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Frog Babina holsti as Revealed by Mitochondrial DNA
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1Department of Natural Sciences, Faculty of Education, University of the Ryukyus, Senbaru 1, Nishihara, 
Okinawa 903-0213, Japan

2Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
3Yambaru Wildlife Conservation Center, Ministry of the Environment,
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We surveyed the genetic diversity and genetic differentiation of an endangered frog, Babina holsti, 
endemic to Okinawajima and Tokashikijima Islands of the Ryukyus, to elucidate its divergence 

history and obtain basic data for its conservation. Genetic differentiation between the two island 

lineages is moderate (3.1% p-distance in the cyt b gene). This result suggests that the two island 

lineages have been isolated between the late Pliocene and the middle Pleistocene and have never 

migrated between the current northern part of Okinawajima and Tokashikijima Islands, which were 

once connected in the late Pleistocene glacial age. On Okinawajima Island, the southernmost sam-

ple was constituted by a unique haplotype, without considerable genetic distance from haplotypes 

detected from northern samples. This unique haplotype composition in the southernmost sample 

would have resulted from the restricted gene flow between the southernmost population and the 

other populations in Okinawajima Island. Furthermore, the absence of genetic diversity within the 

southernmost sample indicates that this population has recently experienced population size 

reduction, possibly by predation pressure from an introduced mongoose, which is more abundant 

in the southern part than in the northern part of the island. Lower genetic diversity in the 

Tokashikijima sample implies a small effective population size for mitochondrial DNA (mtDNA) in 

B. holsti on the island. Immediate conservation measures should be taken for the populations from 

the southernmost range in Okinawajima and Tokashikijima.
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INTRODUCTION

Island populations of nonvolant animals sometimes 

show higher genetic differentiation among populations from 

different islands (Matsui et al., 2005) and lower genetic 

diversity within each island than continental populations 

(Iguchi and Nishida, 2000). In particular, in animals such as 

amphibians with generally low dispersal and low migration 

ability beyond saltwater barriers (Duellman and Trueb, 1986; 

Inger and Voris, 2001), genetic variations would be strongly 

affected by vicariance (Ota, 2000; Tominaga et al., 2010). 

Because of this unique trait, amphibians offer a good oppor-

tunity to investigate historical biogeography of insular 

regions (Vences et al., 2003), while they raise problems of 

local extinction in island environments. Thus, investigation of 

the genetic diversity and differentiation of island amphibians 

provides important information for historical biogeography 

and conservation biology in insular regions.

Babina holsti is an endemic frog of the Ryukyu 

Archipelago with a very limited distribution, being restricted 

to the northern part of Okinawajima Island and the adjacent 

small islet Tokashikijima Island (Maeda and Matsui, 1999). 

These two islands were originally connected before the early 

Pleistocene (ca. 1.5 MYA), but began to separate from each 

other in the middle Pleistocene (ca. 1.3–0.85 MYA), and 

were reconnected by a land bridge in the late Pleistocene 

(ca. 0.20–0.01 MYA) (Kamiya, 1984; Kimura, 2003; Iryu et 

al., 2006). Thus, we can propose three alternative hypothe-

ses about the formation of the current disjunct distribution of 

this frog. First, we hypothesize that this frog was present in 

the area of the current Okinawajima and Tokashikijima 

Islands prior to their first separation in the middle Pleisto-

cene, and that the two isolated populations have survived on 

these two islands to date. Second, we can alternatively 

hypothesize that this frog occurred on one of the two islands 

and expanded its range to another in the late Pleistocene 

glacial age (ca. 0.20–0.01 MYA) when the land bridge con-

nected the two islands. Thirdly, we also hypothesize that two 

lineages had been separated by some vicariant events in 

the middle Pleistocene and that their ranges secondarily 

overlapped via the land bridge in the late Pleistocene glacial 

age. From the first hypothesis, we can expect high genetic 

divergence between the two island samples, while from the 

second hypothesis, we can expect low genetic divergence 

between them. From the third hypothesis, we can expect 
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genetically highly diverged lineages to coexist on one or both 

islands. In this study, we surveyed genetic differentiation 

among samples of this frog using mitochondrial DNA (mtDNA) 

sequences and estimated the divergence time between 

mtDNA lineages to clarify the divergence history of this spe-

cies and the formation of its current disjunct distribution.

Babina holsti is thought to be a high risk of extinction 

and has been protected by law from illegal collection. On 

Okinawajima Island, the distributional range of this frog was 

estimated to have decreased in past decades (Toyama, 

1995). This situation would lead to limited migrations among 

locally isolated populations (Hitchings and Beebee, 1997) 

and decreased genetic diversity within this species. However, 

details of geographic genetic variation and diversity in this 

species have not previously been surveyed. In this study, we 

clarified the current genetic geographic structure and eluci-

dated the evolutionary significant units (ESUs, Ryder 1986) 

for efficient conservation of this endangered species.

