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Abstract 

 

Urban arterial corridors are landscapes that give rise to short and long-term 

exposures to transportation-related pollution. With high traffic volumes, congestion, and 

a wide mix of road users and land uses at the road edge, urban arterial environments are 

important targets for improved exposure assessment to traffic-related pollution. Applying 

transportation management strategies to reduce emissions along arterial corridors could 

be enhanced if the ability to quantify and evaluate such actions was improved. However, 

arterial roadsides are under-sampled in terms of air pollution measurements in the United 

States and using observational data to assess such effects has many challenges such as 

lack of control sites for comparisons and temporal autocorrelation. The availability of 

traffic-related data is also typically limited in air monitoring and health studies. The work 

presented here uses unique long-term roadside air quality monitoring collected at the 

intersection of an urban arterial in Portland, OR to characterize the roadside atmospheric 

environment. This air quality dataset is then integrated with traffic-related data to assess 

various methods for improving exposure assessment and the roadside environment. 

Roadside nitric oxide (NO), nitrogen dioxide (NO2), and particle number 

concentration (PNC) measurements all demonstrated a relationship with local traffic 

volumes. Seasonal and diurnal characterizations show that roadside PM2.5 (mass) 

measurements do not have a relationship with local traffic volumes, providing evidence 

that PM2.5 mass is more tied to regional sources and meteorological conditions. The 

relationship of roadside NO and NO2 with traffic volumes was assessed over short and 

long-term aggregations to assess the reliability of a commonly employed method of using 
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traffic volumes as a proxy for traffic-related exposure. This method was shown to be 

insufficient for shorter-time scales. Comparisons with annual aggregations validate the 

use of traffic volumes to estimate annual exposure concentrations, demonstrating this 

method can capture chronic but not acute exposure. As epidemiology and exposure 

assessment aims to target health impacts and pollutant levels encountered by pedestrians, 

cyclists, and those waiting for transit, these results show when traffic volumes alone can 

be a reliable proxy for exposure and when this approach is not warranted. 

Next, it is demonstrated that a change in traffic flow and change in emissions can 

be measured through roadside pollutant concentrations suggesting roadside pollution can 

be affected by traffic signal timing. The effect of a reduced maximum traffic signal cycle 

length on measurements of degree of saturation (DS), NO, and NO2 were evaluated for 

the peak traffic periods in two case studies at the study intersection. In order to reduce 

bias from covariates and assess the effect due to the change in cycle length only, a 

matched sampling method based on propensity scores was used to compare treatment 

periods (reduced cycle length) with control periods (no change in cycle length). 

Significant increases in DS values of 2-8% were found along with significant increases of 

5-8ppb NO and 4-5ppb NO2 across three peak periods in both case studies. Without 

matched sampling to address the challenges of observational data, the small DS and NOx 

changes for the study intersection would have been masked and matched sampling is 

shown to be a helpful tool for future urban air quality empirical investigations. 

Dispersion modeling evaluations showed the California Line Source Dispersion 

Model with Queuing and Hotspot Calculations (CAL3QHCR), an approved regulatory 
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model to assess the impacts of transportation projects on PM2.5, performed both poor and 

well when predictions were compared with PM2.5 observations depending on season. 

Varying levels of detail in emissions, traffic signal, and traffic volume data for model 

inputs, assessed using three model scenarios, did not affect model performance for the 

study intersection. Model performance is heavily dependent on background 

concentrations and meteorology. It was also demonstrated that CAL3QHC can be used in 

combination with roadside PNC measurements to back calculate PNC emission factors 

for a mixed fleet and major arterial roadway in the U.S.  

The integration of roadside air quality and traffic-related data made it possible to 

perform unique empirical evaluations of exposure assessment methods and dispersion 

modeling methods for roadside environments. This data integration was used for the 

assessment of the relationship between roadside pollutants and a change in a traffic signal 

setting, a commonly employed method for transportation management and emissions 

mitigation, but rarely evaluated outside of simulation and emissions modeling. Results 

and methods derived from this work are being used to implement a second roadside air 

quality station, to design a city-wide integrated network of air quality, meteorological, 

and traffic data including additional spatially resolved measurements with feedback loops 

for improved data quality and data usefulness. Results and methods are also being used to 

design future evaluations of transportation projects such as freight priority signaling, 

improved transit signal priority, and to understand the air quality impacts of changes in 

fleet composition such as an increase in electric vehicles.  
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Chapter 1 Introduction 

 

Transportation-related emissions are a significant source of air pollution in urban 

areas. Increasing urbanization worldwide 1 and growth in high density development 2 will 

both lead to more people who reside, work, attend school, and commute within a near-

road environment. More than four-fifths of the United States population currently resides 

in metropolitan areas and from 2000 to 2010 population growth rates for metropolitan 

areas were greater than the national rate 3.  Elevated concentrations of traffic-related 

pollution such as nitric oxide (NO), nitrogen dioxide (NO2), and particle number 

concentrations (PNC) surrounding major roadways have been well documented 4–7. 

Adverse respiratory and cardiovascular effects for populations living within this near 

roadway environment have been shown through epidemiology and toxicology evidence 

4,8,9. Short-term exposures as experienced by drivers, vehicle occupants, cyclists or 

pedestrians are also associated with short-term morbidity and negative health responses 

10–12.  

In recognition of this heterogeneous pattern of traffic-related pollution and 

increased health impacts, the United States Environmental Protection Agency (U.S. EPA) 

has made the one hour NO2 National Ambient Air Quality Standard more stringent and 

mandated roadside monitoring of NO2 in population centers greater than 500,000 

residents 13.  This new roadway monitoring network is primarily sited near major 

highways and will also include  measurements of PM2.5 mass and CO 14. Major urban 

arterial roadways represent 1.9% of total miles in the U.S., but account for at least 57.8% 
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of urban traffic 15. This urban arterial system contains high traffic volumes, but unlike 

highways, also contains a high compositional mix of road users such as those waiting at a 

transit stop, walking within the corridor, and also bicyclists. This transportation 

microenvironment also contains a variety of land uses including residential, school, park, 

or commercial located directly at the edge of the roadway. Close proximity to traffic 

results in higher exposure concentrations to traffic-related pollution for all road users 16–

20. There is also potential for increased uptake of traffic related pollution for bicyclists 

and pedestrians due to increased respiration rates or longer travel times 19,21,22. The urban 

arterial micro-environment is an important and dominant feature of cities, and is a key 

location for increased exposures to traffic-related pollution but remains an under-

measured microenvironment.  

Public health practitioners, urban planners, and transportation engineers are 

looking for ways to reduce the impacts of arterial roadways on public health. Arterial 

roadway environments present opportunities to apply innovative corridor planning, traffic 

management, transit services and urban design but the impacts of such methods are rarely 

quantified 23. This view of arterial roadways as targets for adaptation and change is one of 

the primary motivations for a Task Force on Arterials and Public Health by the 

Transportation Research Board Technical Activities Council. Applying transportation 

innovations to mitigate emissions along roadways and across transportation systems 

requires the ability to quantify and evaluate such actions. Assessing new ways to collect 

and use information to design and operate systems and services is a key recommendation 

of the President’s Council of Advisors on Science and Technology 2016 report 
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“Technology and The Future of Cities”24. One example of a traffic operation strategy 

frequently applied to arterial roadways is traffic signal coordination to smooth traffic 

flows, mitigate congestion, reduce fuel consumption and reduce air pollution 25–28. 

