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 Abstract 
We aimed to observe morphological changes in the spleen from the emergence of the 

primordium to the end of the embryonic period by using histological serial sections of 228 

samples. Between Carnegie stages (CSs) 14 and 17, the spleen was usually recognized 

as a bulge in the dorsal mesogastrium (DM), and after CS 20, the spleen became 

apparent. Intrasplenic folds were observed later. A high-density area was first recognized 

in 6 of the 58 cases at CS 16 and in all cases examined after CS 18. The spleen was 

recognized neither as a bulge nor as a high-density area at CS 13. The mesothelium was 

pseudostratified until CS 16 and was replaced with high columnar cells and then with low 

columnar cells. The basement membrane was obvious after CS 17. The mesenchymal 

cells differentiated from cells in the DM, and sinus formation started at CS 20. 

Hematopoietic cells were detected after CS 18. The vessels were observed at CS 14 in 

the DM. Hilus formation was observed after CS 20. The parallel entries of the arteries and 

veins were observed at CS 23. The rate of increase in spleen length in relation to that of 

stomach length along the cranial-caudal direction was 0.51 ± 0.11, which remained 

constant during CSs 19 and 23, indicating that their growths were similar. These data 

may help to better understand the development of normal human embryos and to detect 

abnormal embryos in the early stages of development. 
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Introduction 
 The spleen is characterized as a bulge in the dorsal mesogastrium (DM) in a five-

week embryo or approximately 8 mm of crown-rump length (Ono, 1929; Holyoke, 1936). 

The developmental process of the spleen can be divided into two stages (Ono, 1929; 

Weiss, 1973; Weiss and Chen, 1974). During the first stage (up to the 14th week of 

gestation), the spleen primordium has a mesenchymal character with primary vascular 

reticulum (Weiss, I973; Vellguth, 1985). In the latter stage, the red and white pulp—the 

spleen’s architecture—develops after the development of the primordium. 

 Few histological studies have evaluated the human embryonic spleen according to 

Carnegie stage (CS), because the aforementioned studies were published before the CSs 

were established. One description of the embryology of the spleen involved the famous 

atlas of Gasser (1975) that explained that the development includes four embryos 

corresponding to five, six, seven, and eight weeks of development, respectively (i.e., CS 

13, 16, 19, and 23, respectively) on gross views, but this did not include the detailed 

histology. At first, the spleen primordium was indicated in the DM of the transverse 

histological section in a CS 13 embryo (Carnegie Embryo 8066), as cited by O'Rahilly and 

Müller (1987) and described as follows: “the splenic primordium has been identified as 

early as stage 13.” Another histological study of the spleen in 30 human embryos during 

CSs 17–23 was reported by Merida-Velasco et al. (1989), which revealed that the splenic 

primordium is composed of mesenchymal cells and a number of cells that are similar in 

appearance to lymphoid elements. They detected vessels in the spleen after CS 19. 

 We aimed to observe morphological changes in the spleen from the emergence of 

the primordium to the end of the embryonic period by using histological serial sections. 

Additionally, the growth of the spleen was compared with that of the stomach. 

 

Materials and Methods 



 

 

Human embryo specimens 

 Approximately 44,000 human embryos comprising the Kyoto Collection, which are 

collected and stored at the Congenital Anomaly Research Center of Kyoto University 

(Nishimura et al., 1968; Shiota, 1991; Yamada et al., 2004). In most cases, pregnancy 

was terminated during the first trimester for socioeconomic reasons under the Maternity 

Protection Law of Japan. Approximately 20% of the specimens were undamaged, well-

preserved embryos. When the aborted embryos were brought to the laboratory, they 

were measured, examined, and staged using the criteria provided by O’Rahilly and Müller 

(1987). Approximately 500 well-preserved human embryos, diagnosed as externally 

normal from CSs 13–23, were subjected to histological serial sections.  

 We included 228 samples consisting of 5–58 samples for each stage, which were 

selected for macroscopic analysis, and 3–7 samples for each stage were selected for 

microscopic analysis. 