MATERIALS AND METHODS

Sampling

Tissues from a total of 74 individuals of B. holsti were collected 

by toe (for metamorphs) or tail (for larvae) clipping methods from 10 

sampling localities representing the current distributional range of B. 
holsti (Fig. 1; Table 1). A set of individuals from a sampling locality 

is called a sample. Each one individual of a sister species B. 
subaspera from Amamioshima and Kakeromajima Islands, respec-

tively, was added to the phylogenetic analyses. These were col-

lected before April 19, 2005, before the species was listed as a 

protected species. Two other species of the genus Nidirana (N. 
okinavana from Southern Ryukyu and N. adenopleura from Taiwan) 

were added as outgroup taxa. The genus Nidirana was originally 

designated as a subgenus of Rana by Dubois (1992) and was ele-

vated to a generic rank by Chen et al. (2005). However, Frost et al. 

(2006), without actual comparisons, synonymized Nidirana with 

Babina. Although subsequent molecular studies proved monophyly 

of Nidirana and Babina, morphological and ecological synapomor-

phies listed from literature by Frost et al. (2006) are not convincing 

and require further studies. Therefore, in this study, we use the 

generic name Nidirana for species okinavana and adenopleura, fol-

lowing some previous authors (Matsui, 2007; Cuaynkern et al., 

2010), although the use of Babina is now becoming popular simply 

for the sake of convenience in referencing database.

Sequencing

Ethanol-preserved tissues were homogenized in 0.6 mL of STE 

buffer containing 10 mM Tris/HCl (pH 8.0), 100 mM NaCl, and 1 mM 

EDTA (pH 8.0). In total, 60 μL of 10% SDS solution and 6 μL of Pro-

teinase K (0.1 mg/mL) were added to the homogenate solutions and 

digested proteins for 12 h at 36°C. The solution was treated with 

phenol and chloroform/isoamyl alcohol, and DNA was precipitated 

with ethanol. DNA precipitates were dried and dissolved in 1 mL of 

TE [10 mM Tris/HCl, 1 mM EDTA (pH 8.0)], and 1 μL was subjected 

to polymerase chain reaction (PCR).

For PCR amplification, the primers Cytb_F1_Rana (5′-ACAAA-

CAWAATTCYGCWATCATRTGTTTCT-3′) and Cytb_R2_Rana (5′-
CTTTMAGAAGYTTATTTTCTAGGAGGCC-3′), which were newly 

designed for the cyt b gene of frogs, were used. The reaction con-

ditions were initial heating at 94°C for 4 min; 35 cycles of 94°C (30 

s), 55°C (30 s), and 72°C (1.5 min); and a final extension at 72°C 

for 7 min. The amplified DNA fragments were purified using poly-

ethylene glycol (PEG, 13%). Cycle-sequencing reactions were per-

formed using the ABI PRISM Big Dye Terminator v3.1 Cycle 

Sequencing Kit (Applied Biosystems) using the primers described 

above and two newly designed primers: Cytb_F2_Rana (5′-
TTCAGTSGAYAACGCCACCCTCACCCG-3′) and Cytb_R1_Rana 

(5′-TCCTYCACCAAACKGGMTCWTCYAACC-3′). Following this, 

sequencing was performed on ABI 3100 or ABI 3130 automatic 

sequencers. New sequences of cyt b that were obtained were 

deposited in GenBank (Accession number: AB826407–AB826435). 

Alignment of data from all individuals was performed using the 

Clustal option in the BioEdit software (Hall, 1999).

Phylogenetic analysis

Phylogenetic trees were constructed by maximum parsimony 

(MP), Bayesian inference (BI), and maximum likelihood (ML) meth-

Fig. 1. Map of Okinawa showing current (gray) and past (halftone 

dot) distributional ranges of Babina holsti and sampling locations in 

this study.

Table 1. Sample number, name, number of individuals, number of haplotypes, genetic diversity indices, and haplotypes observed in each 

sample.

Sample
No.

