

d bv Kvoto Un

Kyoto University Research Info	rmation Repository
Title	Morphometric human embryonic brain features according to developmental stage
Author(s)	Kobayashi, Ami; Ishizu, Koichi; Yamada, Shigehito; Uwabe, Chigako; Kose, Katsumi; Takakuwa, Tetsuya
Citation	Prenatal Diagnosis (2016), 36(4): 338-345
Issue Date	2016-04
URL	http://hdl.handle.net/2433/216674
Right	This is the accepted version of the following article: Kobayashi, A., Ishizu, K., Yamada, S., Uwabe, C., Kose, K., and Takakuwa, T. (2016) Morphometric human embryonic brain features according to developmental stage. Prenat Diagn, 36: 338–345. doi: 10.1002/pd.4786., which has been published in final form at http://dx.doi.org/10.1002/pd.4786. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.; The full-text file will be made open to the public on 21 April 2017 in accordance with publisher's 'Terms and Conditions for Self- Archiving'.; This is not the published version. Please cite only the published version. この論文は出版社版でありません。 引用の際には出版社版をご確認ご利用ください。
Туре	Journal Article
Textversion	author

Morphometric human embryonic brain features according to developmental 1 stage 2 3 ¹Ami Kobayashi, ¹Koichi Ishizu, ^{1,2}Shigehito Yamada, ²Chigako Uwabe, 4 ³Katsumi Kose, ¹Tetsuya Takakuwa 5 6 1) Human Health Science, Graduate School of Medicine, Kyoto University, 7 Kyoto, Japan 8 2) Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto 9 University, Kyoto, Japan 10 3) Institute of Applied Physics, University of Tsukuba, Ibaragi, Japan 11 12 Running title: Human embryonic brain measurements 13 Word count: 2237 words 14 Number of Tables; 4, Figures; 5 15 Corresponding author: Dr. Tetsuya Takakuwa, Human Health Science, 16

17	Graduate School of Medicine, Kyoto University, 606-8507 Sakyo-ku Shogoin
18	Kawahara-cyo 53, Kyoto, Japan.
19	E-mail: tez@hs.med.kyoto-u.ac.jp, TEL: +81-75-751-3931
20	
21	Funding: This study was supported by grants from the Japan Society for the
22	Promotion of Science and the BIRD of Japan Science and Technology Agency
23	(JST); Grant number: #24119002, #25461642, #26220004, #15H01119,
24	#15K15014, #15K08134, #15H05270, #15H01121
25	
26	Conflicts of interest: There are no conflicts of interest to report.
27	Bulleted statements
28	What is already known about this topic?
29	 Comparing morphometric data based on embryonic stages and sonographic
30	information can be valuable; however, classic embryology has provided
31	relatively little morphometric data.
32	What does this study add?

33	Linear, area, and volume measurements of the human embryonic brain
34	according to Carnegie stages were obtained using magnetic resonance
35	microscopy data.
36	All linear measurements, except for bitemporal length (BT) and mesencephalic
37	height (MH), increased non-monotonically.
38	• A high correlation between BT and both whole-brain (r = 0.98) and
39	prosencephalon volume (r = 0.99) was found.

41 Abstract

Objectives: The present study investigated linear, area, and volume 42 measurements of human brain samples according to Carnegie stages (CS) in an 43 attempt to select suitable morphometric features that reflect embryonic 44 45 development. Methods: Using magnetic resonance (MR) imaging, we measured seven linear 46 47segments, three separate areas, and three regional volumes in 101 samples between CS 13 and CS 23. Brain volume was determined via manual 48 segmentation of the MR image, whereby a formula was generated to estimate 49 50 the volume of each linear measurement. Results: All parameters correlated with crown-rump length. Bitemporal length 51 (BT) and mesencephalic height increased linearly according to the CS, and a 52 53 high correlation between BT and both whole-brain (r = 0.98) and prosencephalon volume (r = 0.99) was found when brain cavity volume was 54 excluded. 55