 

Histological observations 

 Histological serial sections stained with hematoxylin and eosin (HE) were 

observed macroscopically and microscopically by two authors (A.E. and T.T.).  

 For macroscopic observations, the histological serial sections were digitized using 

a film scanner (DiMAGE Scan Multi PRO AF-5000, Konica Minolta, Tokyo, Japan). The 

data were magnified onto a computer display, and the findings at the DM were 

categorized as follows: 1) The spleen was categorized as (a) a separate segment in the 

DM, (b) as a bulge in the DM, or (c) not recognizable; and 2) The spleen was recognized 

as a) a high-density area or b) not recognizable. A bulge (+) was defined when >80% of 

the spleen had separated from the edge of the DM. 



 

 

 The following three aspects were observed while using microscopic analysis: the 

mesothelium type, the vascular system (i.e., formation of the hilus and sinus), and the 

mesenchymal components, including the mesenchymal cells and other cell components. 

 

Position, length, and three-dimensional reconstruction of the spleen 

 The digitized histological serial sections were applied to three-dimensional 

reconstruction. Three-dimensional images of the spleen and stomach were 

computationally reconstructed and morphometrically observed using AmiraTM software, 

version 5.4.0 (Visage Imaging, Berlin, Germany). The lengths of the spleen and stomach 

along the cranial-caudal direction were measured by transverse section of the embryos.  

 This study was approved by the Committee of Medical Ethics of Kyoto University 

Graduate School of Medicine, Kyoto, Japan (E986). 

 

Results 

Macroscopic findings 

 In most cases, the spleen was recognized as a bulge in the DM between CSs 14 

and 17 (Fig. 1, Table 1). The spleen was apparent as a segmented area after CS 20. 

Intrasplenic folds were observed occasionally at CS 20 and during the later stages (black 

arrow in Fig.1, CS 23). A high-density area was first recognized in 6 of the 58 cases at 

CS 16 and then in all cases after CS 18. The spleen was neither recognized as a bulge 

nor high-density area in all of the 22 cases at CS 13. 

 

Microscopic findings 

 The bulge in the DM was detectable using the macroscopic view after CS 14, and 

we observed the bulge microscopically.   



 

 

 The mesothelium consisted of only pseudostratified mesothelium between CSs 13 

and 15 (arrow in Fig. 2). The border between the mesothelium and mesenchymal cells 

was ambiguous. Initially, the border between the coelomic epithelium and the 

mesenchyme of the DM was ambiguous. The cavity within the endometrium that may 

differentiate into splenic vessels or their derivatives were already observed at the center 

of the DM at CS 14 (arrowhead in Fig. 2A) and near the mesothelium at the bulge at CS 

15 (arrowhead in Fig. 2B). The mesenchymal cells in the DM were homogenous, and no 

obvious mass indicating the spleen primordium was yet recognized at CSs 14 and 15.  

 The bulge underlying the spleen primordium (red rectangle in Fig. 3A) and the 

dorsal pancreatic duct was observed in the DM at CS 16 with lower magnification. The 

mesenchymal cells in the spleen primordium and dorsal pancreas were not clearly 

separated. The mesothelium consisted of pseudostratified cells (arrow in Fig. 3B). The 

border between the mesothelium and the mesenchymal cells was irregular but distinct, as 

it was seen as a light zone between the peripheral nuclear stratum and the mesenchyme. 

The mesenchymal cells at the bulge became highly dense with scarce cytoplasm and 

irregularly ovoid nuclei and scattered chromatin in 6 of 58 cases at CS 16, though the 

border of the DM was still not clear. The small cells with condensed nuclei probably 

hematopoietic cells were observed occasionally. 