Sample
Name

N of
individuals

N of
haplotypes

Haplotype
diversity

Nucleotide
diversity

H
01

H 
02

H 
03

H 
04

H 
05

H 
06

H 
07

H 
08

H 
09

H 
10

H 
11

H 
12

H 
13

H 
14

H 
15

H 
16

H 
17

H 
18

H 
19

H 
20

H 
21

H 
22

H 
23

H 
24

H 
25

1 Oku1 5 3 0.70 ± 0.22 0.0018 ± 0.0014 1 1 3

2 Oku2 8 4 0.79 ± 0.11 0.0044 ± 0.0028 1 3 1 3

3 Nishimei 12 7 0.89 ± 0.06 0.0054 ± 0.0031 1 3 1 1 2 1 3

4 Benoki 13 8 0.94 ± 0.04 0.0052 ± 0.0030 2 2 1 1 2 1 2 2

5 Okuni 4 3 0.83 ± 0.22 0.0026 ± 0.0021 1 1 2

6 Okuma 1 1 – – 1

7 Yonaha 8 4 0.79 ± 0.11 0.0019 ± 0.0014 3 1 1 3

8 Nuha 10 1 0.00 ± 0.00 0.0000 ± 0.0000 10

9 Oganeku 1 1 – – 1

10 Tokashiki 12 2 0.53 ± 0.08  0.0005 ± 0.0005 7 5
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ods. The optimum substitution models for each partition were 

selected by Kakusan4 (Tanabe, 2011) based on the Akaike infor-

mation criterion. For ML analysis, TN93 (Tamura and Nei, 1993) +I, 

HKY85 +I, and GTR +I were selected as the optimal models for the 

first, second, and third codon positions of the cyt b gene, respec-

tively. The ML tree was searched using TREEFINDER ver. Oct. 

2008 (Jobb et al., 2004; Jobb, 2008) and Phylogears2 (Tanabe, 

2008) through 100 trials of the likelihood ratchet method (Vos, 

2003). For Bayesian analyses, K2P (Kimura, 1980) +I, HKY85 

(Hasegawa et al., 1985), and GTR (Rodriguez et al., 1990) +I were 

selected as the best substitution model for the first, second, and 

third codon positions of the cyt b gene, respectively. Bayesian anal-

ysis was conducted using MrBayes software v3.1.2 (Huelsenbeck 

and Ronquist, 2001). Two independent runs of four Markov chains 

were conducted for 5 million generations in Bayesian analyses. The 

MP tree was constructed using PAUP* 4.0b10 (Swofford, 2002). MP 

phylogenies were estimated using the heuristic search algorithm for 

each tree-building methodology. Hundred random taxon addition 

replicates were used for all analyses to minimize the effect of entry 

sequence on the topology of the resulting cladogram. Analyses 

were conducted using accelerated character transformation 

(ACCTRAN) optimization and tree bisection–reconnection (TBR) 

branch swapping, with characters unordered and equally weighted. 

For ML and MP analyses, nonparametric bootstrap (bs) analysis 

(Felsenstein, 1985) with 1,000 replicates was used. Branches with 

bs values of 70% or higher were regarded as sufficiently resolved 

(Huelsenbeck and Hillis, 1993). For Bayesian analysis, posterior 

probabilities (bpp) were used as an indicator of node credibility, and 

those 95% or higher were considered significant (Leaché and 

Reeder, 2002).

Network 4.6 (Foster et al., 2007) was used to compute the 

median joining network (Bandelt et al., 1999) based on default set-

tings.

Calculation of genetic distance and estimation of divergence 

time

Genetic distances were calculated using the mean genetic p-

distance for pairwise combinations of haplotypes using MEGA, ver-

sion 4 (Tamura et al., 2007). To estimate divergence times, the 

Bayesian method using BEAST ver. 1.6.2 (Drummond and 

Rambaut, 2007) was applied. Because no known calibration points 

exist, two different substitution rates were used as the substitution 

rates of cyt b evolution for genus Rana [1.0%/MY (Vences et al., 

2013); 3.6%/MY (Babik et al., 2004)]. BEAST analyses were per-

formed using the strict clock model under the HKY + G model of 

sequence evolution, and the topology obtained from ML analyses 

was used as a starting tree. Default prior distributions were used for 

all other parameters, and analyses were run for 50 million genera-

tions, sampling every 1000 generations. Suitable burn-in and con-

vergence of parameters were determined using Tracer ver. 1.5 

(Rambaut and Drummond, 2007), and the first 3 million generations 

were discarded as burn-in.

Genetic diversity and genetic differentiation

Haplotype diversity (h) and nucleotide diversity (π, based on 

pairwise differences) values were calculated in each sample con-

sisting of more than two individuals using the ARLEQUIN3.1 soft-

ware (Excoffier et al., 2005). The data set was tested for population 

subdivision by two different approaches using ARLEQUIN3.1 

(Excoffier et al., 2005). First, the population pairwise fixation indices 

FST were calculated and their significances were tested by a 

nonparametric permutation approach with 1,000 permutations of 

haplotypes among sampling localities. Second, an exact test of pop-

ulation differentiation (Raymond and Rousset, 1995) was conducted 

for comparisons of haplotype frequencies among samples.