Impacts of innovative operation strategies such as signal coordination or other techniques 

likes changing roadway design and shifting mode shares are typically evaluated using a 

combination of traffic simulation, emissions, and dispersion modeling but it is rare to 

evaluate such changes with empirical findings. Additionally, arterial roadsides are under-

sampled in terms of air pollution measurements in the U.S and using observational data 

to assess such changes has many challenges such as high variability in covariates, non-

randomized study design, temporal autocorrelation and lack of control case studies for 

comparisons. The availability of traffic-related data is also typically limited in air 

monitoring and health studies. The work presented here uses unique long-term roadside 

air quality monitoring collected at the intersection of a major urban arterial in Portland, 

OR to characterize the roadside atmospheric environment. This air quality dataset is then 

integrated with traffic-related data to assess various methods for improving exposure 

assessment and the roadside environment. 

 

1.1 Background on Near-Road Air Quality Monitoring 

Urban arterial roadways are under-sampled in terms of air quality in the U.S. and 

near roadway monitoring studies are typically conducted on short time scales such as 

weeks or months. To our knowledge, the only near road air quality studies using a long-

term curbside station have been conducted outside of North America and primarily within 
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European Union countries with different fuel use and vehicle fleets than U.S. cities 

(Appendix A, Table A-1). Other strategies typically employed in near road air quality 

research include making measurements perpendicular from the road at increasing 

distance to understand the spatial extent of traffic-related pollution (Appendix A, Table 

A-2) and mobile measurements made within the roadway to develop emission factors 

under real-world driving conditions and the contribution of in-car exposure to total 

exposure 29,30.  

The curbside monitoring studies shown in Table A-1 have a wide range of study 

lengths (4 day to 25 years). Curbside monitoring has been a part of some European Union 

air quality networks for quite some time as a requirement within the national monitoring 

networks that also include urban background, suburban, and rural measurements. In some 

examples, data from such stations have been used in research in addition to their initial 

regulatory purpose. Long-term, curbside monitoring has been used to document long-

term trends in specific pollutants and pollutant ratios, and/or comparison of pollutant 

concentrations between different types of land use 31–34.  

There is one example where a curbside station in London (the Marylebone Road 

supersite, part of the London Air Quality Network operated by the Environmental 

Research Group of Kings College) was used as the field piece for a much larger scale 

research project called Dispersion of Air Pollution and its Penetration into the Local 

Environment (DAPPLE). The DAPPLE project focused on advanced flow and dispersion 

modeling along with road-user exposure assessment in a street canyon environment with 

larger goals of using such dispersion modeling to characterize small-scale urban 
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atmospheric dispersion and evaluate sustainable development goals in terms of changes 

to air quality exposures 35,36. The research presented in the following sections is similar in 

that our field station can be used to characterize small scale air quality exposures and 

assess how some transportation decisions affect roadside pollution through evaluating the 

relationships of traffic signalization with roadside pollution. However, this research is 

focused on a more open arterial and not a street canyon environment.  

In contrast to Table A-1, most projects in Table A-2 that investigated the distance 

at which traffic-related pollutants reach background concentrations away from roadways 

have occurred in the U.S. This type of near road monitoring primarily occurs in highway 

environments and has provided critical information about the spatial extent of increased 

pollution due to traffic. Table A-2 is not an exhaustive list of near roadway studies and 

Karner et al (2010)5 and Zhou and Levy (2007)6 can be referred to for meta-analyses of 

distance decay relationships of traffic-related pollutants.  

Long-term projects using this measurement strategy for up to one full year of data 

collection are Federal Highway Administration (FHWA) and EPA sponsored projects at 

Las Vegas, Nevada and Detroit, MI along with a pilot projects by the EPA in Brooklyn, 

NY and Raleigh, NC 37,38. These year-long projects have helped to support EPA’s NO2 

regulatory decisions, develop guidance for the new monitoring network, document 

correlation between pollutants, test implementation of new measurement technologies, 

establish important datasets to be used with modeling and toxicology studies, model the 

infiltration process of pollutants to the indoor environment, and increased understanding 

of how barriers like sound walls affect dispersion (Table A-2). Other work of this nature 
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done in California and Texas have presented novel information about the presence of 

ultrafine particles in the near road environment 39–45. 

Data from the studies in Table A-2 have provided a wealth of new information 

about pollutant behavior surrounding highways, but do not necessarily describe a U.S. 

urban arterial environment. The EPA’s Brooklyn project named the Brooklyn Traffic 

Real-time Ambient Pollutant Penetration and Environmental Dispersion (B-TRAPPED) 

project did involve short-term measurements for an urban environment but not long-term 

characterization of roadside pollutants. The focus of B-TRAPPED was to assess the 

highway’s zone of influence and also to measure and model the dispersion of a 

contaminant through an urban street canyon, the flux onto a single receptor building in 

the canyon, and then the infiltration into a three-story, receptor building to understand 

traffic-related pollution but also the possible movement of an intentional release of a 

substance into a dense urban area 46,47. The study also employed the use of wind tunnel 

studies and computational fluid dynamic (CFD) modeling similar to DAPPLE 48,49.  

The near-road air quality monitoring conducted to support this dissertation 

follows the curbside model of studies presented in Table A-1 with continuous 

measurements of NO, NO2, PM2.5 mass, and episodic measurements of PNC directly at 

the road edge of a signalized intersection. Simultaneous traffic volume, measures of 

traffic congestion, and signal timing data are also collected though the adaptive traffic 

signal system operating on the study corridor. It is unique to have all of these components 

on a long-term scale for a study at a U.S. arterial roadside. Monitoring station setup and 

data collection methods are described in detail in section 2.2.  



7 

 

Chapter 2 Diurnal and Seasonal variations of NO, NO2, and PM2.5 mass as a function of 

traffic volumes alongside an urban arterial  

 

The bulk of the material presented in this Chapter was published in:  

Kendrick, C.M., Koonce, P., and L.A. George, Diurnal and Seasonal variations of NO,  

NO2, and PM2.5 mass as a function of traffic volumes alongside an urban arterial. 

Atmospheric Environment, 122, 133-141 (2015)50. 

 

Abstract 

Urban arterial corridors are landscapes that give rise to short and long-term 

exposures to transportation-related pollution. With high traffic volumes and a wide mix 

of road users, urban arterial environments are important targets for improved exposure 

assessment to traffic-related pollution. A common method to estimate exposure is to use 

traffic volumes as a proxy. The study presented here analyzes a unique yearlong dataset 

of simultaneous roadside air quality and traffic observations for a U.S. arterial to assess 

the reliability of using traffic volumes as a proxy for traffic-related exposure.  Results 

show how the relationships of traffic volumes with NO and NO2 vary not only by time of 

day and season but also by time aggregation. At short-term aggregations (15 minutes) 

nitrogen oxides were found to have a significant linear relationship with traffic volumes 

during morning hours for all seasons although variability was still high (r2= 0.1 - 0.45 for 

NO, r2=0.14 - 0.27 for NO2), and little to no relationship during evening periods (r2<0.01 

- 0.03 for NO, r2<0.01 - 0.05 for NO2). Comparisons with annual aggregations validate 

the use of traffic volumes to estimate annual exposure concentrations for morning periods 

(r2= 0.89 for NO, r2=0.87 for NO2) and evening NO2 (r
2=0.46). Traffic volumes are a 
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weak or poor predictor for annual evening NO (r2= -0.09) and short-term 15 minute 

aggregations, particularly evening periods. Seasonal and diurnal characterizations show 

that roadside PM2.5 (mass) measurements do not have a relationship with local traffic 

volumes, leading us to conclude that PM2.5 mass is more tied to regional sources and 

meteorological conditions. As epidemiology and personal exposure assessment research 

aims to study health impacts and pollutant levels encountered by pedestrians, bicyclists, 

those waiting for transit, and other road users, these results show when traffic volumes 

alone can be a reliable proxy for exposure and when this approach is not warranted.  

