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Intention-Sensing Recipe Guidance via User
Accessing Objects

Atsushi HASHIMOTO∗1, Jin INOUE1, Takuya FUNATOMI2, and
Michihiko MINOH1

1Kyoto University
2Nara Institute of Science and Technology,

May 17, 2016

Sensing the intention of a user’s forthcoming action is a necessary function for systems
that assist human physical activity. In this paper, we investigate a strategy for recipe guid-
ance systems that can predict the forthcoming intended sub-task in a cooking task. We fo-
cus on user accessing objects, i.e., touching and releasing objects. Touching can indicate the
start of the forthcoming sub-task and releasing can indicate the end of the task. The main
difficulty lies in the fact that humans may move objects because they are in the way and
use cooking tools that are unanticipated by an assistive system. In such cases, the accessed
object should not indicate the forthcoming sub-task. Our contribution is that we propose a
method to track the progress of a task based on the object access history. This enables us to
eliminate object accesses that are out of context. Simultaneously, the method predicts the
forthcoming sub-task based on a combination of progress and materials rather than tools
and materials. We develop a guidance system that runs as a web service. In experiments,
we observe real cooking activities navigated by this system. The Wizard of OZ method is
utilized to simulate a system that detects object accesses. The experimental results show
that we achieve 73.6% accuracy in the selection of the displayed information. This result
supports the use of “access to objects” realize effective intention-sensing systems.

1 Introduction
Recent progress in mobile and multi sensing technologies has increased the opportu-
nity for computers to assist human physical activity in the real world. Differing from
human–computer interaction while doing desk work, people performing physical tasks
concentrate on the task rather than constantly looking at a computer interface. “Inten-
tion sensing” is a necessary function in the context of assisting physical tasks.

For example, in exosuits developed to aid nursing care, myoelectric signals play
an important role in sensing a wearer’s forthcoming intented motion. Such signals can
∗ahasimoto@mm.media.kyoto-u.ac.jp
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Figure 1: Assistive system with intention-sensing system.
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Figure 2: Workflow graph representation of a recipe.

automatically control motors without interface operations; thus, users can concentrate
on nursing care tasks.

We aim to achieve an intention-sensing function for relatively more complicated
tasks such as cooking (Fig. 1). A cooking task, such as making a salad, comprises
many sub-tasks, e.g., cutting onions, tearing lettuce, mixing ingredients, and dressing
the mixture. The order in which the sub-tasks are executed may not be strictly defined
(Hamada, Okabe, Ide, Sakai, & Tanaka, 2005), and can be described as a workflow in
which one sub-task corresponds to one node (Fig. 2). Because workflow description is
often used for many kinds of physical tasks (e.g. assembling tasks), a recipe guidance
scenario can be applied to these tasks. In this context, recipe guidance is favorable be-
cause small mistakes in cooking tasks are rarely critical. This encourages more natural
human behavior than that in a highly disciplined task. In this sense, a cooking task is
appropriate for achieving intention sensing in a practical situation.

Intention sensing in a cooking context can be defined as the estimation of the next
sub-task in the workflow graph. To solve this problem, we use “object access,” i.e.,
touching and releasing objects, as a substitute for myoelectric signals. The worker
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naturally accesses various objects while cooking. Accessed objects are good indicators
for predicting the forthcoming sub-task. Predicting the next sub-task enables us to help
a user by displaying multimedia information about what the user will do next. This will
free the user from frequent interface operations that interfere with user concentration.

On the other hand, differing from myoelectric signals, an object access does not
always correspond to user intention. A user may grab an object simply to set it aside.
The user may also use an unanticipated tool to execute a sub-task. We refer to the
former problem as “deceptive access,” and latter as “unanticipated tool.” Given these
problems, predicting the forthcoming sub-task in a practical situation is challenging.

The primary contribution of this paper is an algorithm that deals with the above
problems by tracking the progress of a task according to the object access history.
Most deceptive accesses are expected to be out of context, and progress-tracking pro-
vides context information to eliminate such out-of-context accesses. Simultaneously,
we combine the progress information with the accessed materials. Even when the tools
used in a sub-task are unanticipated, relative to the known progress, the accessed ma-
terials provide sufficient information to identify the forthcoming sub-task.

2 Related work
Promoting better eating habits is important for people’s health and well-being and for
reducing health care costs. To guide people toward better eating habits, it is important
to assist them in preparing healthy, delicious, and economical dishes. In recent years,
many such recipes have become available on the World Wide Web. Video and still im-
ages facilitate user understanding of various cooking techniques, and voiced narration
helps users not to miss necessary steps. However, such multimedia content has a trade-
off problem, i.e., the more multimedia contents a recipe contains, the more operations
are required to search and play the content.

To improve accessibility to such multimedia content, many researchers have pro-
posed various interfaces (Ju, Hurwitz, Judd, & Lee, 2001; Bradbury, Shell, & Knowles,
2003; Hamada et al., 2005; Nintendo, 2006; Miyawaki & Sano, 2008; Uriu et al., 2012;
Matsushima, Funabiki, Zhang, Nakanishi, & Watanabe, 2013). Similar interfaces have
also been proposed for assembly tasks (Zauner, Haller, Brandl, & Hartmann, 2003;
Tang, Owen, Biocca, & Mou, 2003; Yuan, Ong, & Nee, 2008; Siltanen et al., 2007).
The main difference between cooking and assembly tasks is the availability of radio-
frequency identification (RFID) tags and visual markers, i.e., they are unavailable for
foodstuffs. Nonetheless, we should consider assembly tasks because they can also be
represented by a workflow graph, such as that shown in Fig. 2.

Many systems were developed in the early 2000s (Ju et al., 2001; Nintendo, 2006;
Zauner et al., 2003; Tang et al., 2003). Those systems recognize the progress of a cook-
ing/assembly task by tags, markers, or simple user operations. However, the recipes in
those systems are described as fully-ordered sub-tasks, and the workers must follow
the described order strictly. In such a situation, the next sub-task is always defined
uniquely, and there is no room to arrange the scenario according to user intention.