56 Conclusion: Morphometric data related to human embryonic stages are valuable

57	for correcting and comparing sonographic data. The present approach may
58	contribute to improvements in prenatal diagnostics by enabling the selection of
59	more suitable measurements during early embryonic stages.
60	
61	Key Words
62	human brain, human embryo, magnetic resonance imaging, length and area
63	measurements
64	
65	Abbreviations
66	Carnegie stage (CS), magnetic resonance (MR), fronto-occipital diameter (FO),
67	bitemporal diameter (BT), mesencephalon length (ML), mesencephalon height
68	(MH), cerebellar length (CL), cerebellar height (CH), biparietal diameter (BPD),

69 crown-rump length (CRL).

70

72 Introduction

73	The use of ultrasound for prenatal diagnostics has rapidly increased
74	over the past 25 years ¹⁻⁹ . The application of three-dimensional (3D) sonography
75	with high-frequency transvaginal transducers has expanded and now fosters 3D
76	sonoembryology, which provides a basis for assessing normal human
77	development and can also be useful in detecting developmental anomalies.
78	Thus, such technology could contribute to more accurate prenatal diagnoses, as
79	well as enable a shift in the diagnostic time window (from the second to the first
80	trimester). At present, an embryo at 7 gestational weeks (based on the last
81	menstrual period) or younger, which corresponds to a Carnegie stage (CS) of
82	15–16, can be assessed using morphological and morphometrical analyses.
83	While abnormal embryos younger than 10 weeks' gestation may be observed
84	incidentally, systematic screening using sonographic parameters could result in
85	the detection of abnormalities during the late, first trimester (10–11 weeks'
86	gestation) ¹ .

87	The human brain develops in a very complicated manner during the
88	embryonic period ¹⁰ . For example, three brain vesicles that develop at the cranial
89	end of the neural tube differentiate to form the prosencephalon, mesencephalon,
90	and rhombencephalon at CS13 ¹¹ . Moreover, the brain does not reach definitive
91	organization until after CS15, with the emergence of the telencephalon.
92	Application of sonoembryology to the embryonic period is essential for our
93	comprehension of brain development. Moreover, determining an appropriate
94	developmental stage in which sonography can be applied is important for
95	precise diagnostics ¹² . However, exact staging is still difficult because it requires
96	imaging internal structures of the brain at the microscopic level ¹³ .
97	Morphometrical studies (both two- and three-dimensional) can be
98	analyzed using serial histological sections and visualized via 3D modeling and
99	illustrations ¹³⁻¹⁵ . However, these methods are laborious and inaccurate.
100	Moreover, histological sections contain artefacts due to the use of fixative, which
101	can cause tissue shrinkage and deformation from dehydration ¹⁶ . Finally, very

few morphometric studies of the human embryonic brain have employed the
CS^{14,15}.

104	Recently, we analyzed morphogenetic and volumetric measurements
105	of the embryonic brain via 3D reconstructions of MR microscopic data ¹⁰ , and
106	observed dramatic growth at each CS. Thus, we used the same materials in our
107	current study to measure linear segments and specific areas in MR images,
108	similar to what has been reported in previous studies ^{14,15} . One advantage of this
109	approach is that we were able to accurately measure a suitable plane, allowing
110	for the estimation of a correlation between linear and volumetric measurements
111	(region-by-region) using staged embryos as early as CS13, which corresponds
112	to 6weeks' gestation.

113

114 Materials and methods

115 *Embryonic specimens*

Approximately 44000 human embryos (comprising the Kyoto Collection) are stored at the Congenital Anomaly Research Center at Kyoto

118	University ^{17,18} . In most cases, the pregnancies from which these embryos were
119	derived were terminated during the first trimester for socioeconomic reasons
120	under the Maternity Protection Law of Japan. From this collection, we measured,
121	examined, and staged embryos using criteria provided by O'Rahilly and Müller ¹¹ .
122	Approximately 1200 well-preserved human embryos were judged to be normal
123	by two of the authors (C.U. and S.Y.) based on a gross examination. These
124	embryos were later subjected to MR microscopic imaging; the conditions for
125	which have been previously described elsewhere ¹⁷⁻¹⁹ .
126	In the present study, 101 samples from the CS13–CS23 range (nine or
127	10 samples for each stage, with the exception of CS13, for which there were five
128	samples), and their associated morphometric analyses, were selected from the
129	1200 MR imaging datasets. The selected embryos were identical to those used
130	in a previous study ¹⁰ .