 

2.1 Introduction 

Roadside measurements are used to characterize diurnal and seasonal variations 

of NO, NO2, and PM2.5 as a function of traffic volumes. Such characterizations directly 

improve understanding of ambient surrogates of traffic for the U.S. urban arterial 

microenvironment. Characterization by time of day and seasons is important as 

epidemiological studies incorporate time activity patterns within cohort studies to 

understand exposure beyond annual mean concentrations 51. The promotion of active 

transportation modes such as bicycling and walking also increases the need for 

understanding short-term concentrations to improve exposure evaluation for these travel 

modes 52,53. Lastly, our analysis has implications for using traffic volumes as a proxy for 

transportation-related emissions. For example, land use regression (LUR) typically uses 

proximity to road type or traffic volumes to estimate exposure54. As LUR models are 

developed to predict more temporally resolved exposure estimates and health studies 

move towards shorter term exposure and impact assessments, the limitations of traffic 
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volumes as a proxy highlighted here are important to note.  

2.2 Methods 

An air quality monitoring station was established at a high traffic intersection that 

includes a diverse mix of road users (including freight, public transit, pedestrians, cyclists 

and passenger vehicles) in Portland, Oregon USA (southwest corner of SE Powell 

Boulevard and SE 26th Avenue, (Figure 2.1). SE Powell Boulevard is a major arterial 

roadway that runs east/west with peak hourly traffic volumes of 2,800 vehicles and 

28,000 Average Annual Daily Traffic (AADT), including 6% trucks on weekdays. At the 

study intersection, SE Powell Blvd is a four lane undivided arterial with two vehicle lanes 

in each direction, left turn bays and auxiliary right turn lane in the eastbound direction. 

SE 26th Avenue has one vehicle lane in each direction, left turn bays and a bike lane in 

each direction. SE Powell Boulevard runs a high frequency bus route and SE 26th Avenue 

runs a typical bus route.  
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Figure 2.1 Schematic of study intersection. Air quality monitoring cabinet (purple circle) 

is located on the SW corner of Powell Blvd which runs E/W and SE 26th Ave runs N/S. 

 

Diagonally across the intersection from the monitoring station is a high school 

that serves a population of 1,550 students and a staff of approximately 80. Pedestrian 

activity is high through this intersection due to the school, nearby housing and 

apartments, a city park at the SW corner of the intersection, restaurants in the vicinity, 

and access to bus stops for major north-south and east-west bus routes. A snapshot traffic 

survey was conducted by the City of Portland for two hours in the morning and two hours 

in the evening on one day in February 2012 55. This survey found morning pedestrian 

levels at 225 people over two hours (which included the school start) and the evening two 

hour period had a total of 157 pedestrians crossing, not including individuals waiting at 

bus stops.  This same survey found a two hour morning bicycle count for all crossings to 
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be 111 bikes and the evening period to contain 106 bikes. City bicycle data shows 

summer biking levels to range from 1.8-2.4 times higher than bike count levels for the 

month of February which is typically cold and wet in the Portland area 56.  

Traffic volumes in fifteen minute bins for each lane in the intersection were 

collected using inductive loop detectors and the Sydney Coordinated Adaptive Traffic 

System (SCATS) infrastructure. SCATS is an adaptive signal system that operates on a 

3.7 mile stretch of Powell Blvd including the study intersection 57. NO and NO2 were 

monitored using a Teledyne T200 chemiluminescence (NOx = NO + NO2) analyzer and 

PM2.5 using a TSI DRX DustTrak monitor.  Equipment is housed in a pole mounted 

traffic signal cabinet with a sampling inlet placed at 2.5 m above the sidewalk and 

connected to the inlet with non-reactive sampling lines. The height of the inlet ensures 

that intakes are out of reach of disturbance from the street (there being a heavily used bus 

stop at the corner) but still captures road emissions at the street level. Prior to installation, 

needed lengths of tubing for each instrument were tested to confirm that there was no 

significant loss in pollutants. Calibration of the NOx analyzer was performed throughout 

the study period using certified standard gases and calibration of the DustTrak was 

conducted through factory calibration with zero and flow checks performed on site, with 

zero checks performed approximately every 14 days. 

Additional data collected at the intersection includes wind speed and direction 

(RM Young 3D Sonic Anemometers Model 81000) and temperature and relative 

humidity (RM Young Probe Model 41382VC). Wind data was supplemented with 

measurements from the Oregon Department of Environmental Quality’s (DEQ) regional 
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monitoring station. The DEQ site is located 3.4 km east of the roadside station and 0.09 

km south of Powell Boulevard. Continuous air quality (NO, NO2, PM2.5) and 

meteorology data from this background station is collected, stored and accessed through 

the Portland Horizons database 58. The DEQ site instruments and calibration procedures 

follow federal monitoring guidelines. All data referred to as "urban background" is from 

this DEQ station. 

Data analysis presented here is based on one year of monitoring including a total 

of 362 days of NOx and 289 days of PM2.5 measurements at 30-second intervals (January 

01, 2013- December 31, 2013). Total sampling points for PM2.5 were limited by flow and 

data storage issues as well as time off site for factory calibration. For quality 

assurance/quality control (QA/QC) reasons, measurements made outside of each 

instrument’s operating temperature range based on continuous monitoring of the cabinet 

temperature were excluded from further analysis. Photometers such as the DustTrak can 

overestimate ambient particulate matter concentrations due to particle composition, 

density, morphology, and relative humidity (due to particle hygroscopicity). Therefore a 

correction factor of 0.5 was applied to the DustTrak measurements based on a 

comparison study in Portland between DustTrak and gravimetric measurements of 

ambient PM2.5 
59. Data presented is aggregated to 15 minutes to allow for direct 

comparisons with traffic volumes which are binned to 15 minutes. Analysis uses 

measurements only when the wind direction was coming from the road. This will be 

referred to as the road wind direction bin which includes 270º (W) to 365º (N) and 0º (N) 

to 125º (SE) in order to capture arterial traffic influences. Data analysis was conducted 
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using R statistical language and the lattice and quantreg packages 60–62.  

2.3 Results and Discussion 

2.3.1 Traffic and Pollutant Relationships 

Mean, median, 5th and 95th percentile values of roadside NO, NO2, PM2.5 and 

traffic volumes are presented in Table 2.1 to show distributions of measurements and 

compare to urban background concentrations. Data is separated by weekdays and 

weekends. For each pollutant, roadside measurements show elevated peak concentrations 

(95th percentiles) compared to background levels, demonstrating an increase in measured 

pollutant levels for the roadside over urban background. Over the entire monitoring 

period, roadside weekday and weekend means are significantly greater than urban 

background means for all three pollutants using a data subset with no serial correlation, 

(t-values ranging from 4.4 to 32, all p-values <0.01).   

Roadside NO2 and PM2.5 show smaller differences from urban background levels 

than roadside NO. This is not unexpected for NO2 since the rate of secondary formation 

of NO2 directly at the roadside would vary depending on mechanical turbulence, 

dispersion by wind, and existing concentrations of NO, ozone (O3, primary oxidant for 

NO to NO2 conversion) and other chemical species. Additionally, the urban background 

site is located within the 300m buffer that NO and NO2 are typically elevated above 

background concentrations from the major road 5. The average NO/NO2 ratio for the 

urban background site is 0.7 while the average NO/NO2 ratio at the roadside site is 1.6 
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showing a higher proportion of NO or freshly emitted pollutants as expected directly at a 

roadside.  