RESULTS

In total, 25 cyt b haplotypes were recognized in B. holsti
and two were recognized in B. subaspera. For 29 haplo-

types including the outgroup taxa, phylogenetic analyses 

were conducted using the 1,085 sites of the partial cyt b
gene; 254 of these sites were variable and 56 were parsi-

mony-informative. MP analysis yielded more than 10,000 

equally most parsimonious trees [L = 1,124 steps, retention 

index = 0.889, and consistency index = 0.894]. ML analysis 

generated a topology with lnL = −2,667.63188. The mean 

lnL score of Bayesian analyses for all trees sampled at sta-

tionarity was −2,720.81. All three phylogenetic analyses 

yielded essentially identical topologies, and only an ML phy-

logeny is shown in Fig. 2. Monophyly of B. holsti and B. 
subaspera was strongly supported in all trees (92%, 1.00, 

and 100% support in MLbs, bpp, and MPbs, respectively). 

Within the two species of Babina, two haplotypes of B. 
subaspera are separated from 25 haplotypes of B. holsti 
with moderate support values for each species (88%, 0.97, 

and 100% for B. subaspera; 81%, 0.61, and 94% for B. 
holsti). Babina holsti was divided into two main lineages: 

one consisting of two haplotypes observed in the sample 

from Tokashikijima (95%, 1.00, and 100%) and the other 

consisting of 23 haplotypes found only in the Okinawajima 

samples (73%, 0.61, and 91%).

The mean ± standard deviation (SD) of the uncorrected 

p-distances was 5.0 ± 0.6% between B. holsti and B. 
subaspera and 3.1 ± 0.5% between the Tokashikijima and 

Okinawajima lineages. The maximum uncorrected p-

distance among 23 haplotypes of the Okinawa lineage was 

Fig. 2. Maximum likelihood phylogram of 1085 bp of the mitochon-

drial cytochrome b gene for haplotypes of Babina holsti and its 

related species. Numbers preceded by “H” indicate haplotype num-

ber. Nodal Numbers represent ML bootstrap supports/ Bayesian pos-

terior probability/ MP bootstrap supports. Asterisks indicate 100% 

bootstrap support values or 1.00 Bayesian posterior probabilities.
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1.1%. The mean divergence times with 95% credibility inter-

val (CI) were 6.53 MYA (4.76–8.32 MYA) between B. holsti
and B. subaspera and 3.4 MYA (2.38–4.60 MYA) between 

two lineages of B. holsti based on the 1.0%/MY substitution 

rate, while they were 1.81 MYA (1.33–2.32 MYA) and 0.96 

MYA (0.65–1.28 MYA), respectively, based on 3.6%/MY 

substitution rate.

The genetic structure in each sample is summarized in 

Table 1. The overall nucleotide diversity (π ± SD) was 

0.01120 ± 0.00154, and that for all individuals from 

Okinawajima was 0.00388 ± 0.00039. In many cases, two or 

more different haplotypes were found from each sample of 

Okinawajima Island and several haplotypes were shared by 

two or more samples (Fig. 3; Table 1). However, sample 8 

from the southernmost limit of the range in Okinawajima had 

only one haplotype, and sample 10 from Tokashikijima had 

only two haplotypes. The π values in these two samples 

(mean: 0–0.000489) were lower than those in other samples 

(mean: 0.001843–0.005418) (Table 1).

The results of the test for sample differentiation are 

shown in Table 2. Both FST and the result of exact tests sug-

gest significant differentiation in various combinations of sam-

ples. In particular, the southernmost sample in Okinawajima 

(sample 8) had a unique haplotype, which was shared by only 

the neighboring sample 9, and showed significant differentia-

tions from the other samples of Okinawajima.

DISCUSSION

Genetic differentiation between island lineages

Our results indicate monophyly of each of the 

Tokashikijima and Okinawajima lineages of B. holsti, 
although the support for the latter lineage was insufficient in 

Bayesian analysis. The mean genetic distance between the 

two lineages from different islands is moderate (3.1%). Iwai 

and Shoda-Kagaya (2012) surveyed the population struc-

ture of B. subaspera, the sister species of B. holsti, using 

the mitochondrial cytochrome c oxidase subunit I (CO I) 

gene and revealed low genetic diversity (π = 0.00136 ±
0.0003). The maximum p-distance among 

seven haplotypes of B. subaspera is calculated 

as 0.4% (vs. 1.1% among 23 haplotypes of the 

Okinawajima lineage and 3.4% among 25 haplo-

types of B. holsti in the cyt b gene). Because the 

substitution rate of the cyt b gene is closely com-

parable with that of the CO I gene (Kakehashi et 

al., 2013), it is possible that the degree of 

genetic diversity is much greater in B. holsti
than in B. subaspera. The estimated diver-

gence time between lineages from the two 

islands of B. holsti is also considerable (mean =

3.1 MYA in the late Pliocene based on 1.0% 

divergence/MY and 0.96 MYA in the middle 

Pleistocene based on 3.6% divergence/MY). 

