 627–631.
- 5. Perelis M, Marcheva B, Ramsey KM, et al. Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. *Science* 2015; 350: aac4250.

Doi: 10.1111/jdi.12517