Mean weekday and weekend PM2.5 roadside concentrations were found to be 

statistically significant with roadside levels greater than background levels by a mean of 

the differences equal to only 2µg/m3 (weekdays) and 1 µg/m3 (weekends). The DustTrak 

has a resolution of 1 µg/m3 so the statistically significant difference is just above or at 

instrument resolution. Weekend mean and 95th percentile PM2.5 concentration for both the 

roadside and urban background site are slightly higher than weekdays despite higher 

traffic volumes on weekdays. Table 2.1 does not show a strong local relationship for 

roadside PM2.5 measurements compared to urban background.  

  

Table 2.1 Roadside and urban background comparisons for weekdays and weekends, 

spanning Jan 2013- Dec 2013 at 15 minute aggregations 
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To further investigate the impact of the roadway, the relationship of each 

pollutant versus traffic volumes for all weekdays and road wind direction bin is shown in 

Figure 2.1. The rest of the data analysis presented will focus on weekdays only when 

traffic volumes and exposure concentrations are highest and also because weekends show 

separate diurnal patterns. The median relationship between each pollutant concentration 

and vehicle volumes binned by fifty is highlighted by white triangles in Figure 2.1. These 

relationships show increasing NO and NO2 with increasing traffic volumes and little 

change in PM2.5 mass as a function of traffic at the intersection. Roadside NO and NO2 

are markers of the increased emissions due to the roadways while roadside PM2.5 mass is 

not responsive to local traffic volumes. For all three pollutants, variance is high as 

highlighted in Figure 2.1. How this variability changes by season and time of day is 

investigated next using seasonal and diurnal characterizations.  

 

Figure 2.2 All weekday roadside pollutant measurements versus traffic volumes. White 

triangles show the median relationship of each pollutant with traffic volume bins of fifty. 
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2.3.2 Weekday, Seasonal and Diurnal Characterization of Roadside Pollutant 

Concentrations 

 Seasonal trends and diurnal patterns of traffic volumes and roadside pollutant 

measurements are presented in Figure 2.3 with black lines representing the 5th and 95th 

percentiles, and the colored line is the median. Total traffic volumes and peak morning 

and evening traffic volumes do not change much seasonally for the study intersection 

(Figure 2.3a). Daily peak and median concentrations for all three pollutants are greatest 

in the fall and winter and variability is greatest for these seasons as well (Figure 2.3b, c, 

d). These higher peak concentrations, elevated median levels, and overall greater 

concentrations ranges for all three pollutants in fall and winter reflect the lower boundary 

conditions and lower wind speeds (Figure 2.3e) leading to less dispersion for these 

seasons. These meteorological conditions allow for the maximum in NO, NO2, and PM2.5 

concentrations to vary more leading to increased variability overall for fall and winter. 

PM2.5 concentrations are also higher in fall and winter due to higher relative humidity 

conditions. Roadside measurements clearly show the potential for higher peak exposures 

to occur in the fall and winter for urban residents. 



17 

 

 

Figure 2.3 Weekday, seasonal diurnal distributions for (a) traffic volumes, (b-f) roadside 

NO, NO2, wind speed, PM2.5, and relative humidity, and (g-k) urban background NO, 

NO2, wind speed, PM2.5, and relative humidity. Colored lines represent the 50th percentile 

and the black lines are the 10th and 90th percentile.  

 

2.3.3 Diurnal NO and NO2 

Roadside NO and NO2 have a bi-modal diurnal distribution for weekdays 

reflecting the morning and evening rush hours (Figure 2.3a, b, c). The NO and NO2 bi-

modal pattern shows a seasonal trend. The evening peaks of NO and NO2 are more 

pronounced in fall and winter. The fall/winter and spring/summer differences in bi-modal 

distributions can be attributed to seasonal boundary layer height conditions and 
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subsequent lower median wind speeds in fall and winter, and a change in the diurnal wind 

pattern by season (Figure 2.3d). As the height of the boundary layer increases in spring 

and summer, wind speed increases at a faster rate throughout the day, increasing 

dispersion. Urban background NO and NO2 (Figure 2.3g and h) show similar seasonal 

trends with higher concentrations in fall and winter and a more dominant peak in morning 

with little to no evening peak in spring and summer.  

The diurnal trends documented in other roadside monitoring studies are attributed 

to a combination of meteorology and changing traffic volumes throughout the year or 

measurements occur over a small segment of the year so the seasonal variation in diurnal 

trends is not captured. Summertime roadside measurements made in Raleigh, North 

Carolina near a highway showed only a morning peak in traffic-related pollutants (NO 

and CO) attributed to highly variable winds 63,64. Springtime urban arterial roadside 

measurements made in Copenhagen, Denmark showed two peaks for NOx, but the 

afternoon peak was much less distinct and attributed to lower afternoon traffic volumes 

65. Urban arterial roadside measurements made in Athens, Greece over several years 

showed seasonal, diurnal variation in roadside NO with the highest evening peak 

occurring in winter attributed to a combination of stable atmospheric conditions and 

higher traffic volumes compared to other months 31.  Conversely, Mavroidis and Ilia 

(2012) showed very little differences in NO2 diurnal trends across seasons with winter 

concentrations being the lowest.  

In contrast, we show distinct seasonal, diurnal differences that are due primarily 

to meteorology as the diurnal traffic volumes for this study road are uniform throughout 
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the whole year and data presented is for wind directions coming from the road only. The 

influence of boundary layer height and meteorology is supported by the urban 

background concentration trends and roadside measurements showing the distinct bi-

modal pattern following local traffic volumes for fall and winter. We also show a strong 

boundary layer height effect on NO2 with highest concentrations in winter despite the 

lower presence of oxidants and less photolysis. Urban background NO2 concentrations 

show this same seasonal pattern. Traffic simulation and emissions modeling for planning 

and new transportation projects typically use evening peak traffic volumes. Usually these 

models have a target of estimating maximum emission levels; evening peak traffic 

volumes tend to be greater than morning levels. However, if a transportation project 

requires estimates of peak pollutant concentrations and not just peak emissions, the 

results presented here show that morning periods are also important. The morning period 

could be used as a more consistent input across seasons for exposure concentration 

estimates depending on the objective of the modeling or exposure assessment project.  

2.3.4 Diurnal PM2.5 

PM2.5 concentrations do not show a bi-modal distribution correlated with traffic 

(Figure 2.3e). The lack of this pattern in seasonal, diurnal PM2.5 distributions is consistent 

with the lack of a strong relationship between local traffic volumes and roadside PM2.5 

mass. An increase in the morning can be seen for spring and winter. The median morning 

increase is 4 µg/m3 for spring occurring between 8-9am and 6 µg/m3 for winter occurring 

between 9-10am. These morning increases show some response to increasing traffic 

volumes, but the response is not consistent throughout the year. Morning PM2.5 peaks 
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have been found to occur slightly later than the traffic peak due to the secondary 

formation of fine particulate matter 66. Concentrations are highest in fall and winter for 

both roadside and urban background PM2.5 (Figure 2.3j). The diurnal pattern for these 

seasons is dominated by high relative humidity reflected by the elevated PM2.5 levels in 

early morning and nighttime which follow the seasonal, diurnal relative humidity 

distributions (Figure 2.3f and k). The cooler temperatures and higher relative humidity 

increase condensation and coagulation leading to increased PM2.5 
67. Annual and 

seasonal, diurnal distributions for measured PM2.5 do not consistently reflect the local 

traffic volumes well and are most characteristic of meteorological conditions such as 

relative humidity and boundary layer height increasing concentrations ranges for winter 

and fall which are also reflected in the urban background PM2.5 concentrations.  