 Several histological changes were detected during CSs 17 and 19. The foldings 

that separate the spleen from the DM were observed at CS 18 and CS 19 (red arrow 

head in Fig. 3D-E). The mesothelium changed from a mixture of pseudostratified and 

high columnar cells to cuboid and/or low columnar cells (arrows in Fig. 3C-E). The 

mesothelium became sharply cut off from the underlying tissue, indicating the presence 

of a definite basement membrane. The border of the DM became clear gradually. The 

mesenchymal cells of the spleen become highly dense, and the short spindle, stellate, 



 

 

and/or fusiform with irregularly ovoid nuclei showed scattered chromatin. Small cells with 

condensed nuclei were occasionally present. Several other types of hematopoietic cells 

that were not identified were also detected. The cavity within the endometrium was 

observed in the DM and spleen (* in Fig. 3C-E). 

 After CS 20, the mesenchymal cells in the spleen and dorsal pancreas were 

clearly separated by cell density and folding (** in Fig. 3G). Intrasplenic folding was 

observed at CS 21 (red arrow, Fig. 3G). The entries of the branch of the splenic vessels 

were noted; these entries may form the hilus at a later stage (blue arrow head, Fig. 3F-G). 

The vessels within the endometrium were detected in the spleen (* and black arrow head, 

Fig. 3F-G). Intercellular spaces were present throughout the histological specimen, the 

pattern formation of the cells was initiated at CS 20, and sinusoids of the spleen’s 

mesenchymal cells formed in the later stages. Small cells with condensed nuclei, which 

probably were hematopoietic lineage cells, were observed in the capillary and 

intercellular spaces. The mesothelium consisted of low columnar cells at CSs 20 and 21.  

 The spleen could be clearly differentiated from the DM as deep folds and small 

intrasplenic folds (a feature of the adult spleen) (Fig. 4). These mesothelial cells then 

became progressively flattened, and the basement membrane became apparent at CS 

22. Hematopoietic cells with condensed nuclei were observed in the intercellular spaces 

throughout the spleen.  

The entries of several branches of the splenic vessels were detected at CS 23, forming 

the hilus (arrow head, Fig. 4). Two types of parallel vessels were recognized at CS 23 

(red and blue arrow heads, Fig. 4C). One was surrounded with a mesenchymal sheath, 

while the other with a layer of simple squamous endothelial cells. The former may have 

been arteries and the latter may have been veins. Capsule formations were not observed 

until CS 23. 



 

 

 

Location and three-dimensional reconstruction of the spleen 

 The location of the spleen was estimated along the cranial-caudal direction using 

the serial transverse section. The spleen and stomach were reconstructed at CSs 17 and 

19 (Fig. 5).  

The spleen was very thin and curved, surrounding the stomach at CSs 17 and 19. The 

spleen was located relative to the stomach. Most of the spleen was located between the 

gastric cardia and at the most caudal point of the stomach between CSs 19 and 23. The 

rate of increase in spleen length in relation to that in stomach length, along the cranial-

caudal direction, was 0.51 ± 0.11, and it remained constant during CSs 19 and 23, 

indicating that their growth rates were similar.  

 

Discussion 

 We described morphological features of the human spleen during CSs 13 and 23. 

The histological features according to the CS are summarized in Figure 6. It was difficult 

to confirm the spleen primordium at CS 13 in all cases examined macroscopically and 

microscopically. The broadening and rotation of the stomach primordium and the 

deviation of the DM was limited at CS 13. A mass or bulge in the DM was not detectable 

in our study; however, previous literature reports have shown otherwise (Gasser, 1975; 

O’Rahilly and Müller 1987). The web atlas on the virtual human embryo has been 

recently disclosed, in which serial sections of human embryos between CSs 2 and 23 

were included (Gasser, 2014). The spleen primordium was first indicated at CS 14 and 

15, while the spleen was recognized after CS 16 in our study, which is consistent with 

that in the web atlas. Merida-Velasco et al. (1989) detected vessels in the spleen after 

CS 19, while our study showed the presence of vessels in the DM before the appearance 



 

 

of the spleen or its primordium. Small clefts were observed in the spleen at CS 16, and 

larger vessels entering from the DM into the spleen appeared after CS 20. Those entries 

formed the spleen’s hilus. The present observation was consistent with that of a previous 

study by Ono (1929) who observed narrow clefts in the mesenchyme, except during the 

very early embryonic periods; they also observed blood vessels during the 6th and 7th 

week of fertilization. The connection between the clefts and the larger vessels was not 

clear in our study, though they showed very similar characteristics. After the opening of 

the arteries and veins into the mesenchymal meshwork, open circulation may develop in 

the spleen primordium at this early developmental stage (Ono, 1929). Ono (1929) 

described that the main vessels of the spleen are established and are present by the 8th 

week of fertilization. 