Because the rate of 3.6% divergence/MY is 

much higher than the rates proposed for other 

vertebrates (Babik et al., 2004), the actual 

divergence time of the two island lineages 

seems to be around the late Pliocene. This 

result supports our first hypothesis and indi-

cates that B. holsti was present in an area 

including both the current islands before the for-

mation of the Pleistocene land bridge.

Several amphibian species are distributed 

on both these islands. Tominaga et al. (2010) 

revealed that the samples of Cynops ensicauda
from the two islands shared several haplotypes, 

indicating that the species migrated between 

Fig. 3. Haplotype network tree based on median joining network method for the 

cytochrome b haplotypes of Babina holsti. The size of each circle represents haplo-

type frequency. Black circles indicate missing haplotypes. The color of each circle 

corresponds to sampling locality on the map.

Table 2. Pairwise fixation indices (FST; above diagonal) and P values for exact test (Raymond and Rousset, 1995; below diagonal) for sam-

ples of Babina holsti. Samples with N < 3 were omitted. *: differentiation is significant (P < 0.05).

1: Oku1 2: Oku2 3: Nishimei 4: Benoki 5: Okuni 7: Yonaha 8: Nuha 10: Tokashiki

1: Oku1 0.3393* 0.1079 0.0675 0.0625 0.1329 0.7740* 0.9720*

2: Oku2 0.014 ± 0.001* 0.1629* 0.1233* 0.2063 0.2138* 0.3277* 0.9314*

3: Nishimei 0.231 ± 0.006 0.013 ± 0.001* –0.0095 –0.0006 0.0509 0.2067* 0.9067*

4: Benoki 0.013 ± 0.001* 0.070 ± 0.003 0.147 ± 0.004 –0.0204 0.021 0.1908* 0.9056*

5: Okuni 0.085 ± 0.003 0.027 ± 0.002* 0.028 ± 0.003* 0.034 ± 0.002* 0.0331 0.6002* 0.9694*

7: Yonaha 0.393 ± 0.005 0.103 ± 0.004 0.049 ± 0.003* 0.063 ± 0.004 0.030 ± 0.001* 0.4796* 0.9656*

8: Nuha 0.000 ± 0.000* 0.000 ± 0.000* 0.000 ± 0.000* 0.000 ± 0.000* 0.001 ± 0.000* 0.000 ± 0.000* 0.9910*

10: Tokashiki 0.000 ± 0.000* 0.000 ± 0.000* 0.000 ± 0.000* 0.000 ± 0.000* 0.001 ± 0.000* 0.000 ± 0.000* 0.000 ± 0.000*
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Tokashikijima and Okinawajima in the last glacial age. In 

contrast, a high genetic differentiation between the 

Tokashikijima and Okinawajima lineages of B. holsti indi-

cates that there was no migration between Okinawajima and 

Tokashikijima lineages of this species when the two islands 

were connected by a land bridge in the last glacial age, not 

favoring our second hypothesis. The fact that these two lin-

eages are allopatrically distributed with each other and do 

not coexist on both islands indicates that the third hypothe-

sis is not supported.

However, other considerations are necessary. Fossils of 

B. holsti have been detected from the layer approximately 

32,000–20,000 YA from the southern part of Okinawajima 

(Hasegawa, 1980; Nakamura and Ota, 2009). This region is 

thought to have been submerged in the middle Pleistocene 

(ca. 0.85 MYA) and to have emerged in the early late Pleis-

tocene (ca. 0.41 MYA) (Iryu et al., 2006). Thus, the popula-

tion extinguished in the southern part of Okinawajima must 

have migrated to there from the northern part of this Island 

and/or Tokashikijima Island after 0.41 MYA. The possibility 

that the migration from Tokashikijima through land formation 

in the glacial ages is not precluded. Honda et al. (2012) sur-

veyed the genetic differentiation of Echinotriton andersoni 
and showed that the samples from the southern part of 

Okinawajima are closer to Tokashikijima 

samples than to the northern Okinawajima 

samples. Similarly, in Microhyla okinaven-
sis, individuals from southern Okinawajima 

are reported to be closer to individuals 

from Kumejima Island, which is located in 

the west off Okinawajima Island, than to 

individuals from northern Okinawajima 

(Matsui et al., 2005). These studies 

indicate that several amphibians in the 

southern part of Okinawajima have 

migrated between western small islets 

rather than northern Okinawajima in the 

late Pleistocene glacial age. Thus, the pos-

sibility remains that the extinct population 

of B. holsti in the southern part of 

Okinawajima is related to the present 

Tokashikijima population (represented by 

sample 11). To determine whether this is 

the case, detailed morphological compari-

son of fossil and extant specimens as well 

as the development of fossil DNA analysis 

is required.