 Particulate matter is a component of traffic-related emissions but PM mass 

measurements do not always capture this influence. A meta-analysis conducted by Karner 

et al (2010) based on over fifteen studies with PM2.5 measurements around roadways 

found mixed results regarding the spatial distribution of fine particles. Using a 

background normalization method, PM2.5 was found to have no trend around roadways so 

was not elevated at the roadside compared to background. However, using an edge of the 

roadway normalization method, PM2.5 was found to have a gradual decay away from 

roads. For an area such as Portland, OR that does not have as much diesel traffic as a 

freeway in California or a European roadway, the increase in PM2.5 mass directly from 

transportation-related emissions may be too small of a signal above the noise and 

secondary formation of urban background pollution.  
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Particles in the PM2.5 range have a variety of anthropogenic sources in an urban 

area including other primary combustion sources (industry, large-scale cooking, liquid 

and solid fuel heating), other non-road sources (construction equipment, railways), and 

secondary formation via gas to particle conversions, coagulation and condensation of 

smaller particles 68. These sources and processes lead to a more spatially homogenous 

pattern of PM2.5 mass. While PM2.5 mass does not always show the impact of local traffic 

emissions, other measurements of PM can. Particle composition has  been shown to vary 

spatially near roadways while PM2.5 mass had low spatial variation 69. In a review of 

indoor, outdoor, and personal exposure to PM, PM2.5 spatial variation was found to be 

much smaller compared to particle number concentrations (PNC) and larger size fractions 

68. Our results and the variability in PM2.5 mass responses to traffic across studies 

suggests that measurements of PM2.5 mass as a proxy to assess the impact of roadway 

pollution may need location-specific validation.   

2.3.5 Estimating Roadside NOx as a Function of Traffic Volumes 

 Measured roadside NO and NO2 is responsive to local traffic volumes, but with 

distinct seasonal and diurnal trends on the fifteen minute time scale. If traffic volumes are 

used as a proxy in exposure assessment focused on shorter time scales such as the time a 

pedestrian or bicyclist spends in the roadside microenvironment, traffic volumes alone 

may not correlate with roadside exposure concentrations. Quantile regression for the 

median is used to assess roadside NOx as a function of traffic volumes for short-term 

aggregations (15 minutes) for morning periods (5-10am) and evening periods (3-8pm) for 

each season. Time periods were chosen based on the previous diurnal analysis, 
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systematically controlling for diurnal meteorological changes and capturing different 

traffic flow regimes which encompass the morning and evening peaks in traffic volumes. 

In order to get rid of serial correlation, three data points were randomly sampled from 

each time period per day. At a random sample of three points per period per day, 

autocorrelation is reduced for NO, NO2, and traffic volumes and the total number of 

sample points used to build the models is reduced from 13,739 to 1,197. This method 

ensures no serial correlation while still allowing high resolution measurements at 15 

minute aggregations to be used. Figure 2.4 shows the median regression relationships of 

roadside NO2 as a function of traffic volumes for morning and evening periods for each 

season. Table 2.2 shows the following values for NO and NO2 models built using both the 

randomly selected data subset and all data which is serially correlated: model coefficients 

per 100 vehicles in a 15 minute period, standard errors for the coefficients per 100 

vehicles, and r2 values. Quantile regression was used because of the right skewed nature 

of the data and quantile regression can capture when a change in your independent 

variable exerts both a change in mean and variance in your dependent variable so 

heteroskedasticity is not a major concern 70. 
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Figure 2.4 Median regression relationships of traffic volumes and roadside NO2 given 

season and morning and evening peak periods. 
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Table 2.2 Median regression slope coefficients, standard errors and r2 values for roadside 

NOx as a function of traffic volumes using randomly sampled subset (black) and all 

serially correlated data points (grey). **significance at <0.01 and *significance at <0.05 

 

 

The standard errors and coefficient estimates in Table 2.2 overlap between each 

model built using the randomly sampled subset and each model built using all data with 

serial correlation. These results demonstrate that randomly selecting points within our 

time periods and seasons to remove any serial correlation maintains the relationships 

found using all data. Morning periods for all four seasons show a significant linear 

relationship (p-values <0.01) between traffic volumes and NO and NO2. Boundary layer 

height is low in the morning for all four seasons creating similar meteorological 

conditions. As traffic volumes increase throughout the morning and boundary layer 

height increases as well, a positive linear relationship is seen for traffic volumes and NO 

and NO2 on a fifteen minute scale. As meteorology introduces higher variability in the 

evening due to a changing boundary layer and more variable winds, the linear 
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relationship of traffic volumes explains little to none of the variance in roadside 15 

minute median NOx for this later time period (r2 range from <0.001 to 0.05).  

A linear relationship between NOx and traffic volumes was found for free-flow 

conditions only based on one month of roadside pollutant and hourly traffic 

measurements in Leicester, UK 71. The linear relationship broke down during unstable 

and congested traffic flow conditions with occupancy >10% 71. Results presented here 

show that the linear relationship even at short-term aggregations holds true past free-flow 

conditions and throughout the congested morning traffic period. We attribute the 

breakdown in the linear relationship to changing meteorological and dispersion 

conditions.  

 While the short-term NOx and traffic volume models were significant for all 

morning periods, variance explained ranges from 0.1 to 0.45. Figure 2.5 shows the 

relationship of traffic volumes and NO2 for morning and evening periods at a coarser 

aggregation using traffic volume bins of 50 vehicles and data across the entire year. Table 

2.3 shows the annual regression values for NO and NO2. There is still no significant 

effect of traffic volumes on annual NO for the evening period. Using binned annual data, 

the coefficient of determination (r2) values for NO and NO2 as a function of traffic 

volumes are 0.89 (NO morning), 0.87 (NO2 morning) and 0.46 (NO2 evening). 

Summarized over one year, the seasonal and some meteorological variability are 

averaged out and traffic volumes are a better predictor of roadside NOx. Even at a larger 

aggregation, the evening time period is still more variable compared to mornings. 
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Figure 2.5 Median roadside NO2 as a function of traffic volumes binned by 50 vehicles 

across the entire year. 

Table 2.3 Regression results for median annual NO and NO2 as a function of traffic 

volumes 

 

 

2.4 Conclusion 

In this study, we characterized the pollutant levels in an urban arterial roadside 

environment in a mid-sized U.S. city over the course of a year. Urban arterial roadside 

environments are under-sampled in the U.S. but have potential to produce high exposures 

due to the mix of road users and close proximity of urban residents. Roadside monitoring 

for a variety of roadway types including arterials is well established in European 

countries, though with different fleet mixes, fuel, vehicle and air quality standards. Such 

research has helped document long-term trends and important characteristics of traffic-
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related pollutants but has not focused on analysis of short-term changes as a function of 

traffic volume, time of day, and season 31,72,73. Here we extend the understanding of 

temporal variability of NO and NO2 by showing how the relationships with traffic 

volumes change temporally and we provide model coefficients (Table 2.3) that are 

applicable to exposure assessment in North America.  