Hamada et al. (Hamada et al., 2005) pointed out that the flexibility of a cooking
recipe can be represented by a workflow graph (Fig. 2). Their system is intended to
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assist users in preparing a hot meal. For this purpose, the system recommends the
complete-order of sub-tasks by an online scheduling algorithm such that all dishes
comprising the meal are completed at the same time. A partial order defined by the
workflow graph is an important condition for the online scheduling algorithm. This
work focused more on the scheduling algorithm, and less on the interface. This system
helps users a great deal, particularly when they are unfamiliar with cooking procedures.
On the other hand, the absence of intention-sensing functionality will increase user
burden whenever the user does not follow the plan recommended by the system. For an
experienced cook, this will decrease their motivation to use the system even though the
scheduling is a helpful function. Our purpose is to maintain user initiative by sensing
their intention while providing various types of computer-based assistance, including
scheduling assistance.

Some studies have considered user intention. For example, Yuan developed an
interface that enables users to signal the end of sub-task execution and select the next
sub-task independently (Yuan et al., 2008). Similarly, some cooking assistance systems
use special devices to access information freely while executing a task (Bradbury et
al., 2003; Matsushima et al., 2013). Clearly, interface operation can interrupt work
frequently and thereby interfere with user concentration.

Rather than explicit interface tools, Miyawaki proposed a system that uses real ob-
jects as implicit interfaces for selecting sub-tasks (Miyawaki & Sano, 2008). Their sys-
tem achieved automatic recipe navigation without explicit interfaces. To achieve full
automation, they preliminarily form a correspondence between the sub-tasks and the
objects on the cooking counter, which are mainly containers. The system identifies the
forthcoming sub-task according to the container that the user accessed. This approach
is similar to ours; however, there is an essential difference. Miyawaki et al. avoided the
ambiguity for the forthcoming sub-task by assigning unique objects to each individual
sub-task. Under normal circumstances, unique correspondences between sub-tasks and
objects are not guaranteed. The user will easily forget such unnatural correspondences,
and this approach will fail when the user uses an unanticipated object. The proposed
method relies on the correspondence between sub-tasks and objects; however, the cor-
respondence is determined by the nature of each sub-task, which users do not need
to memorize. In this setting, the objects assigned to sub-tasks are no longer unique.
Rather than relying on unique correspondences, we propose an algorithm that focuses
on identifying the intended sub-task from contextual information and the combination
of accessed objects.

Schneider simulated human execution of a cooking task using a dynamic Bayesian
network (DBN) (Schneider, 2009). In the DBN, a state corresponds to the cooking
progress, and a transition corresponds to a sub-task that the user has executed. In this
problem setting, the system attempts to determine the recipe that the user is working
with rather than what sub-task the user will perform next. Though the system originally
attempts to identify recipe, the process of identification on a DBN includes progress-
tracking on a completely-ordered sub-tasks.

However, this method can not track cooking progress when a recipe is described
in partial-order. In their work, the DBN, which represent a recipe, was generated ran-
domly and no human factors were considered. Moreover, the number of possible states
of the DBN increases combinatorially if the system allows sub-tasks to be executed
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flexibly (Appendix B). We deal with the flexibility of a recipe and focus more on the
actual cooking activity. The heuristics of our algorithm reveal the sparseness of human
state transition behavior even with a combinatorially explosive number of states.

3 Sensing intention via object access

3.1 Workflow graph representation of a recipe
Before discussing our approach in detail, we define the workflow representation of the
graph more strictly. Let G(V, E) be the workflow graph shown in Fig. 2, where v ∈ V
corresponds to a sub-task, and e ∈ E defines the order relationship between two sub-
tasks. The edge is given in the following manner. We express an order relationship
between two sub-tasks v1 and v2 by the operator <, i.e., v1 < v2 means that v1 must be
completed before starting v2. To avoid redundant edges to represent the partial order
definition in G, we add a directed edge {v1, v2} to E if and only if v1 < v2 and there are
no other sub-tasks v such that v1 < v and v < v2.

For example, the graph shown in Fig. 2 consists of subtasks V = {a, b, c, d, e}, and
order definitions E = {{a, b}, {b, d}, {c, d}, {d, e}}. The graph has two paths {a < b < d <
e} and {c < d < e}. Each path of sub-tasks in the flow tracks one material, and each
conjunction of paths corresponds to a material mixing sub-task. As G is intended to
represent the partial order relationship of a task, there are no order definitions between
sub-tasks {a, b} and c. In other words, the users can arrange the order of these sub-tasks.

To utilize object access to sense user intention, we associate object labels with
each sub-task in V . Let Ov be the labels linked to sub-task v. We also maintain the
division between materials and tools by denoting them Om

v and Ot
v (Om

v ∪ Ot
v = Ov and

Om
v ∩ Ot

v = ϕ,) respectively. In a cooking activity, whether a seasoning belongs to Om
v

or Ot
v is not obvious. To rule out this ambiguity, we define that an object is a material if

and only if it is processed alone in any of v; otherwise it is a tool. For example, oil is a
material if G has a sub-task v in which the oil is heated by itself, but it is a tool when it
is always added to other materials. This definition avoids the appearance of v with no
materials in linked object labels.

Given the nature of the workflow graph, materials are further categorized into sin-
gle material and mixtures of materials. The tool and single material labels can be
preassigned to v manually. Such remain unchanged until the materials are mixed. For
example, we set Om

d = {A, B} at sub-task d in Fig. 2 because A and B are successively
involved in the process at sub-task d. After a sub-task that mixes two or more materi-
als, the labels of the mixed materials are combined as a single label that indicates that
indicates a mixture of materials. In Fig. 2, after the process at sub-task d, A and B
are mixed and treated as a material represented by {A, B}, and we set Om

e = {{A, B}}.
Thus, Om

v is obtained automatically from the assigned raw materials A at sub-task a,
B at sub-task c, and the structure of G. A more precise definition of the algorithm to
assign Om

v for each sub-task is given in Appendix A
A recipe can be represented by the various granularities of the sub-tasks V . For

example, a recipe can represent the direction for tomato puree by a single sub-task that
says “puree tomato,” or several sub-tasks, such as “remove tometo stems,” “blanch the
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tometoes,” “put blanched tomatoes into a pot of cold water,” “remove the skin,” “dice
the tomatoes,” and “puree diced tomatoes in a food processor.” Note that the granularity
affects the usability of the system. Generally, the level of detail is up to the author of
the given recipe. For beginners, more detail is preferred; for experienced cooks, a less
detailed explanation may be better.