131

132 Morphometric analysis

133 MR imaging datasets for each embryo were initially obtained as 256 ×

256 × 512 voxel data¹⁹. The midsagittal and transverse planes were used
 according to previous studies, with minor modifications^{14,15} (Figure 1). The
 planes for length and area measurements were digitally resectioned using
 OsiriX[™] software (ver. 4.0, Pixmeo SARL, Geneva, Switzerland).

The following seven segments were measured, which were consistent 138 with a previous study¹⁴: fronto-occipital diameters (FOa and FOb) and 139 140 bitemporal diameter (BT) as substitutions for the prosencephalon, mesencephalon length (ML) and mesencephalon height (MH) as substitutions 141 for the mesencephalon, and cerebellar length (CL) and cerebellar height (CH) as 142 substitutions for the rhombencephalon and cerebellum, respectively (Figure 1A). 143 Area measurements were obtained for three regions in the midsagittal section 144 that corresponded prosencephalon, mesencephalon, 145 to the and rhombencephalon¹⁵. 146

Brain volume was measured by manual segmentation, as described previously¹⁰. Briefly, brains and ventricles were segmented for 3D reconstruction using the FSL view of the FMRIB Software LibraryTM (ver. 4.1.9, Analysis Group, FMRIB, Oxford, UK). Three-dimensional brain morphology was computationally
 reconstructed with AmiraTM software (ver. 5.4.0, Visage Imaging, Berlin,
 Germany).

Brain and whole embryo volumes were calculated using OsiriX™ 153software (ver. 4.0, Pixmeo SARL, Geneva, Switzerland). Vesicles were divided 154 into three regions according to the following anatomical landmarks: the 155156 supramammillary recess and posterior commissure were used to define the prosencephalon and mesencephalon; the isthmic recess and the isthmic groove 157 were used to define the mesencephalon and rhombencephalon; and the C1 158159 vertebral level was used to define the separation between the rhombencephalon and spinal cord¹⁰. After dimensional matching, a formula was derived to estimate 160 brain volume from the linear measurements. We then analyzed both total brain 161 162 volume (with the ventricles) and brain volume without the ventricles, since an increase in ventricular volume – a feature of the embryonic period – could have 163 influenced our measurements^{5,6,10,15}. The Ethics Committee of the Kyoto 164 University Graduate School and Faculty of Medicine (E986) approved this study. 165

167 **Results**

168 Linear, area, and volume measurements

169 **1. Linear measurements**

The seven length segments evaluated here were linearly correlated with CRL (Table 1, Supplementary figure 1). The correlation coefficient was large for all segments ($r \ge 0.91$), and the slopes of the regression lines were consistent with those of a previous study (with the exception of the CL)¹⁴. In that prior study, the correlation coefficients for CL and CH were small (r = 0.14 for CL and 0.52 for CH)¹⁴.

The seven length segments were plotted by CS group (Figure 2). BT and MH exhibited a nearly linear increase, while other segments increased non-monotonically during CS13 and CS23. A plateau phase between CS19 and CS20 was observed in several segments (FOa, FOb, ML, and CL). It should be noted that we were unable to compare our data with that of a previous study because the segment and CS correlations in that study were not precisely

182 analyzed¹⁴.

183

184 **2. Area measurements**

Areas in the midsagittal section that corresponded to the whole brain, as well as the prosencephalon, mesencephalon, and rhombencephalon, were measured (Figure 3). Each area increased between CS13 and CS23. Exponential curves demonstrated a good fit to the data ($R^2 = 0.92-0.97$), except for the rhombencephalon area ($R^2 = 0.85$); this finding was consistent with that of a previous study (Table 2)¹⁵.