Direct evaluations with local traffic volumes showed NO and NO2 are 

significantly affected by traffic volumes and PM2.5 mass is not responsive to traffic 

volumes at this study intersection. PM2.5 mass for this urban arterial appears to be more 

tied to regional sources. Seasonal and diurnal characterization of NO and NO2 showed 

morning peaks to be consistent throughout all seasons, while a bi-modal distribution with 

both a morning and evening peak was most prominent in fall and winter. The consistent 

diurnal traffic volume trends allowed for the large impact of seasonal boundary 

conditions to be evident. Highest exposures would occur in fall and winter when stable 

boundary layer conditions reduce dilution.  

Our study shows the limitations of using traffic volumes alone as a proxy for 

traffic-related emissions. During the evening time period in all seasons, there was little to 

no relationship of traffic volumes and roadside NOx using quantile regression modeling 

at 15 minute aggregations. While there was a significant relationship of traffic volumes 

and NOx for all morning periods, variability of roadside NOx as a function of traffic 

volumes was still high.  On an annual timescale and aggregated by traffic volume bins, 

the variability in roadside NO and NO2 due to seasonality and meteorology is reduced 

and traffic volumes alone are a better predictor of roadside concentrations, demonstrating 
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this method can capture chronic but not acute exposure. However, even at this coarser 

temporal scale, the relationship between traffic volumes and NO and NO2 levels during 

evening periods is not consistent. Other analyses using long-term urban background and 

some roadside monitoring data have noted that daily averaged data in exposure studies 

could potentially miss very different patterns of exposure 73.  As exposure science moves 

to capture more short-term patterns of exposure and account for time spent in traffic for 

various travel modes, traffic volumes will need to be used along with local and 

meteorological effects in order to best represent the high variability in roadside pollutant 

concentrations, especially for evening periods.   

Our findings that roadside PM2.5 mass is non-responsive to local traffic volumes 

supports the idea that other measures of particulate matter may be needed to capture the 

increased health risk due to primary combustion particles. This is an important 

consideration as the U.S. EPA adds PM mass measurements to the new roadway 

monitoring network. Identification of the type of environments that are more locally or 

regionally dominated by PM2.5 mass could help pinpoint the type of monitoring needed to 

accurately assess exposure to particulates due to traffic-related emissions. Emissions and 

dispersion models for the study intersection will be run in the future to allow for 

comparisons of measured concentrations and model outputs. If modeled PM2.5 mass 

concentrations are strongly tied to local traffic parameters, the models may be missing 

important processes related to urban particulate matter formation.  

 



29 

 

Chapter 3 Assessing the effects of a reduced traffic signal cycle length on roadside NOx 

through the use of matched sampling 

 

Abstract 

Empirical evaluations and quantification of the relationships between a change in 

traffic management and traffic-related pollutant concentrations are needed to evaluate 

how well manipulations to traffic signal operations work as a mitigation tool. Assessing 

these effects using observational data has many challenges such as variability in 

covariates, non-randomized study design, temporal autocorrelation, and lack of control 

case studies for comparison. The study presented here assesses the effect of a reduced 

maximum cycle length on traffic flow through measurements of degree of saturation 

(DS), nitric oxide (NO) and nitrogen dioxide (NO2). In order to reduce bias from 

covariates and assess the effect due to the change in cycle length only, a matched 

sampling method based on propensity scores is used to compare treatment periods 

(reduced cycle length) with control periods (no change in cycle length). The effect of this 

change is tested for the peak traffic periods of two separate case studies. The case studies 

are from a signalized intersection on an urban arterial in Portland, OR operated by an 

adaptive traffic signal system. The study intersection also contains a continuous air 

quality monitoring station. After applying the matched sampling and a random sampling 

method to control for covariates and temporal autocorrelation, case study 1 evening 

periods showed a significant increase in DS values for the main arterial in both directions 

(increase of 7% and 8%) resulting in a 5ppb increase in roadside NO. Case study 2 

evening periods showed a range of 2-6% increase in DS values for various approaches 

and an increase of 5-8ppb NO and 4-5ppb in NO2. All other periods evaluated showed no 
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significant difference in DS values and no significant difference in NOx. This lack of an 

effect on DS is attributed to the fact that the cross-street in this study intersection carries 

approximately 20% of the traffic volumes of the major arterial. The results here 

demonstrate that a change in traffic flow and change in emissions can be measured 

through roadside pollutant concentrations. In order to further evaluate the variance in 

average treatment effect size of a reduction in cycle length on traffic flow and near-road 

pollution, these measurement and analysis methods should be applied to a larger 

intersection where the effect on traffic flow will be more present and consistent. Without 

matched and random sampling to address the challenges of observational data, the small 

changes in DS and NOx for the study intersection would have been masked and it is 

demonstrated that matched sampling is a helpful tool for future urban air quality 

empirical investigations. 

 

3.1 Introduction 

Improving traffic flow and reducing congestion to meet air quality standards and 

transportation conformity are common paths transportation planners take when deciding 

on transportation control measures (TCMs) and designing transportation improvement 

programs (TIPs) 74. Emission effects due to changes in traffic signal variables are 

typically modeled using a combination of statistical modeling, traffic simulations and 

emissions models 27,75–80. Simulation modeling is advantageous to test a number of 

scenarios and explore changes to traffic signal settings. However, it is rare for such 

evaluations to incorporate dispersion modeling or measurements after traffic and 
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emissions simulations in order to understand changes in air pollutant concentrations and 

not only total emissions 81. Empirical investigation of the effectiveness of signal timing as 

a TCM and improved understanding of the real-world relationship of varying traffic 

dynamics on pollutant concentrations, not just total emissions, is needed 25. 

On-road emissions measurements have been used as one technique to confirm 

claims of emissions reductions with traffic signal improvements 25,82–84. Through 

measurements along signalized arterials, Unal et al (2003) demonstrated an association 

between reduced emissions and coordinated signal timing that reduced travel times and 

improved level of service (LOS). To make this comparison, simplified models that 

assumed the same modal emission rates before and after the signal coordination were 

used in order to control for variability from uncontrollable changes in ambient and 

vehicle conditions 25,85. Unal et al. (2003) also noted that strategies reducing only stop 

time and not the total number of stops along an arterial may not be as effective in 

reducing total emissions because the highest emission rates were associated with 

acceleration and the lowest rates with idling.  

Mobile emissions measurements made during uncongested periods through a 

roundabout and signalized intersection along a corridor in Minnesota, showed that 

roundabouts did not necessarily produce lower emissions than the signalized intersection 

because all vehicles have to slow for the roundabout while some test runs through the 

signal included no stopping at all for the vehicles83. However, emissions results were 

highly dependent on driving behavior. Kim et al. (2014) used mobile monitoring to assess 

the NOx profile around signalized intersections and found that intersections create a zone 
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of enhanced pollution over a distance of approximately ± 100m84. NOx concentrations 

also increased as the study vehicle stopped at increased distances from the intersection 

stop line due to longer queues during a red light. These increases in NOx were attributed 

to the acceleration of more vehicles ahead of the study vehicle. This work only briefly 

considered the effects of wind speed and direction and did not take into account 

surrounding traffic volumes in opposing lanes.  

Using observational data to assess causal effects of traffic management on air 

pollutant concentrations has several challenges. First, covariates such as wind speed, 

wind direction, temperature, relative humidity, and other time of day changes such as 

traffic volumes or fleet composition, make it difficult to identify if a change in emissions 

or pollutant levels occurred due to the change in traffic signal timing and related 

operations. It is also difficult to quantify the true effect size of the traffic variable change 

with uncontrollable covariates. Second, it is rarely possible to have a control corridor or 

intersection to compare the empirical evaluation with. Third, due to the lack of replicate 

sites to perform such testing in, most empirical evaluations around air quality and traffic 

will be conducted in one place and potentially with a small number of runs which means 

the data is temporally correlated and these data are not true independent measurements. 