Basically, the more finely the sub-tasks are divided, the more detailed information
the system can display. A heighly granular division may be helpful for users who
are unfamiliar with the recipe. For those who are familiar with the recipe, they are
not annoyed by too much information when the system senses their intention and the
displayed information is switched automatically. Because our goal is a system with
intention sensing, the system should be able to provide finely divided sub-tasks that
help users with unfamiliar recipes and does not annoy them with too many sub-tasks
for users who are familiar with the recipes. To make the recipes more compatible with
our object access strategy, we divide a recipe into sub-tasks such that each sub-task
has the smallest Ov. Ov is smallest when a sub-task does not include processes that
use different tools. Thus, the smallest Ov is obtained easily by dividing sub-tasks that
include two processes that use different tools into separate sub-tasks.

3.2 Basic problems with sensing intention from object access
We use object access to achieve intention-sensing functionality. Let Oh be a set of
objects held in hand. Intention sensing via object access is basically considered a
problem of finding v intended as the next sub-task based on the comparison of Oh with
Ov for all v ∈ V . However, there are some practical problems that should be considered.
First, when sub-tasks u and v have the same object labels (Ou = Ov) and are matched
to Oh, we must consider any external evidences that indicates whether u or v is more
likely to be performed next. To address this problem, we select the sub-task that is on
the same path as the previously performed sub-task. Second, Oh and Ov are not always
reliable due to deceptive access and the use of unanticipated tools.

Deceptive access is object access that is not related to the user’s intention. Typi-
cally, it occurs when the user moves objects without the intention of using them. This
type of action is common in many types of tasks. Such actions make a naive rule-based
system, such as that proposed in (Miyawaki & Sano, 2008), work improperly.

Unanticipated tools must be considered because it is obviously impossible to list all
possible tools for v in advance. When an unanticipated tool is used as a substitute tool
in Ov, Ov and Oh become different. Thus, the system must accept a certain difference
of tools in Ov and Oh.

To account for deceptive access, we maintain the progress of the task on G and
reject any access that does not suit to the situation. To handle the unanticipated tools,
we have designed a score function that can deal with a certain amount of mismatch
between Ov and the actually accessed objects.

3.3 Enhancing robustness against deceptive access
To eliminate deceptive accesses from the intention-sensing process, it is helpful to
track the progress on a workflow graph G(V, E). Here, progress is described by a set of
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: v ∈V − : v ∈V +

Figure 3: Context information V− and V+ on a workflow graph.

: v ∈V f: v ∈V b

Figure 4: Expanded context of Vb and V f .

completed sub-tasks V−(⊆ V). V− is obtained by detecting every completion of v ∈ V
through observation. Sub-tasks that are ready for execution are obtained as sub-tasks
whose ancestors are all in V−, where u is an ancestor of v if u < v. We refer to such
sub-tasks as V+ (Fig. 3).

A simple idea for eliminating deceptive accesses is to ignore an access if the ac-
cessed object is not listed in ∪v∈V+Ov. This strategy will eliminate deceptive accesses
effectively; however, in practice, it is too naive against inaccurate V+. When a single
mistake occurrs in completion detection, V− becomes inaccurate and consequently V+

will also be affected.
We consider a situation where the actual value of V− differs from the value in the

system. Consider a set of sub-tasks V̂− that have been estimated as complete by the
system and distinguish this set from V−, which is an accurate set of completed sub-
tasks. Similarly, V̂+ is the set induced by V̂−. Note that, a sub-task that is in V+ and on
a path in G is always unique. We refer to v̂ as a subtask that is in V̂+ and on the same
path as v ∈ V+. When sub-tasks v̂ and v are differ, accesses to objects in Ov are ignored
and the system fails to display instructions for v.

To improve robustness against failure in V̂−, we extend V̂+ in two directions and
obtain modified contexts V̂ f and V̂b, where V̂ f consists of nodes in the forward direc-
tion of directed edges in G from those in V̂+, and V̂b consists of nodes in the backward
direction (Fig. 4). V̂b ∪ V̂+ ∪ V̂ f will cover more nodes in V+, which is the accurate
context, than V̂+. Therefore, involving accesses related to V̂ f and V̂b in addition to
those related to V+ will reduce the risk of eliminating access to v ∈ V+.

It is important to consider how to expand V̂+. For example, a wider context results
in greater loss of contextual information. On the other hand, narrow expansion leads
to the same result obtained when using V+. To decide our strategy, we focused on the
difference of risks between two types of failure on v̂ ∈ V̂−, i.e., v̂ < v and v < v̂, which
we refer to as left-unattended error and overrunning error, respectively.
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When v̂ ∈ V̂+ satisfies in the condition v̂ < v, an access to objects in Ov̂ is necessary
to recover. However, objects in Ov̂ are hardly accessed in this case because v̂ is already
completed. Hence it is hard to recover automatically from the left-unattended error. In
contrast, when v < v̂, the user proceeds the task and, in the meanwhile, the user will
access to objects in Ov̂ to work on v̂. Hence, the system can potentially recover from
the overrunning error.

To avoid the left-unattended error with certainty, we employ a completion detector
for V̂− such that it achieves a high recall rate, thereby hardly missing the completion.
This strategy leads to many overrunning errors. To reduce the effect of overrunning
errors, we expand the context V̂+ in only one sub-task (V̂ f ). In addition, we expand
the context broadly in the backward direction such that v tends to lie in V̂b while v < v̂
(Fig. 4).

Here, we provide a mathematically rigorous description of the expansion shown
in Fig. 4. First, V̂ f is obtained as {v|{u, v} ∈ E ∧ u ∈ V̂+}. Second, we add u to V̂b

if and only if u < v for any v ∈ V̂+ and there is at most one conjunction on the path
from u to v. This backward expansion accepts accesses to both materials mixed at the
conjunction sub-task and the mixture of materials produced by the sub-task. Adding
V̂b and V̂ f obtained in this manner to V̂+ loses some contextual restriction but is more
robust against corruption in V̂−, which may contain errors.