191

3. Volume measurements

When brain volume was measured without the ventricles (i.e., brain tissue only), we determined that it increased exponentially until CS23. On the other hand, when ventricular volume was included in the measurement, we determined that brain volume increased and then plateaued between CS19 and CS20 (Table 3).

198	Tissue volumes from the three brain vesicles grew exponentially, though
199	the growth rates differed. Volumes including cavities did not grow exponentially.
200	Rhombencephalon volume increased with a local maximum at CS19, which was
201	affected by cavity growth; namely, the rhombencephalon brain cavity, which
202	becomes the fourth ventricle, reached its maximum volume at CS19.
203	Large brain cavities, with non-exponential volume changes, are a
204	prominent feature during the early embryonic period. Whole-brain cavity
205	volumes were greater than whole-brain tissue volumes between CS14 and
206	CS18 (Table 3). The ratio of whole-brain cavity to tissue volume reached a
207	maximum at CS17 (ratio = 1.46), after which brain tissue volume became
208	greater than brain cavity volume. The maximum brain cavity to brain tissue
209	volume ratio was noted at CS17 in all three regions and was particularly
210	prominent in the rhombencephalon (prosencephalon: 1.11, mesencephalon:
211	1.04, and rhombencephalon: 1.84).

Predicting brain volume from linear data and measurements

214	A formula was generated to estimate whole-brain volume both with and
215	without ventricles, based on matched dimensions. These results are
216	summarized in Table 4. A large correlation was observed with the linear BT
217	measurement (total volume: r = 0.97, non-ventricular volume: r = 0.98). BT was
218	also highly correlated with prosencephalon volume (total volume: $r = 0.98$,
219	non-ventricular volume: r = 0.99). These correlations were larger than for any
220	other measurement or combination. Other measurements, such as FOb and
221	combinations (e.g., FOa*FOb*BT), were highly correlated with prosencephalon
222	volume, both with and without inclusion of ventricular volume.
223	For the mesencephalon, all linear measurements examined (ML and MH)
224	were highly correlated with mesencephalon volume, both with and without
225	inclusion of ventricular volume. Correlations were also high for estimating the
226	rhombencephalon (r = 0.80 for CH ³ , and 0.92 for CL ³).

Discussion

The human embryonic brain develops in a complicated manner over a 229 short period¹⁰, with growth speed and increases in measurements varying 230 according to developmental stage. Thus, the determination of developmental 231 stage is necessary for a more precise detection of embryonic abnormalities. 232 Improvements in sonographic resolution may contribute to our ability to observe 233 detailed and precise embryonic morphology. Nevertheless, it remains unclear 234 235 how measurements, which reflect developmental features, relate to developmental stages. Classic embryology using histological techniques has 236 revealed morphological features according to developmental stage, and this 237 forms the current basis of sonoembryology. However, classic embryology has 238 provided relatively little morphometric data^{14.15}. The present study improved 239 upon previous methods by providing a suitable plane for a morphometric 240 241 analysis from staged human embryos using MR microscopic data.

In the current study, the increases in brain cavity and whole body volume (in relation to the CRL) were comparable to those reported by Blaas' sonoembryologic study²⁰ (Figure 4). Regarding the prosencephalon, the volume

245	in both studies increased exponentially with overlapping values (Figure 4B). The
246	volume of the mesencephalon was variable across samples, especially for larger
247	specimens (CRL > 20 mm), and increased in a broadly linear manner. With
248	respect to the rhombencephalon, the variance was considerable among smaller
249	samples (CRL > 10 mm). The increasing growth rates of the mesencephalon
250	and rhombencephalon were essentially similar between our study and that of
251	Blaas for samples with CRL's between 10 and 30 mm. Our observations that
252	volume data in the present study were substantially similar to Blaas'
253	sonoembryologic data indicate that our present data are potentially useful.
254	It is known that almost all measurements increase during the
255	embryonic period; thus, linear measurements correlate both with each other and
256	with age. In the current study, all parameters correlated with CRL (Table 1,
257	Supplemental Figure 1). However, this basic analysis does not consider
258	stage-specific features, which are important for precise diagnostics. When we
259	analyzed the relationship of the parameters with CS, several measurements
260	showed non-monotonic increases (i.e., the relationship plateaued, with a local