Thus estimating if an effect occurred and an accurate effect size with a high number of 

non-independent samples can increase the likelihood of a significant result when there is 

not one. Despite these challenges, empirical evaluations are important to improve 

understanding of the actual relationship of varying traffic dynamics on emissions and 
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concentrations present in the transportation microenvironment where urban populations 

spend a significant portion of their time. 

This study presents an evaluation of the change in roadside NOx concentrations 

due to a reduction in maximum cycle length for an intersection operated by an adaptive 

traffic control system. Cycle length is the amount of time in seconds that it takes to serve 

each phase or lane group, including left turns, at an intersection. In an urban setting, 

determining an appropriate maximum time for cycle length is essential to make sure 

pedestrians can cross an intersection safely and in a timely manner. Due to concerns 

about pedestrian delay at this study intersection, the maximum cycle length was reduced 

during two case study periods creating the opportunity for the empirical evaluation 

presented here. Long-term roadside air quality monitoring of NOx at the study 

intersection is used to assess these case studies when the maximum cycle length was 

reduced by 15-20 seconds.  

In order to address the challenges of assessing a causal effect with observational 

data, propensity score matching (PSM) analysis is applied to the datasets to adjust for 

variability in covariates. PSM is a specific type of matched sampling methods which are 

frequently applied in the fields of human health research and social science where the 

elements of a classical randomized experiment can rarely be met 86,87. The goal of 

matched sampling is to use data where the distributions of covariates are more similar 

across the treated and control group and then a parametric analysis to assess the treatment 

effect is applied on the matched data sample 86,88. To meet the assumption of 



34 

 

independence needed for matching and decrease temporal autocorrelation, a random 

sampling method on the full datasets is also applied 50,86. 

In section 3.2, we present a hypothesis of how maximum cycle length may affect 

roadside NOx concentrations. Section 3.3 describes methods for assessing such an effect 

using PSM and random sampling for autocorrelation on an air quality and traffic dataset. 

Section 3.4 and 3.5 presents the results on the effects of this traffic signal change for the 

study intersection and discussion of how accounting for autocorrelation and applying a 

matched sampling analysis affects the evaluation results. Such statistical techniques are 

important for future evaluations and assessments of transportation project impacts on air 

quality.  

 

3.2 Hypothesis 

The intersection in this study is operated under a Sydney Coordinated Adaptive 

Traffic Signal System (SCATS) control. Maximum or high cycle length (HCL) in 

SCATS is a ceiling for cycle length implemented during high traffic volume periods. In 

an urban setting, it is important to determine an appropriate HCL to ensure that 

pedestrian phases are served without considerable delay during peak periods. SCATS 

allocates as much time available for each approach in order to clear high traffic volumes 

and also considers progression of traffic from one intersection to the next. The SCATS 

system uses traffic volume data collected from in-ground inductive loop detectors, placed 

at the stopline of each lane in each intersection, to dynamically set cycle lengths and 

allocations for green time for each lane group along the corridor. 
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During peak periods, the study intersection is operating at saturated or 

oversaturated capacity. If total cycle length is limited, the theoretical capacity to move 

the same number of vehicles through the intersection that are queuing during peak 

periods may be reduced compared to operation at a higher total cycle length. Therefore, if 

HCL is reduced, we hypothesize that the period of congestion may be prolonged and 

through this extension of the rush hour periods, roadside NOx may also be higher. As 

found in Unal et al. (2003) and Kim et al (2014), congested periods at intersections with 

increased acceleration events and longer queues have shown associations with increased 

measured NOx emissions25,84.  

In order for NOx concentrations to be elevated with a reduced HCL, the change in 

congested traffic flows must also be evident for the study intersection. Degree of 

saturation (DS) is a measure of used green time divided by actual green time, defined by 

Equation 1 below where space is referring to spacing between vehicles, where g = green 

time, T = total non-occupancy time, t = standard space time , n = number of spaces 

counted, and r = remaining phase time.  

DS= g- (T – tn)    Equation 1 

 (g + r)  

 

SCATS measures DS for each lane and reports an overall DS value used in deciding the 

phase splits and cycle length. DS can be used to assess the level of congestion for the 

study intersection and by approach/lane group. As congestion increases at an intersection 

and the queue of vehicles in a lane cannot be cleared in one green phase of the cycle, DS 

increases. Figure 3.1 shows the relationship of DS with total volumes per a 15 minute 
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period and shows that traffic volumes increase as DS increases up to a point. This point is 

the intersection reaching saturation (DS=100). As DS values increase from 100 to 140, 

traffic volumes actually decrease because less vehicles are able to pass through the 

oversaturated intersection. Figure 3.2 shows an overall increase in roadside NO and NO2 

as DS increases highlighted by the median NOx values (red) per every 10% increase in 

DS values. As DS increases, SCATS will use a higher cycle length until the intersection 

timing hits its maximum setting, the HCL. How a reduction in HCL affects the flow of 

traffic through measured DS values and then roadside NOx concentrations will be 

assessed in the subsequent sections.  

 

Figure 3.1 Relationship of degree of saturation and traffic volumes for the study 

intersection. 
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Figure 3.2 Relationship of NOx versus DS for the study intersection. Red points represent 

the median NOx concentration for every 10% increase in DS. 

 

 

3.3 Methods 

3.3.1 Case Studies 

 

Two separate case studies during which the study intersection’s HCL was reduced 

were assessed. The study intersection operated by SCATS is the crossing of SE Powell 

Blvd and SE 26th Ave. Powell Blvd is major east-west arterial corridor in Portland, OR 

with peak volumes of 2800 vehicles/hr. SE 26th Ave is a minor north-south route with a 

major bike crossing and approximately 20% of the traffic volumes of Powell Blvd. DS 

values and volumes for each lane and the overall intersection DS were obtained from the 

SCATS system for all case study evaluation periods. Roadside NOx concentrations were 

obtained from the continuous air quality monitoring station at the SW corner of the 

intersection, please refer to Kendrick et al. (2015) for more detailed measurement 
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methods50. In order to assess the influence of the roadways, measurements with wind 

coming from the road only were used in the analysis (270° W to 365° N and 0° N to 125° 

SE). 

Each case study consists of a treatment period with a reduced HCL and a control 

period when the HCL was not reduced. Table 3.1 shows the details of each treatment and 

control period for both case studies. The length of the control period varies for each case 

study depending on the total hours in the treatment period and the occurrence of traffic 

pattern anomalies due to holidays or accidents. All days in a case study were evaluated 

for any aberration in diurnal patterns of traffic volumes and DS. If an abnormal pattern 

was found, the day and time of the abnormality was confirmed/connected to either a 

known holiday, a known school closing period, road construction, and known traffic 

incidents resulting in a road closure which were assessed using police and news reports. 

Data during such events were removed from each case study because the change in traffic 

was due to an outside influence beyond HCL settings.  

 

Table 3.1 Description of case studies with reduced HCL. 