Genetic diversity within samples

In the present study, two southern 

samples (samples 8 and 9) showed a low 

genetic diversity within Okinawajima. The 

southernmost sample (sample 8) con-

tained only one haplotype, which is unique. 

The sample 8 showed significant differen-

tiations from samples from northern range 

on the Okinawajima. These results indicate 

samples 8 and 9 belong to a same popu-

lation (hereafter referred as the southern 

population), that were diverged from the 

northern population containing samples 1–

7. A distributional survey of B. holsti conducted by Okinawa 

Prefecture (2013) revealed that the southern population (rep-

resented by samples 8 and 9) is largely isolated from the 

northern population (represented by samples 1–7) (Fig. 4). 

The existence of a unique haplotype in the southern samples 

without considerable genetic distance from haplotypes from 

the northern samples indicates that the gene flow between 

the southern and northern population on Okinawajima Island 

was originally restricted. Furthermore, the absence of 

genetic diversity within the southern samples indicates that 

the southern population has recently experienced population 

size reduction by the degradation of intervening habitats and 

possible predation by invasive predators, such as mongoose.

Because the exotic mammal mongoose (Herpestes 
auropunctatus) preys upon small vertebrates, including B. 
holsti, and is more abundant in the southern range than in 

the northern range of this frog in Okinawajima (Ministry of 

the Environment Government of Japan, 2012), it is likely that 

predation pressures by the mongoose have accelerated fur-

ther decreasing genetic diversity in the southern population 

of the island, which would already have little chance of gene 

flow between the northern population.

Several alternative environmental variables such as 

human population density, forest cover, precipitation levels, 

Fig. 4. Estimated distributional range and frequency of Babina holsti observed. Size of 

mesh is set as 1.15 km2 (latitudinal width: 1249 m × longitudinal width: 923 m). Data mod-

ified from Okinawa Prefecture (2013).
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breeding site availability, and road density may also affect 

the distribution and density of B. holsti. However, none of 

the alternative variables apear to differ significantly between 

the current southern and northern distributional areas of this 

frog on Okinawajima. For strict assessment of the effects of 

these variables, including the presence/absence of mon-

goose, on the distribution and density of B. holsti, statistical 

analyses with respect to the relationships between them are 

required.

These results also showed a lower genetic diversity in the 

Tokashikijima sample (sample 10). Although further investiga-

tions are required for detailed evaluation of the genetic diver-

sity and demography of B. holsti on this island, as tissues 

could only be collected from one locality, our field observation 

indicates lower density of this species on this island than on 

Okinawajima. Furthermore, the range of this species on this 

island is much smaller than that on Okinawajima; thus, the 

current low genetic diversity in the sample may have 

resulted from a past or current small population size.

Conservation of Babina holsti
The distributional range of B. holsti in Okinawajima has 

become narrower in this half century because of habitat 

destruction and possibly by the effect of predation by inva-

sive species. Seventy years ago, this frog was found in two 

or three times larger areas than the present range (Toyama, 

1995). Distributional assessment conducted by Okinawa 

Prefecture (2013) and the Ministry of the Environment 

Government of Japan (2012) indicates that the current dis-

tribution of B. holsti is fragmented, and this fragmentation 

appears to have affected the current genetic geographic pat-

tern. Because our data are based on limited samples and 

single genes, further analyses are required to elucidate the 

detailed genetic structure of this species. However, because 

Fst values between the southernmost sample and more 

northern samples are relatively high, it is possible that this 

species has low migration ability where its habitat is frag-

mented. For conservation of the southern population, recov-

ery of the suitable habitat and eradication of mongoose at 

the range separated from the northern populations are nec-

essary to maintain the metapopulations.

A moderate (3.1% in p-distance) genetic differentiation 

between the two island lineages suggests that they are inde-

pendent ESUs (Ryder, 1986) that should be treated as dif-

ferent conservation units. The Tokashikijima lineage showed 

distinct and uniform genetic properties, indicating a long, 

independent divergence history on the island, which has 

only a small population capacity. Thus, a more intensive 

study and conservation measures of this island population 

are urgently required.

ACKNOWLEDGMENTS

We acknowledge N. Yoshikawa and N. Kuraishi for assistance 

of laboratory works. We also thank S. Abe, S. Matsuda, Y. Nakamura, 

H. Ota, R. Tabuki, and M. Toda for kind assistance throughout the 

study. Individuals of Babina holsti were collected under the permis-

sion no. 12 from Okinawa Prefectural Board of Education. This work 

was partly supported by a fund from the financial group for the sup-

port of University of the Ryukyus.