3.4 Dealing with unforeseen tools
Differing from the system proposed in (Miyawaki & Sano, 2008), our system does
not force users to obey any one-to-one correspondences between tools and sub-tasks.
Instead, we list as many alternative tools as possible in Ov and calculate a matching
score between the objects held in hand and in Ov for each v. Since alternative tools are
not used together, we prepare Ov for each alternative tool, i.e., Ov = {Oi

v|0 ≤ i < Nv},
where Nv is the number of alternative tool combinations. For example, if a sub-task
is “peel the potato,” the tool can be a knife or a peeler. In that case, Ov consists of
O0
v = {′′kni f e′′,′′ potato′′} and O1

v = {′′peeler′′,′′ potato′′}.
When any Oi

v is equal to Oh, it is easy to sense the intention; however, as discussed
above, Oh and Oi

v are frequently not equal. The user may execute sub-task v with an
unforeseen tool, or keep holding unnecessary tools during a sub-task. In such cases,
Oh differs from any of Oi

v.
To match Oh to Oi

v while allowing such difference in tools, we employ a heuristic
scoring function L(v; O), and select the sub-task with the highest score. The score for v
is calculated as follows;

L(v; Oh) =

0 v < V̂b ∪ V̂+ ∪ V̂ f

maxi L(Oi
v; Oh) otherwise

(1)

L(Oi
v; Oh) =

∑
o∈Oi

v

σ(o)1(o ∈ Oh) − ε|Oh\Oi
v|, (2)

where σ(o) is an elemental score assigned to each object in Oi
v. We assign a higher

score to materials in Oi
v and a smaller score to tools because the material is a dominant
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Table 1: Elemental scores and penalty.
σ(o) materials (with tools) 0.75

tools (with materials) 0.25 / # of tools in Oi
v

materials (w/o tools) 1.0
tools (w/o materials) 0.95 / # of tools in Oi

v

ε 0.04

factor in intention sensing. 1(o ∈ O) is an indicator function that returns 1 if o ∈ O is
true; otherwise, it returns 0. ε is a penalty score for extra objects, and |O| is the number
of elements in set O.

We show the settings fors elemental score σ(o) and penalty score ε in Table 1.
These values were obtained in the following heuristic manner. Essentially, the score
for tools should only be used to differentiate sub-tasks that treat the same material. An
exception is a case wherein only tools are accessed. A typical example is seasonings,
which are often sprinkled on foodstuffs, and the foodstuffs themselves are not accessed.
The seasonings, which we consider tools, will be the dominant factor in such cases.
Thus, we give σ(o) a high score for such tools if Oi

v contains no materials.

3.5 Overall algorithm
Here, we present the details of our algorithm. The overall algorithm is given in Algo-
rithm 1. In the algorithm, vc is the sub-task whose instructional multimedia content is
displayed to the user.
R and C are external functions. R is a recommendation function that chooses a

sub-task in the order that the system believes to be the best without considering user
intention. One example of R is the scheduling algorithm proposed in (Hamada et al.,
2005). Not that the design of R is not the focus of this paper; therefore, we simply use
a static, preliminary determined order as the return value of R. R is only called when
our algorithm cannot estimate the forthcoming intended sub-task (lines 2 and 24). C(v)
detects the completion of V̂−. This function is called whenever an object is released.
The details of these functions are given in Section 3.6.

The procedure in line 5 was given in Section 3.3. The procedure from lines 7 to 14
maintains Oh according to the detection of each object access. Lines 15 to 24 estimate
the intended sub-task. Since V̂b is primarily used for recovery, we give priority to
V̂+ ∪ V̂ f . When several sub-tasks demonstrate the highest score, we adopt the sub-task
that appears first in the order recommended by R.

3.6 Design of completion detector C(v)

V̂− is maintained by detecting the completion of sub-tasks whenever the user releases
objects. There are many action recognizers, some of which are specialized for culinary
tasks (Rohrbach, Amin, Andriluka, & Schiele, 2012; Packer, Saenko, & Koller, 2012;
Lei, Ren, & Fox, 2012; Iscen & Duygulu, 2013; Shimada, Kondo, Deguchi, Morin,
& Stern, 2013; Kuehne, Fraunhofer, Arslan, & Serre, 2014). These methods can be a
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Algorithm 1 Complete forecast process.

1: Oh = ϕ, V̂+ = {v|v ∈ source vertices in G}, V̂− = ϕ
2: vc = R(V̂+, ϕ)
3: while V̂− , V do
4: display vc

5: maintain V̂b, V̂+, and V̂ f along with V̂−

6: wait until any object o is touched or released
7: if o is newly touched then
8: Oh = Oh ∪ {o}
9: else if o is newly released then

10: Oh = Oh\{o}
11: if C(vc) is true then
12: V̂− = V̂− ∪ vc
13: end if
14: end if
15: v+=argmax

v∈V̂+∪V̂ f

L(v; Oh)

16: v−=argmax
v∈V̂b

L(v; Oh)

17: if L(v+; Oh) ≥ 1.0 then
18: vc = v+

19: else if L(v−; Oh) ≥ 1.0 then
20: vc = v−

21: else if L(;+) > 0.0 then
22: vc = v+

23: else
24: vc = R(V̂+, vc)
25: end if
26: end while

good solution for the completion detection problem. The purpose of this paper is not
the development of an accurate completion detector; therefore, rather than implement-
ing those action recognizers, we have implemented a simple detector based on only
two indicators, i.e., the time elapsed since vc was displayed and the confidence of the
displayed information L(vc; Oh), both of which are obtained by executing Algorithm 1.

Let n be the iteration index of the loop in line 3 in Algorithm 1, and a subscript n,
e.g. vcn, denotes the n-th displayed sub-task. In addition, tn denotes the initial display
time of vcn. Thus t − tn is the elapsed time at time t after vcn is displayed.