maximum observed c. CS19-20). Rousian et al.⁸ measured the relationship of 261 numerous parameters with CS using 3D sonography and found that brain cavity 262 volume increased with the quadratic function of the CS. The mean brain cavity 263 volume in our study was comparable to that reported by Rousian et al. from 264 CS13 to 17, but not with the guadratic function they used after CS 18 (Figure 5). 265 Analyzing why such discrepancies arise may provide clues for further 266 267 understanding stage-specific morphological features during development. Linear measurements, which can also be used to estimate volume, may 268 be preferable to other measurements because they are related to both brain 269 development and growth. Thus, BT is a good marker for estimating human 270 embryonic brain development and growth, as has been mentioned in previous 271studies^{1,4,7,13, 21}. The present study included embryos at earlier stages (between 272 273 CS13 and CS15) in which the telencephalon was not prominent; thus, our results demonstrated that linear measurement values, such as BT and volume, 274 are useful between CS13 and CS15. 275

276 It is difficult to compare our linear measurements with most previous

sonographic measurements^{3,5,6,7}, as the measurements used in the present 277 study were selected from classical embryonic studies^{14,15}. Thus, with the 278 exception of MH and ML, most of the linear measurement definitions we 279 employed differed from those of recent studies^{5,9}. Using sonography, Tanaka et 280 al.⁹ presented length measurements (including ML and MH) at every day of 281 gestation between days 49 and 69. The length of ML in our study was shorter 282 283 than that of the Tanaka at all stages between CS 15 and 23. The MH length in our study was also shorter than that of Tanaka et al. between CS 15 and 20, but 284 larger after CS 21 (data not shown). Note that the comparison may not be 285 entirely reliable as we compared the ML and MH data using the predicted CS 286 from the day of gestation¹³. Selection and reevaluation of linear measurements 287 that allow comparisons of data among sonoembryonic studies will be necessary 288 289 for future studies. Further, the relationship between CS and embryo age is a critical issue to consider. Embryological studies demonstrate that considerable 290 variability is observed in the size and developmental stage among human 291 embryos at a given gestational age²². Thus, the embryonic age that is used in 292

clinics cannot be used to determine the developmental stage (CS), as prenatal 293 development may not proceed at the same speed in every embryo. 294 295 The present study provided a morphometric analysis from staged human embryos using MR microscopic data. Morphometric data, according to human 296 embryonic stages, are valuable for correcting and comparing sonographic data. 297 The present approach may contribute to improvements in prenatal diagnostics 298 by enabling the selection of more suitable measurements during earlier 299 embryonic stages. 300 301 302 References 1 Blaas HG. Detection of structural abnormalities in the first trimester using 303 ultrasound. Best Pract Res Clin Obstet Gynaecol 2014;28:341-53. 304 2 Pooh RK, Shiota K, Kurjak A. Imaging of the human embryo with magnetic 305 resonance imaging microscopy and high-resolution transvaginal 3-dimensional 306 sonography: human embryology in the 21st century. Am J Obste Gynecol 307 2011;204:77.e1-16. 308