REFERENCES

Babik W, Branicki W, Sandera M, Litvinchuk S, Borkin LJ, Irwin JT, 

Rafinski J (2004) Mitochondrial phylogeography of the moor 

frog, Rana arvalis. Mol Ecol 13: 1469–1480

Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for 

inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48

Chen L, Murphy RW, Lathrop A, Ngo A, Orlov NL, Ho T, Somorjai I 

(2005) Taxonomic chaos in Asian ranid frogs: an initial phyloge-

netic resolution. Herpetol J 15: 231–243

Chuaynkern Y, Ohler A, Inthara C, Duengkae P, Makchai S, 

Salangsingha N (2010) A revision of species in the subgenus 

Nidirana Dubois, 1992, with special attention to the identity of 

specimens allocated to Rana adenopleura Boulenger, 1909, 

and Rana chapaensis (Bourret, 1937) (Amphibia: Anura: 

Ranidae) from Thailand and Laos. Raffles Bull Zool 58: 291–

310

Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary 

analysis by sampling trees. BMC Evol Biol 7: 1–8

Dubois A (1992) Notes sur la classification des Ranidae (Amphibiens

Anoures). Bull Mens Soc Linn Lyon 61: 305–352

Duellman WE, Trueb L (1986) Biology of Amphibians. Johns 

Hopkins Press, London

Excoffier L, Schneider S (2005) Arlequin (ver. 3.0): an integrated 

software package for population genetics data analysis. Evol 

Bioinform Online 1, 47–50

Felsenstein J (1985) Confidence limits on phylogenies: an approach 

using the bootstrap. Evolution 39: 783–791

Forster M, Forster P, Watson J (2007) Network version 4.2.0.1: A 

software for population genetics data analysis. 4.2.0.1 ed: 

Fluxus Technology Ltd 1999–2007

Frost DR, Grant T, Faivovich J, Bain RH, Haas A, Haddad CFB, et 

al. (2006) The amphibian tree of life. Bull Amer Mus Nat Hist 

297: 1–370

Hall TA (1999) BioEdit: a user-friendly biological sequence align-

ment editor and analysis program for Windows 95/98/NT. 

Nucleic Acids Symp Ser 41: 95–98

Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape 

splitting by a molecular phylogenetics. J Mol Evol 22: 160–174

Hasegawa Y (1980) Notes on vertebrate fossils from late Pleisto-

cene to Holocene of Ryukyu Islands, Japan. Quat Res 18: 263–

267

Hitchings SP, Beebee TJC (1997) Genetic substructuring as a result 

of barriers to gene flow in urban Rana temporaria (common 

frog) populations: implications for biodiversity conservation. 

Heredity 79: 117–127

Honda M, Matsui M, Tominaga A, Ota H, Tanaka S (2012) Phylog-

eny and biogeography of the Anderson’s crocodile newt, Echi-
notriton andersoni (Amphibia: Caudata), as revealed by 

mitochondrial DNA sequences. Mol Phylogenet Evol 65: 642–

653

Huelsenbeck JP, Hillis M (1993) Success of phylogenetic methods 

in the four taxon case. Syst Biol 42: 247–264

Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference 

of phylogenetic trees. Bioinformatics 17: 754–755

Iguchi K, Nishida M (2000) Genetic biogeography among insular 

populations of the amphidromous fish Plecoglossus altivelis
assessed from mitochondrial DNA analyses. Conserv Genet 1: 

147–156

Inger RF, Voris HK (2001) The biogeographical relations of the frogs 

and snakes of Sundaland. J Biogeogr 28: 863–891

Iryu Y, Matsuda H, Machiyama H, Piller WE, Quinn TM, Mutti M 

(2006) Introductory perspective on the COREF Project. Island 

Arc 15: 393–406

Iwai N, Shoda-Kagaya E (2013) Population structure of an endan-

gered frog (Babina subaspera) endemic to the Amami Islands: 

possible impact of invasive predator on gene flow. Conserv 



A. Tominaga et al.70     

Genet 13: 717–725

Jobb G (2008) Treefinder, version of (January 2008). Available via 

http://www.treefinder.de

Jobb G, von Haeseler A, Strimmer K (2004) Treefinder: a powerful 

graphical analysis environment for molecular phylogenetics. 