Note that C returns false if t− tn < θt because all sub-tasks require a certain amount
of time. We set θt = 1.0 s for sub-tasks. We also disregard an object access for object
o if o is released in 1.0 s. In this case, we reset all parameters in Algorithm 1 to
those belonging to the state prior to object o being accessed. We then recalculate the
procedure while ignoring the access to object o.

If the elapsed time is greater than 1.0 s, we check the second condition of the
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highest record of L(v; Oh) during term [tv, t] as follows:

C(vc) =


true Lmax ≥ θ1
true θ1>Lmax≥θ2∧R(V̂+n−1, v

c
n−1)=vcn

f alse otherwise,
(3)

where Lmax = max[tn,t](L(vc; Oh)). Here, θ1 and θ2 are higher and lower thresholds,
respectively, obtained by the elemental scores in Table 1.

Let om
w , om

w/o, ot
w, and ot

wo
be a material with tools, a material without tools, a tool

with materials, and a tool without materials, respectively. Not that these correspond to

the cases shown in Table 1. Then θ1 is expressed by σ(om
w ) +

∑
ot
w
σ(ot

w)

2 . Note that θ2
must be less than σ(om

w )(we set it to 0.5).
C returns true if L(vc; Oh) becomes greater than θ1. Even when L(vc; Oh) is less than

θ1, C returns true when the score is greater than θ2 and vcn corresponds to R(V̂+n−1, v
c
n−1),

where V̂+n−1 is the value of V̂+ at the (n − 1)-th iteration. This condition is derived from
the idea that vcn should be executed consecutively after vcn−1. Note that C returns false
for any other case.

At line 12, which updates V̂+, we push vc and any sub-task v that satisfies v <
vc ∧ v < V̂−, into V̂−. Note that this completion-detecting algorithm can be combined
with other sophisticated action recognizers. This remains a focus of future work.

4 Interface Implementation

4.1 Web-based platform CHIFFON
To achieve an interface that is controllable from the intention-sensing system, we
implemented a recipe display system called CHef’s Interface For Food preparatiON
(CHIFFON). CHIFFON has server-side and client-side programs, and two-way com-
munication is established between them (blue arrows in Fig. 5); client-to-server mes-
sages deliver all user operations to the system, and server-to-client messages are orders
for clients rendering the instructional multimedia content in a web browser. Figure 6
shows the graphical user interface (GUI) rendered by the web browser.

The server-side program can receive a message from any external system, including
the object sensor module shown in Fig. 1. When the server receives messages from
an external system, it generates and sends a rendering order to the target client web
browser (red arrows in Fig. 5).

We designed a recipe format that describes the workflow structure, text instruc-
tions, links to multimedia content, and Oi

v for each sub-task v. We also provided an
application programming interface (API) for external systems.

The recipe format, called Hand-Work Markup Language (HWML), is an XML
document whose structure and content pattern are defined in the format of RELAX
NG schema format (Murata, 2001). This format allows users to describe the workflow
structure of the sub-tasks. Each sub-task can have several triggers. A trigger is a set of
conditions, and we describe Oi

v as a trigger in this study.
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Client-side	


Server-side	

External 
System	


Ajax	


Web socket	


HTTP	


Figure 5: Communication protocols between modules.

The API receives various orders as an HTTP GET request as long as the request is
written in the format specified by the API. Once the server-side program has accepted
the order through the API, it sends a message to the client-side program. Therefore,
external systems can control the client-side program in a sidelong manner through this
API.

The intention-sensing algorithm proposed in the previous section is implemented
in the server-side program. It was called when the object sensor module sends a mes-
sage that notifies an object access through the API. Whenever the algorithm called, it
calculates the most likely intended sub-task, and sends a rendering order to the target
client web browser.

4.2 Object sensor implementation
Figuire 1 also shows object sensors. This module detects the user access to objects. An
object access is described by a tuple {t, o, a(o)}, where t is a timestamp, o is an object
label, and a(o) is an object-access label, i.e., “touched” or “released.” The output of
this module is sent to the intention-sensing algorithm on the server via the CHIFFON
API.
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(add the cut scallion and season)	


(First, turn the stove off.)	


Figure 6: GUI of client-side program.

There are many choices to implement this module: RFID (Nakauchi, Fukuda,
Noguchi, & Matsubara, 2005), RFID and load sensors (Chang et al., 2006), AR mark-
ers (Miyawaki & Sano, 2008; Ueda, Funatomi, Hashimoto, Watanabe, & Minoh, 2011),
RGB-D cameras (Klompmaker, Nebe, & Fast, 2012), and multi-modal signal process-
ing (Hashimoto et al., 2010, 2012; Yasuoka, Hashimoto, Funatomi, & Minoh, 2013).
Each method has advantages and disadvantages, and there may be a best combination
of methods to achieve an optimal solution.

Our focus is the design of an intention-sensing system, and developing such an op-
timal solution is beyond the scope of this study. Instead, we have adopted the Wizard
of OZ method (WOZ) (Kelley, 1984) which has been widely accepted over the last 30
years for evaluating various types of intelligent interface prototypes (Sandweg, Has-
senzahl, & Kuhn, 2000; Favela, Tentori, & Gonzalez, 2010; López, López, Guerrero,
& Bravo, 2014). The WOZ method uses a human as a wizard who functions as a sub-
stitute for an intelligent module. In our case, the wizard provides an alternative to the
object sensor via the interface shown in Fig. 7. The wizard stays in the background
of the system so that subjects do not notice its presence. One significant advantage of
this method is that interface designers do not have to wait for relevant technologies to
mature sufficiently.