309	3. Blaas HG, Eik-Nes SH, Berg S, et al. In-vivo three-dimensional ultrasound
310	reconstructions of embryos and early fetuses. Lancet 1998;352:1182–6.
311	4. Blaas HG, Eik-Nes SH, Bremnes JB. Embryonic growth. A longitudinal
312	biometric ultrasound study. Ultrasound Obstet Gynecol 1998;12:346–54.
313	5. Blaas HG, Eik-Nes SH, Kiserud T, et al. Early development of the forebrain
314	and midbrain: a longitudinal ultrasound study from 7 to 12 weeks of gestation.
315	Ultrasound Obstet Gynecol 1994;4:183–92.
316	6. Blaas HG, Eik-Nes SH, Kiserud T, et al. Early development of the hindbrain: a
317	longitudinal ultrasound study from 7 to 12 weeks of gestation. Ultrasound Obstet
318	Gynecol 1995;5:151–60.
319	7. Gijtenbeek M, Bogers H, Groenenberg IAL, et al. First trimester size charts of
320	embryonic brain structures. Hum Reprod 2014;29:201–7.
321	8. Rousian M, Hop WC, Koning AHJ, et al. First trimester brain ventricle fluid and
322	embryonic volumes measured by three-dimensional ultrasound with the use of
323	I-Space virtual reality. Hum Reprod 2013;28:1181–9.
324	9. Tanaka H, Senoh D, Hata T. Intrauterine sonographic measurement of

embryonic brain vesicle. Hum Reprod 2000;15:1407–12. 325

326	10 Shiraishi N, Katayama A, Nakashima T, et al. Morphology and morphometry
327	of the human embryonic brain: A three-dimensional analysis, NeuroImage
328	2015;115:96–103.
329	11 O'Rahilly R, Müller F. Developmental stages in human embryos: including a
330	revision of Streeter's Horizons and a survey of the Carnegie Collection.
331	Washington, D.C.: Carnegie Institution of Washington, 1987.
332	12. Verwoerd-Dikkeboom CM, Koning AH, van der Spek PJ, et al. Embryonic
333	staging using a 3D virtual reality system. Hum Reprod 2008;23:1479–84.
334	13. O'Rahilly R, Müller F. Developmental stages in human embryos: revised and
335	new measurements. Cells Tissues Organs 2010;192:73–84.
336	14 Desmond ME, O'Rahilly R. The growth of the human brain during the
337	embryonic period proper. 1. Linear axes. Anat Embryol (Berl) 1981;162:137–51.
338	15 Levitan ML, Desmond ME. Expansion of the human embryonic brain during
339	rapid growth: area analysis. Anat Rec 2009;292:472–80.
340	16. van Duijn S, Nabuurs RJ, van Rooden S, <i>et al</i> . MRI artifacts in human brain

tissue after prolonged formalin storage. Magn Reson Med 2011;65:1750–8.

17 Nishimura H, Takano K, Tanimura T, *et al.* Normal and abnormal
development of human embryos: first report of the analysis of 1,213 intact
embryos. Teratology 1968;1:281–90.

18 Shiota K, Yamada S, Nakatsu-Komatsu T, *et al.* Visualization of human
 prenatal development by magnetic resonance imaging (MRI). Am J Med Genet

347 A 2007;143A:3121–6.

19 Matsuda Y, Ono S, Otake Y, *et al.* Imaging of a large collection of human
 embryo using a super-parallel MR microscope. Magn Reson Med Sci
 2007;6:139–46.

351 20. Blaas H-G. The embryonic examination. Ultrasound studies on the

development of the human embryo. Thesis, Norwegian University of Science

and Technology, Trondheim, pp 75–76, 1999.

21. Rabelink IAA, Degen JEM, Kessels MEW, *et al.* Variation in early growth.

Eur J Obstet Gynecol Reprod Biol 1994;53: 39–43.

356 **22.** Shiota K. Variability in human embryonic development and its implications

357 for the susceptibility to environmental teratogenesis. Birth Defects Res A

2009;85:661–6.

360 Figure legends

361

362	Figure	1. MR images	of midsagittal	and transverse	sections
	J	- 3			

363	(A-i) A human brain at CS23. The plane corresponding to the transverse section
364	is indicated by a red dashed line on the midsagittal section, while the plane
365	corresponding to the midsagittal section is indicated by a red dashed line on the
366	transverse section. The plane was shifted from the "true" midsagittal section
367	(indicated by a blue dashed line) because the "true" line does not include the
368	telencephalon.
369	FOa: fronto-occipital diameter (primordium chiasmatis), FOb: fronto-occipital
370	diameter (velum transversum), ML: mesencephalic length, MH: mesencephalic
371	height, CL: cerebellar length; CH: cerebellar height, BT: bitemporal diameter (i.e.
372	the distance between the lateral surface of the right and left temporal
373	prominences).
374	(A-ii) Boundaries between the three primary brain vesicles were established by

drawing a perpendicular line connecting the dorsal and ventral primary fissures,

376	separating	the	prosencephalon	from	the	mesencephalon	and	the
377	mesenceph	alon fr	om the rhombence	phalon.				