BMC Evol Biol 4: 18

Kakehashi R, Kurabayashi A, Oumi S, Katsuren S, Hoso M, Sumida 

M (2013) Mitochondrial genomes of Japanese Babina frogs 

(Ranidae, Anura): unique gene arrangementsand the phyloge-

netic position of genus Babina. Genes Genet Syst 88: 59–67

Kamiya K (1984) Upbringing of Ryukyu Archipelago. Shinsei-tosho, 

Naha

Kimura M (1980) A simple method for estimating evolutionary rates 

of base substitutions through comparative studies of nucleotide 

sequences. J Mol Evol 16: 111–120

Kimura M (2003) Paleoenvironment and paleogeography of the 

Ryukyu Archipelago. In “The Flora and Fauna of Inland Waters 

in the Ryukyu Island” Ed by M Nishida, N Shikatani, S Shokita, 

Tokai University Press, Tokyo

Leaché AD, Reeder TW (2002) Molecular systematics of the east-

ern fence lizard (Sceloporus undulatus): a comparison of parsi-

mony, likelihood, and Bayesian approaches. Syst Biol 51: 44–

68

Maeda N, Matsui M (1999) Frogs and Toads of Japan, Revised Edi-

tion. Bun-ichi Sogo Shuppan, Tokyo

Matsui M (2007) Unmasking Rana okinavana Boettger, 1895 from 

the Ryukyus, Japan (Amphibia: Anura: Ranidae). Zool Sci 24: 

199–204

Matsui M, Ito H, Shimada T, Ota H, Saidapur SK, Khonsue W, et al. 

(2005) Taxonomic relationships within the Pan-Oriental narrow-

mouth toad Microhyla ornata as revealed by mtDNA analysis 

(Amphibia, Anura, Microhylidae). Zool Sci 22: 489–495

Ministry of the Environment Government of Japan (2012) Small 

Indian Mongoose Eradication Project in the Northern part of 

Okinawa Island, FY2011. Naha Nature Conservation Office, 

Ministry of the Environment of Japan, Naha

Nakamura Y, Ota H (2009) The late Pleistocene amphibian fauna of 

the southern part of Okinawajima Island, Ryukyu Archipelago, 

with reference to its paleoenviromental implications. In: 

Abstract with the program of the 158th regular meeting. The 

Paleontological Society of Japan, Naha, p 17

Okinawa Prefecture (2013) Report of Conservation Project in Northern

Part of Okinawajima (Countermeasure Project for Mongoose) in 

2012. Okinawa Prefecture, Naha

Ota H (2000) The current geographic faunal pattern of reptiles and 

amphibians of the Ryukyu Archipelago and adjacent regions. 

Tropics 10: 51–62

Rambaut A, Drummond AJ (2007) Tracer v1.4, Available from http://

beast.bio.ed.ac.uk/Tracer

Raymond M, Rousset F (1995) An exact test for population differen-

tiation. Evolution 49: 1280–1283

Rodriguez F, Oliver JL, Marin A, Medina JR (1990) The general sto-

chastic model of nucleotide substitution. J Theor Biol 142: 485–

501

Ryder OA (1986) Species conservation and systematics: The 

dilemma of subspecies. Trends Ecol Evol 1: 9–10

Swofford D (2002) PAUP*: Phylogenetic analysis using parsimony 

(and Other Methods), Version 4.0b10. Sinauer Associates, 

Sunderland, MA

Tamura K, Nei M (1993) Estimation of the number of nucleotide sub-

stitutions in the control region of mitochondrial DNA in humans 

and chimpanzees. Mol Biol Evol 10: 512–526

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular 

Evolutionary Genetics Analysis (MEGA) software version 4.0. 

Mol Biol Evol 24: 1596–1599

Tanabe AS (2008) Phylogears version 1.0.2009.03.07, software dis-

tributed by the author at <http://www.fifthdimension.jp/>

Tanabe AS (2011) Kakusan4 and Aminosan: two programs for com-

paring nonpartitioned, proportional and separate models for 

combined molecular phylogenetic analyses of multilocus 

sequence data. Mol Ecol Res 11: 914–921

Tominaga A, Ota H, Matsui M (2010) Phylogeny and phylogeogra-

phy of the sword-tailed newt, Cynops ensicauda (Amphibia: 

Caudata), as revealed by nucleotide sequences of mitochon-

drial DNA. Mol Phylogenet Evol 54: 910–921

Toyama M (1996) Rana (Babina) holsti Boulenger, 1892. In “Basic 

data for Rare Wild Aquatic Animals of Japan (III)” Ed by S 

Odate, Japan Fisheries Resource Conservation Association, 

Tokyo

Vences M, Vieites D, Glaw F, Brinkmann H, Kosuch J, Veith M, 

Meyer A (2003) Multiple overseas dispersal in amphibians. 

Proc Roy Soc Lond B 270: 2435–2442

Vences M, Hauswald JS, Steinfartz S, Rupp O, Goesmann A, 

Künzel S, et al. (2013) Radically different phylogeographies and 

patterns of genetic variation in two European brown frogs, 

genus Rana. Mol Phylogenet Evol 68: 657–670

Vos RA (2003) Accelerated likelihood surface exploration: the likeli-

hood ratchet. Syst Biol 52: 368–373

(Received May 15, 2013 / Accepted October 22, 2013)