5 Experiments
There are two important factors that affect a system’s proper intention sensing: non-
unique Oi

v due to the complexity of the recipe and the nature of human activity dis-
cussed in Section 3.2. To evaluate each factor independently, we designed two experi-
ments. In the first experiment, we restricted users to not having any deceptive accesses
and using only the tools listed in Ov to compare the accuracy of the displayed infor-
mation between two recipes with different complexity. In the second experiment, we
removed these restrictions and evaluated the system with cooking activities in a natural
setting.
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(rice)	
 (egg)	
 (welsh onion)	
 (lettuce)	
 (ginger)	


(sesame oil)	


(salt&pepper)	
 (soy sauce)	
 (soup stock)	
 (water)	


(oil)	


(starch)	


(knife)	
 (fork)	
 (wood paddle)	
 (rice paddle)	
 (ladle)	


(tablespoon )	
 (teaspoon )	
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(ginger soup)	
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 (starchy sauce)	
 (rice & egg)	
 ( …& chibol)	


(…&lettuce)	
 (fried rice w. sauce)	
 (unknown)	
 (unknown)	
 (unknown)	


Figure 7: Interface for wizards. When a button for object o is pushed, a(o) = ’touched’
is sent with a timestamp. Then, the button turns red. a(o) = ’released’ is sent after
pushing the red button again.

Cut napa cabbage	


Cut carrot	


Cut ginger	


Cut Japanese radish	


drain water from tofu	


Slice scallion	


Boil in broth	


mix starch with water	


Stir	


Figure 8: Overview of ginger soup. Nodes colored in dark blue are mixing sub-tasks.

5.1 Robustness against recipe complexity
Since several sub-tasks can potentially have the same combination of objects as Oi

v, the
algorithm must be robust against such recipes. To evaluate robustness, we prepared
two different recipes, i.e., “ginger soup” (19 sub-tasks) and “fried rice” (30 sub-tasks),
as shown in Figs. 8 and 9, respectively

Ginger soup is a recipe that is easy to guide by object access because Oi
v for ∀v ∈

V is unique. In such a recipe, v can be identified uniquely without any contextual
information. In contrast, fried rice has many sub-tasks that share the same set of objects
as Oi

v. These sub-tasks are indicated by the circle border colors in Fig. 9. There are
four pairs (orange, red, blue and green) and one triplet (pink) of sub-tasks that share
the same Ov.

Prior to conducting the experiments, we gave the subjects the following restrictions.

1. Do not add any sub-tasks to the process; do only what the recipe instructs.

2. Do not touch any object unless it relates to what you intend to do.
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Stir	


Figure 9: Overview of fried rice with starchy sauce. The same boundary colors indicate
the duplicated Oi

v.

Table 2: Accuracy of displayed information and number of user operations.
Ginger Soup Fried Rice

Subject A B A B

# of displayed correct sub-tasks 118 202 121 120
# of displayed false sub-tasks 16 18 7 6

Accuracy 88.1% 91.8% 94.5% 95.2%
# of user operations 0 2 0 0

3. Do not use a tool that is not called for in the recipe.

4. Do not release the objects while the sub-task is ongoing.

Two subjects were employed in this experiment, and both are skilled amateur cooks.
It is too difficult to cook with the above restrictions without practice. Therefore, the
subjects rehearsed several times.

Note that the infomation was displayed automatically during the rehearsals and the
real part of the experiment. Simultaneously, the subjects were allowed to operate the
interface manually on a touch display when they felt any inconvenience. The number
of manual operations indicates the number of critical failures for the subjects. Thus,
counting user operations enables us to count such failures separately from other failures
that do not affect the interface’s usability significantly.

Table 2 shows the accuracy of the displayed information and the number of user
operations. Despite the duplicated Oi

v in the fried rice recipe, accuracy remained high
for both recipes. From this result, we confirm that the algorithm works with both
difficult and easy recipes.

It can also be said that the system was not operated frequently by the subjects in
every case, even though the accuracy did not reach 100%. This is considered to be due
to the difference in the timing of failure. During the experiments, we found that the
subjects primarily concentrated on the cooking task and did not check the display all
the time. It appears that most cases of displaying false sub-tasks occurred while the
subjects concentrated on their task, which had little effect on the subjects.

15



Table 3: Number of manual operations while cooking fried rice recipe.
Subjects A B C D E G H

Manual Operation (times) 2 2 9 1 2 5 3

Table 4: Accuracy of displaying steps and number of manual error corrections.
Subjects A B C D E

a) expected access 99 101 72 98 77
b) deceptive access 92 106 73 76 95
c) # of displaying correct sub-tasks 128 162 108 135 121
d) # of displaying false sub-tasks 63 45 37 39 51
e) (d) at (a) 23 15 11 17 19
f) (d) at (b) 40 30 26 22 32

Accuracy: (c)/((c)+(d)) 67.0% 78.3% 74.5% 77.6% 70.3%

5.2 Evaluation with natural human activities
To evaluate the system during natural human activity, we used the fried rice recipe,
which is more challenging and practical than ginger soup recipe. Differing from the
first experiment, we set no restrictions in this experiment. Seven subjects were recruited
for this experiment (three males and four females). All subjects cook at least once a
week, and thereby have a certain level of culinary skill. To enhance the naturalness
of the activity, we gave the subjects 10 min to review the entire recipe before starting
observation. In addition, we instructed them to make a plan for cooking the dish on an
optimal schedule.

We also compensated for the unfamiliar cooking environment. The subjects did
not know where things were stored; thus, it was expected that this would restrict user
activity. In particular, cookware tends to be used more often when stored in an easy-
to-find location. To cancel this effect, we asked the subjects to determine what kind of
cookware they would need beforehand and placed it in plain view before starting the
task.

The results of this experiment are shown in Tables 3 and 4. As can be seen in Table
3, subjects C and F were very sensitive to false display; they checked the display for
each sub-task; and corrected errors nine and five times in total, respectively. It was
revealed that our system is not very effective for this type of user. On the other hand,
the remaining four subjects rarely operated the system. This indicates that object access
can be a strong indicator to sense user intention.

We examined the accuracy of the displayed information for subjects A to E pre-
cisely. For all data, there were relatively more falsely displayed sub-tasks than the
results shown in Table 2; however, subjects A, B, D, and E were not significantly con-
fused by such falsely displayed sub-tasks. A typical error occurred at sub-tasks where
materials are mixed, i.e., vc went back and forth repeatedly between such a sub-task and
its next sub-task (e.g., sub-tasks d and e in Fig. 2). This occurred in the following sce-
nario. First, one of the target materials was touched, and the instruction for the mixing
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sub-task was displayed. Then, the material was released, and the completion detector
falsely regarded the release as completion of the mixing sub-task even when there were
other materials that still needed to be mixed. Then, touching the other materials caused
the system to recover from the error. This continued until all materials in the sub-task
were mixed. In most cases, the failures described above were ignored by the subjects,
and the algorithm recovered successfully in subsequent object accesses. In this sense,
it was confirmed that our interface design and the error recovery mechanism worked
well even for natural human activity.