- Pr: prosencephalon, Me: mesencephalon, Rh: rhombencephalon, Md: sum of Pr,
- 379 **Me, and Rh**.
- 380 Measurements were obtained from two previous studies (Desmond and
- O'Rahilly, 1981; Levitan and Desmond, 2009).
- 382 **(B)** Human brain at CS16.
- 383 **(C)** Human brain at CS13.
- 384

.

³⁸⁵ Figure 2. Embryonic brain length measurements according to Carnegie stages.

386

- Figure 3. Area measurements between CS13 and CS23.
- 388 The rhombencephalon in our data is compared with "whole cerebellum" defined 389 in the previous study¹⁵.

- ³⁹¹ Figure 4. Comparison of the present volume measurements with Blaas' study.
- (A) Increase in brain cavity and whole body volume in relation to the CRL.

(B) Prosencephalon, mesencephalon, and rhombencephalon volumes in relation
 to the CRL.

Blue: the present study, red: data from Blaas' study (pp 76 in Ref. 20). The prosencephalon volume was calculated as the sum of the hemispheres and the diencephalon.

398

³⁹⁹ Figure 5. Brain cavity volume in relation to the CS.

400 The present volume measurements were compared to those reported by401 Rousian et al.

The mean volume of our data overlapped, from CS13 to 17, with the quadratic

403 function employed by Rousian et al⁸.

404

Supplementary Figure 1. Correlation between the seven length segments measured and the CRL. The data imply that brain size measurements are useful indicators of linear embryonic neural development.

				-		-				
Segment (Ymm)	Presen	t study			Desmond & O'Rahilly (1980)					
=a×[CRL] + b	а	b	n	r	а	b	n	r		
FOa	0.21	0.64	101	0.93	0.25	0.57	02	0.02		
FOb	0.28	0.36	101	0.95	0.25	-0.57	00	0.92		
BT	0.34	-0.68	101	0.96	0.27	-0.78	75	0.97		
ML	0.16	0.77	101	0.94	0.17	0.32	83	0.90		
MH	0.14	-0.01	101	0.96	0.12	-0.29	85	0.92		
CL	0.07	0.17	101	0.95	0.02	0.80	74	0.14		
СН	0.06	-0.22	101	0.91	0.07	-0.06	77	0.52		

 Table 1.
 Correlation between CR-length and measured segments

CRL; Crown-Rump length, r; correlation coefficient

Table 2.	Correlation between Carnegie stages and measured areas									
Area (Y mm ²)	Present	study			Levitan & Desmond (2009)					
= a×e ^{b[CS]}	a ×10 ⁻²	b×10⁻¹	n	R^2	a ×10 ⁻²	b×10 ⁻¹	n	R ²		
Median section	6	3.11	101	0.92	3.33	4.37	52	0.96		
Prosencephalon	0.6	3.88	101	0.96	0.74	4.94	58	0.95		
Mesencephalon	0.8	3.26	101	0.95	2.92	3.84	58	0.91		
Rhombencephalon *	11	2.35	101	0.85	0.03	4.95	52	0.84		

CS = Carnegie stages; *; whole cerebellum in Levitan & Desmond (2009)