 In the present study, the majority of the cells were mesenchymal, and the 

remaining cells looked like hematopoietic cell populations. Several types of cells were 

recognized in these cell populations after CS 19. It was difficult to identify the lineage 

using hematoxylin and eosin microscopic findings. Djaldetti (1979) demonstrated the 

presence of hemocytoblasts, proerythroblasts, and megakaryocyte precursors between 

the mesenchymal cells from the 6th to 7th week of fertilization using electron microscopy, 

suggesting that hemopoiesis in the embryonic spleen is an extravascular process 

(Djaldetti M, 1979). Zamboni and Westin (1964) identified blood, and hematopoietic 

macrophages around the 16th week of fertilization. Those cells are possible candidates 

for the several types of cells that we were not able to identify in our study. 

 We found that the ratio of the spleen’s length to the stomach’s length along the 

cranial-caudal direction was almost constant (approximately 0.5). Kaigai et al. (2014) 

reported that the greater and lesser curvature of the stomach grows 1.79 and 1.91 times 



 

 

during CSs 19 and 23, respectively. Thus, the spleen may grow at similar rate as the 

stomach. 

  A recent study indicated that the morphogenesis of mouse spleen begins 

bilaterally and posteriorly to the stomach, after which the splenic precursors grow 

preferentially leftward. Spleen cells may move from the posterior mesenchyme, along the 

left side of the stomach, and distinctly move close to the adjacent stomach mesenchyme 

(Asayesh, 2006; Zaret, 2008; Brendolan, 2007; Burn et al., 2008). Several experimental 

studies in mice have indicated genes are required for spleen development. Sf1 null mice 

showed impaired spleen development—small and maldeveloped spleens—but not 

complete asplenia (Morohashi et al., 1999). Tlx1 (also known as Hox11) null mice 

exhibited isolated asplenia without other abnormalities (Roberts et al., 1994). Recently, 

the Pbx/Nkx2-5/p15 regulatory module were determined to be essential for spleen 

development (Burn et al., 2008; Koss et al., 2012), and genetic studies disclosed the 

mutations in patients with congenital asplenia, which correspond to the aforementioned 

experimental studies. Koss et al. (2012) identified a heterozygous missense mutation in 

NKX2-5, which reduced transactivation. Zangen et al. (2014) identified a recessive 

mutation within SF1 in a child with both severe 46, XY-disorder of sexual development 

and asplenia. They indicated that SF1 was required for spleen development in humans 

via the transactivation of TLX1. Conversely, Bolze et al. (2013) identified heterozygous 

mutations in RPSA in patients with isolated congenital asplenia, which was not known to 

be involved in the spleen development of mice (Koss et al., 2012; Brendolan, 2007). 

Furthermore, heterozygosity for a null Rpsa allele in mice was not associated with 

isolated congenital asplenia. Further study is needed to disclose the underlying 

mechanisms that connect RPSA with spleen development in humans.  



 

 

 The morphological analysis in our study was limited with HE staining because of 

the few available samples. However, it may be necessary to use molecular markers such 

as the Pbx/Nkx2-5/p15 regulatory module and TLX1 transcription factors in human 

samples so that the conditions are similar to those used in mouse models; this may 

provide valuable information on the mechanisms underlying the development of 

mammalian spleen and the etiology of congenital asplenia. 

Our study provides data on stage-by-stage morphological changes in the spleen 

from the emergence of the primordium to the end of the embryonic period by using 

histological serial sections. These data may help to better understand the development of 

normal human embryos and to detect abnormal embryos at early stages of development. 