Other types of failures occurred when objects were released in the middle of exe-
cution. For example, this situation was observed when a heating sub-task was executed
in parallel with other sub-tasks and when the subjects took a short break.

All of the above failures were caused by failures to detect the completion of sub-
tasks. These failures can bother users who react as subjects C and F did. To confirm
the completion of each sub-task more accurately, we should employ other indicators
besides object access. Addressing this problem will be a focus of future work.

5.3 Analysis of inputs from wizards
In previous sections, we have discussed the strategy of the proposed algorithm from
a natural human activity perspective. As a matter of practice, the strategy also works
robustly against negative effects caused by failures in the object sensor modules, as
well as deceptive access and the use of unanticipated tools. We discuss this property in
this subsection.

A user accesses objects frequently during a cooking task, and it is common to ac-
cess three or four different objects in quick. Therefore, it is difficult even for wizards to
operate the system without failures occurring. Such failures can be considered failures
of the object sensor modules.

Table 5 shows the failures in the experiments for subjects A to E. These failures
were confirmed after a careful survey of the video and operational logs. A false pos-
itive is a case in which a wizard inputs a touch for an untouched object and a release
for an unreleased object. A false negative is a lack of input for touched and released
objects. The precision and recall of input by a wizard were 94.4% and 73.5%, respec-
tively. Generally, precision and recall demonstrate a trade-off relationship; however,
the priority can be controlled by classifier parameters. In this sense, the wizards, which
are the object sensor in the experiments, are a classifier controlled to yield higher pre-
cision and lower recall.

Table 6 shows a breakdown of the false positive inputs and the number of times
false sub-tasks were displayed resulting from the false positive inputs. As can be seen,
false positive inputs do not directly lead to displaying failures, and the algorithm has a
certain level of robustness against failures in the object sensor module.

In addition to the analysis of errors in detection in object access, we checked errors
in object recognition. Misrecognition shown in Table 5 represents an inappropriate
switching of false positive and false negative. We considered that a false positive and
a false negative is switched inappropriately when they occured within a maximum of 1
s. The number of misrecognition is small, and it is not possible to discuss the property
of our method against misrecognition quantitatively. The system assumes human input
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Table 5: Failures in wizard’s inputs.
Subjects A B C D E

# of false positive 15 9 2 10 9
# of collect input 176 199 143 164 163
# of total input 191 208 145 174 172

# of false negative (missing touch) 50 47 11 11 34
# of false negative (missing release) 52 44 11 11 33
# of misrecognition 1 2 0 1 1

Table 6: Comparison of number of false positive inputs and displaying false sub-tasks
caused by false positive inputs.

Subjects A B C D E

Type Actual Location Input Disp. Input Disp. Input Disp. Input Disp. Input Disp.

Touch on the table 6 2 1 0 0 0 1 1 2 2
in hand 1 0 3 0 1 0 4 3 3 0

Release on the table 7 3 2 0 0 0 1 0 2 1
in hand 0 1 3 0 1 0 4 2 2 0

during assistance to avoid cumulative error in progress tracking; thus, it is difficult to
evaluate the system in an off-line simulation without modeling human behavior during
the assistance. Therefore, quantitative analysis of misrecognition will be a focus of
future work. In this paper, we only discuss the qualitative aspect of misrecognition
errors.

In the experiment with subject A, an unforeseen “soup spoon” tool was misrecog-
nized as a tablespoon. This led the system in a correct direction, and no failure was
caused by this misrecognition. When subject B used the system, a rice paddle was
switched to rice. This occurred due to the similarity of the related scenes. Both rice
and rice paddle are related to similar sub-tasks, and this did not cause a failure in the
displayed information. In the same trial, ginger was misrecognized as lettuce. This ap-
pears to be due to the arrangement of buttons in the wizard’s interface. Different from
the above misrecognition cases, this error disturbed the context and this error cannot
led the system to a correct direction. Despite such out-of-context error, the system was
not deceived. Misrecognitions in the trial with subjects D and E were both related to a
label of mixture of materials, i.e., switching a mixture to a ladle, or starch to a mixture.
These errors caused errors in display of sub-tasks. It seems that an access to mixture
of materials indicates the cooking progress strondly; thus, misrecognition of a mixture
of materials appears to affect more than misrecognition of a single material. Employ-
ing more sophisticated scoring rules than those shown in Table 1 can be a solution to
improve robustness against these kind of errors. This also remains future work.
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5.4 Discussion
A problem with maintaining V− is identifying the progress state of the task. Schneider
modeled progress transition using a DBN to simulate a cooking activity (Schneider,
2009). A set of cooking tasks was modeled by a randomly generated DBSs. In DBNs,
each node corresponds to one progress state, and in their experiments, the number of
nodes in DBN was 100, which is clearly too small to simulate a real cooking activity.

The progress state V− can be coded as a binary assignment of a completion label to
each v ∈ V , namely label(v) = 1 if v ∈ V− and vice versa. According to the method to
calculate the number of possible progress states in G shown in Appendix B, there are
376 and 2940 different progress states in the ginger soup (Fig. 8) and fried rice (Fig. 9)
graphs, respectively . Note that it is difficult to treat such a large number of states for a
probabilistic graphical model, such as a DBN.

Rather than considering the probability in such a large-scale state space, we mod-
eled the progress as a definite context V+, and expanded it to Vb and V f to deal with
the uncertainty of human activity. This expansion strategy provided a good scope to
accurately search and track the the progress state in the large-scale state space.