	Whole brain							P	rosencepha	lon			I	Mesencepha	alon			Rł	nombencep	halon	
Carneg	jie		mean v	olume (mm	³)			mean vo	olume (mm	3)			mean volume (mm ³)				mean volume (mm ³)				
stage	n	total	(SD)	tissue	cavity	ratio	total	(SD)	tissue	cavity	ratio	total	(SD)	tissue	cavity	ratio	total	(SD)	tissue	cavity	ratio
13	5	2.1	0.7	1.2 /	0.9	0.82	0.5	0.2	0.3 /	0.2	0.77	0.3	0.1	0.2 /	0.1	0.40	1.3	0.4	0.7	0.7	0.96
14	9	5.7	1.4	2.6 /	3.1	1.16	1.2	0.4	0.7 /	0.6	0.88	0.7	0.1	0.4 /	0.3	0.60	3.8	0.9	1.6	2.3	1.43
15	9	11.4	1.6	5.5 /	6.0	1.10	2.6	0.4	1.5 /	1.2	0.79	1.3	0.2	0.8 /	0.5	0.67	7.5	1.2	3.2	4.3	1.34
16	10	16.3	2.6	7.4 /	8.9	1.20	4.1	1.1	2.1 /	2.0	0.96	2.0	0.4	1.2 /	0.9	0.74	10.1	1.3	4.2	6.0	1.45
17	10	29.9	6.2	12.2 /	17.8	1.46	9.0	2.5	4.3 /	4.7	1.11	3.9	1.0	1.9 /	2.0	1.04	17.1	3.0	6.0	/ 11.1	1.84
18	9	57.7	7.5	27.6 /	30.1	1.09	19.3	2.7	9.8 /	9.6	0.98	8.1	0.9	4.1 /	4.0	0.98	30.3	4.8	13.7	/ 16.6	1.21
19	10	79.0	8.9	43.9 /	35.1	0.80	29.9	4.6	17.1 /	12.8	0.75	11.6	1.2	6.6 /	4.9	0.74	37.5	4.9	20.1	/ 17.4	0.87
20	10	81.9	19.0	52.8 /	29.1	0.55	36.8	8.2	23.0 /	13.8	0.60	11.3	2.6	6.8 /	4.5	0.66	33.8	9.0	22.9	/ 10.8	0.47
21	10	145.1	16.6	95.3 /	49.8	0.52	74.0	14.5	47.5 /	26.5	0.56	19.0	2.8	12.5 /	6.5	0.52	52.1	6.2	35.3	/ 16.9	0.48
22	9	206.4	39.0	135.2 /	71.1	0.53	115.5	29.0	70.5 /	45.0	0.64	25.7	4.1	17.9 /	7.8	0.44	65.2	10.2	46.8	/ 18.3	0.39
23	10	286.3	61.7	189.1 /	97.2	0.51	184.5	50.5	111.0 /	73.5	0.66	28.9	4.0	21.9 /	7.0	0.32	73.1	10.0	56.3	/ 16.7	0.30

Table 3. Brain volume of human embryos measured by manual segmentation

Formula				
V (mm ³) = a [X][Y][Z]+b	а	[X][Y][Z]	+b	r
Volume with ventricles				
Whole brain	0.52	[BT] ³	26.2	0.97
Prosencephalon	0.92	[FOa] ³	-9.13	0.86
	0.49	[FOb] ³	-8.21	0.93
	0.34	[BT] ³	4.05	0.98
	0.59	[FOa][FOb][BT]	-7.50	0.97
Mesencephalon	0.70	[MH] ³	3.27	0.94
	0.28	[ML] ³	0.90	0.95
Rhombencephalon	18.1	[CH] ³	19.8	0.80
	11.2	[CL] ³	9.87	0.92
Volume without ventricles				
Whole brain	0.35	[BT] ³	12.7	0.98
Prosencephalon	0.57	[FOa] ³	-6.39	0.88
	0.30	[FOb] ³	5.18	0.94
	0.21	[BT] ³	2.11	0.99
	0.36	[FOa][FOb][BT]	-5.03	0.97
Mesencephalon	0.53	[MH] ³	1.42	0.96
	0.21	[ML] ³	-0.21	0.95
Rhombencephalon	15.1	[CH] ³	10.3	0.85
	8.99	[CL] ³	2.68	0.94

Table 4. Calculation of brain volume from length measurements

Prosencephalon