This may provide insight into future studies on congenital anomalies related to spleen-

related complications such as congenital asplenia and polysplenia. 
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Figure Legends 

Figure 1. Macroscopic view of the dorsal mesogastrium showing the presence of 

the spleen or its primordium at Carnegie stages 14, 16, 20, and 23. 

*, spleen (primordium); St, stomach; red arrow, segmentation by the folds; black arrow, 

intrahepatic folds 

 

Figure 2 Histology of the dorsal mesogastrium and the underlying splenic 

primordium at Carnegie stages 14 (A) and 15 (B). Hematoxylin and eosin staining, 

x400. 

Arrow, pseudostratified mesothelium; arrowhead, splenic vessels and their derivative in 

the dorsal mesogastrium. DM, dorsal mesogastrium; LS, lesser sac; Me; mesonephric 

duct; PC, peritoneal cavity; St, stomach 

 

Figure 3 Histology of the spleen (primordium) between Carnegie stages (CS) 16 

and 22. Hematoxylin and eosin staining.  

(A, B) The dorsal mesogastrium and the underlying splenic primordium at CS 16 (x100). 

(B) A higher magnification (x400) of the bulge of the dorsal mesogastrium indicated by a 

square (A). 

(C–E) Histology of the spleen at CSs 17 (C), 18 (D), 19 (E), 20 (F), and 21 (G) (x400). 

Gross view (x40) of the dorsal mesogastrium (inset of F) indicated in the magnified area. 

Arrow, pseudostratified mesothelium; black arrow head and *, splenic vessels and their 

derivative in the dorsal mesogastrium or intracellular space; red arrow head and **, 

segmentation of the spleen from the dorsal mesogastrium by folding; blue arrow head, 

veins. 



 

 

Ao, aorta; DM, dorsal mesogastrium; DP, dorsal pancreas; Ge, genital bulging; Li, liver; 

LS, lesser sac; Me, mesonephric duct; PC, peritoneal cavity; St, stomach; Sp, spleen. 

The high-density area represents mesenchymal cells. 

  

Figure 4 Histology of the spleen at Carnegie stages 22 and 23. 

(A) CS22, Hematoxylin and eosin, x200; (B) CS 23 at the lower magnification 

hematoxylin and eosin, x100; (C) Higher magnification (x400) of the arteries and veins in 

the dorsal mesogastrium indicated by a square in (A). (D) A higher magnification (x200) 

showing hilus formations indicated by a square in (A).  

arrow head: red, artery; blue, veins; black, vessels; LS, lesser sac; PC, peritoneal cavity; 

St, stomach 

 

Figure 5 Three-dimensional reconstruction of the spleen with the stomach at 

Carnegie stages 17 and 19. 

Anterior, posterior, and right lateral views are shown. 

 

Figure 6 Summary of the histological findings of the spleen (primordium) between 

Carnegie stages 13 and 23. 



TABLE  1.  Acquisition of macroscopic findings of the spleen from Carnegie stages 13–23
Carnegie stage

13 14 15 16 17 18 19 20 21 22 23
Separation from  the DM

Not recognizable 22 (100) 3 (20) 9 (43) 4 (7) 2 (7) 0 0 0 0 0 0
 At the bulge 0 12 (80) 12 (57) 54 (93) 27 (93) 17 10 4 0 0 0

At the segment 0 0 0 0 0 1 (6) 2 (17) 14 (78) 17 (100) 13 (100) 5 (100)
High density area

Not recognizable 22 (100) 15 (100) 21 (100) 52 (90) 8 (28) 0 0 0 0 0 0
Recognizable 0 0 0 6 (10) 21 (72) 18 (100) 12 (100) 18 (100) 17 (100) 13 (100) 5 (100)
Total number 22 15 21 58 29 18 12 18 17 13 5

The percentages are expressed in parentheses; DM, dorsal mesogastrium

Findings


