Besides the number of nodes, there are many edges that represent transitions from
one state to another. In a real human activity, a worker select transitions along with
many biases unconsciously. The objects in hand are a type of bias, and this bias is fully
utilized in our method. Another bias is the structure of graph G. For example, in theory,
the user can execute sub-task c in Fig. 2 after finishing sub-task a, but it is more likely
that the user will execute sub-task b, which is the next sub-task on the same path as
sub-task a. This bias is reflected in our system as the preliminarily defined order of the
sub-tasks provided by R. Note that this order is not random; it holds some regularity
along each path. This helps the system predict the forthcoming sub-task when there
is no indication from object access. The proposed method worked successfully in real
human activity because it considers these biases.

6 Conclusion
In this paper, we have proposed an intention-sensing interface for guiding cooking
recipes. The system senses intention via the user accessing objects. Touching and
releasing actions occur naturally in human activity; therefore, such actions can be a
solution to assist humans performing sophisticated physical tasks organized by many
sub-tasks in a workflow. The technical problems for utilizing object access are decep-
tive access and the use of unanticipated tools, both of which occur frequently in actual
human activities. We have focused on such human factors, and developed an algorithm
that is robust to deceptive access and unanticipated tools.

In experiments, we first compared the intention-sensing accuracy with two different
recipes, i.e., ginger soup, which has unique object set Oi

v for any v ∈ V , and fried rice,
which has some sub-tasks that share the same set of objects as Oi

v. To remove the
human factors of deceptive accesses and unanticipated tools, we strongly restricted
human activity in the first experiment. The former recipe was guided precisely by the
system when there were no deceptive accesses or unforeseen tools. The latter recipe,
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which was expected to be more difficult to guide, was also guided precisely in the
first experiment. As a result, we can confirm that our algorithm has a certain level of
robustness against recipe complexity while identifying the intended sub-tasks.

The second experiment was performed with natural human activity, i.e., we did not
restrict subject activity. Rather, we laid out the situation to provoke unexpected activity.
We used the fried rice recipe for this experiment because it is a more complex recipe.
As a result, the sub-tasks were displayed with 73.6% accuracy on average for subjects
A to E. From a human-computer interaction perspective, the number of operation by
the subject is a direct criteria to evaluate the system performance. In the experiments,
four subjects needed to input only two manual operations at most, and three, five, and
nine times for subjects G, F, and C respectively, while guiding fried rice recipe that has
30 sub-tasks.

In this study, we designed the intention-sensing functionality based on accessing
objects. Note that there are several options to enhance this functionality. First, the
location and posture of the hand (Song et al., 2013) and those of objects are impor-
tant for human intention estimation. This should eliminate deceptive accesses and im-
prove the accuracy of the proposed system. Second, it will allow the system to predict
user intension earlier and possibly more accurately to replace touch detection by touch
forecasting through gaze estimation (Nakazawa & Nitschke, 2012), grabbing motion
estimation (Prasad, Kellokumpu, & Davis, 2006), or observing activity with a wrist-
mounted camera (Ohnishi, Kanehira, Kanezaki, & Harada, 2015). Testing the system
with such options remains a focus of future work.

There are many additional topics to be studied because our system is a pilot system.
First, we must develop an object sensor for different tasks. The writing cost of recipes
in the workflow graph representation is another topic. Some studies have attempted
to extract the structure of sub-tasks automatically from traditional text recipes (Mori,
Maeta, Yamakata, & Sasada, 2014). In addition, the recommendation function should
be further investigated to obtain higher usability. Last, to detect the completion of
sub-tasks at a practical cost, we must consider other effective indicators in addition to
object access. All of these tasks remain future work.

A Algorithm to assign materials to each node in work-
flow

Let G(V, E) be a digraph representing a recipe workflow. Consider a sub-task v as a
process that receives one or more materials as input and outputs one material. The
input materials correspond to Om

v , and om
v denotes the output material from v ∈ V .

When v is a leaf node, we manually assign Om
v (A to a and B to c in Fig. 2).

Otherwise, Om
v is obtained as a set of outputs from nodes that have an out-edge to v.

Let ui be a node that is adjacent to v by v’s i-th in-edge {ui, v} ∈ E. When v has
only one in-edge (thus, i is always 0), Om

v consists of only one unique element. We use
the same label for a material as long as they are not mixed with other materials; thus,
om
v is equal to the unique element in Om

v . When v has several in-edges (d in Fig. 2),
Om
v contains several materials and om

v is obtained as the mixture of those materials, i.e.,
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om
v = Om

v = ∪ui o
m
ui

(at d in Fig. 2, Om
d = {A, B} and it becomes the unique input element

at e, i.e., {{A, B}} = Om
e ).

This definition is compatible with systems that can track materials over sub-tasks
(Hashimoto et al., 2010), or those driven by RFID in an assembly context.

B Number of possible progress states in a flexible recipe
Let G(V, E) be a directed graph representing the workflow of a recipe, where v ∈ V
corresponds to a sub-task and {u, v} ∈ E is a directed edge. A sub-task u must be
completed to begin v if {u, v} ∈ E.

To count the possible progress states (PPSs), we consider a local progress state
around v;

Nv = {u | {u, v} ∈ E} (4)

S (v) =

{l(u) | u ∈ Nv} Nv , ϕ
ϕ Nv = ϕ,

(5)

where l(u) = {0, 1} is a Boolean variable indicating the completion of sub-task u (l(u) =
1 for u’s completion). v is ready to be executed if all Boolean variables in S (v) are true
(or S (v) = ϕ).

For simplicity, we assume that G is a tree. This assumption is true for most recipes.
We note that the following estimation will not decrease drastically even if there are a
few acyclic closed paths in G. Let us consider subtree Gv cut from G by node v, i.e.,
a subgraph induced from v and all ancestor nodes of v. Then, the number of PPSs in
subtree Gv is counted by function #(S (v)) as

#(S (v)) =

1 + Πu∈Nv#(S (u)) Nv , ϕ
2 Nv = ϕ,

(6)

where 1 is added to count the following two cases differently, i.e., the cases where v
is ready but not completed, and where v has been completed. The same cases are also
counted when Nv = ϕ.

The total number of PPSs in G is obtained as #(S (vt)), where vt is the sink node
of workflow graph G. Due to the direct product property of Eq. (6), #(S ) increases
combinatorially at each conjunction on the workflow G; thus, it cannot be treated by
general DBN models.
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