Case 

Study 

Treatment 

Period 

Control Period Treatment 

HCL 

Control 

HCL 

CS1 
April 15, 2013-     

April 29, 2013 

March 4, 2013- April 14, 2013 

April 30, 2013- June 2, 2013 
120 seconds 140 seconds 

CS2 
July 21, 2014- 

Sept 30, 2014 
July 11, 2013- Sept 30, 2013 125 seconds  140 seconds 
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3.3.2 Matched Sampling Analysis 

Roadside NOx has been demonstrated to be responsive to traffic at the study 

intersection 50. However, traffic alone does not explain all of the variability in NOx 

measurements and additional covariates such as wind speed and direction, temperature 

(as a proxy for boundary layer height) and background pollutant concentrations can affect 

the magnitude of NO and NO2 measured at the roadside. In order to directly compare the 

effect of cycle length on NOx over two different time periods, these additional covariates 

must be considered. To address the variability due to covariates and the lack of 

randomization due to the observational nature of our dataset, we apply a matched 

sampling method, PSM.  

The goal in applying a matching analysis method is to improve balance between 

samples in the control group and samples in the treatment group based on covariates. A 

balanced sample means the distributions of the covariates for the samples in the control 

and treatment group are similar. A propensity score is a value that can be used to assess 

balance and base the matching on. The propensity score is the conditional probability that 

a sample (i) is assigned to the treatment group (T=1) given the covariates in X (Equation 

2)89.  

     e(Xi)= p(Ti=1|Xi)                  Equation 2                                                 

The propensity score ranges from 0-1 and is used as one value that summarizes all of the 

covariate variables in X. The score is estimated using a logistic regression of Ti on a 

constant term and Xi 
86,89.  
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Depending on the values of the covariates in X, a propensity score or weight will 

be assigned to each data point. For this analysis, the covariates in X are continuous 

variables such as wind speed and temperature which make exact matching very unlikely, 

compared to a small number of categorical or binary variables. Instead, nearest neighbor 

matching is used where each treated sample point is matched with a control sample point 

with the most similar value of the estimated propensity score. Specifically, the analysis 

here uses the optimal nearest neighbor matching approach developed in the MatchIt R 

package which minimizes the total Mahalanobis distance within matched units 90,91.  

Matching is based only on X, the covariates. In order to avoid selection bias in the 

treatment effect and stacking the deck one way or the other, the response variable (Y) is 

not considered at all during the matching stage 86,89. If the response variable for the final 

parametric analysis, (NO, NO2, and DS values in our application) were included in 

building the propensity scores, bias either in over or underestimating the treatment effect 

could be introduced. Therefore any variable affected by the treatment or tied to the 

response variable, is excluded in our logistic regression to build the propensity scores. 

Due to these assumptions, background NO and NO2 variables were not included in the 

matching stage because these concentrations are not necessarily independent of roadside 

NOx and also possibly tied to the treatment of HCL along the corridor due to the location 

of the background station in close proximity to Powell. Additional methods described in 

Section 3.3.3 were used to account for the effects of background NOx.  

 To determine the final covariates used in the logistic regression to estimate 

propensity scores, regression trees and exploration with linear regression modeling were 
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applied to each time period evaluated. These methods were applied to identify covariates 

with the largest effect on roadside NOx. The matching literature often stresses that all 

possible covariates of interest in matching should be used. However, Ho et al. (2007) 

stresses that obtaining good balance on covariates with large effects on the response 

variable is more critical to reduce bias and variance in treatment effect compared to 

covariates that have little effect because the large effect covariates will inflate any 

remaining imbalance in the matched sample86. When estimating the propensity scores for 

each case study evaluation period, the starting point was a full model with all possible 

covariates. Then balance for each covariate was assessed according to the procedures 

described below. If balance was not improved as well for the large effect variables 

identified in the regression tree modeling (wind speed, wind direction, and temperature), 

a small effect variable would be dropped, new propensity scores built and balance 

reassessed. 

The goal of matching is to optimize balance in the control and treatment sample 

units while also keeping the highest number of observations in the treatment group as 

possible. To assess balance, a combination of diagnostic checks was used instead of only 

evaluating the propensity score values themselves, a procedure outlined by Ho et al. 

2007. First, the mean of the differences of each covariate in X were compared, following 

the rule of thumb proposed by  Cochran et al (1968) if one or more of the these differ by 

more than a quarter of a standard deviation of the respective X variable, then better 

balance is needed92.  Second, quantile-quantile plots (QQ plots) were used to compare the 

full distributions of the treated and control groups for each variable for unmatched and 
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matched data to assess the final matched samples. QQ plots graph the quantiles of a 

variable of the treatment group against the control group in a square plot and numerically 

summarize the mean and maximum deviations between the two distributions86. Through 

either of these two assessments, if balance was not improved for large effect variables, 

the conservative method developed by King and Zeng (2006) to exclude any control units 

with covariate values outside of the convex hull (Equation 3) of the treated units was 

applied93 

Xi> max(Xi| T=1) and Xi<min(Xi|T=1)     Equation 3 

Lastly, the region of common support of the propensity scores themselves were assessed 

visually with histograms to check for similar and overlapping distributions.  

 Independence of sample units is critical for matching86,88. In order to reduce 

temporal autocorrelation, a subset of data points was randomly selected from each 

treatment and control time period. The number of points randomly selected was 

determined by the metric of when the correlation between time lagged response variables 

(NO and NOlag1, NO2 and NO2lag1, and DS and DSlag1) was reduced so that correlation 

coefficients were ≤0.5. The number of data points selected and the change in correlation 

coefficients for a lag of one are detailed in the results presented for each case study. 

3.3.3 Assessment of Casual Effects 

Assessment of the average causal effect of reduced HCL was performed by 

applying a t-test on matched samples across the control and treatment periods to assess 

the difference in means for NO, NO2, and all DS values during control and treatment 
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periods. Due to the assumptions of normality for the parametric t-test, and the log-normal 

distributions of measured NO and NO2, a cube root transformation was applied to these 

data 94. These same transformations were applied to background NOx concentrations. 

Since background NO and NO2 could not be used as covariates because they are not 

separate from the response variables, t-tests were also applied to roadside NO and NO2 

divided by background NO and NO2 (normalized roadside concentrations) across the 

control and sample periods in order to further understand the effect due to HCL only.  

3.4 Results 

3.4.1 Case Study 1 

A twenty second reduction in HCL from 140 to 120 seconds was applied to the 

study intersection for two weeks from April 15, 2013 to April 29, 2013. The reduced 

HCL altered the cycle length pattern for morning and evening rush hours as shown in 

Figure 3.3 with grey points representing the diurnal cycle length pattern for the control 

period and black points the reduced cycle length during the treatment period. Some cycle 

length values for the control and treatment periods in Figure 3.3 show values above the 

HCL setting. This happens when SCATS is trying to get the study intersection back into 

sync with the other intersections in the corridor or if another intersection is out of sync 

and the cycle length will exceed the HCL using allowable stretch cycle length values. 

This pattern is also evident in Figure 3.6 for case study 2. Traffic anomalies removed 

from the control and treatment periods for case study 1 include Portland Public School 

spring break, a hostage situation on April 22 which closed parts of Powell Blvd, and 

Memorial Day holiday. The effect of the reduced HCL was evaluated for the end of the 
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morning and evening rush hour periods from 8:00-10:00 and from 18:00-20:00 when the 

signal would be operating at HCL and a change in traffic flow patterns may have 

occurred based on the hypothesis in section 3.2.  

 

Figure 3.3 Case study 1 with a 20 sec reduction in HCL. Control samples points are in 

grey, treatment sample points in black, and rush hour periods highlighted in yellow. 

 

Balanced matched samples were found for each dataset that used all treated 

samples. Table 3.2 shows the matching diagnostics in terms of final sample points 

matched for each time aggregation (5 min and 15min) for the full datasets and the 

randomly selected subset. A random sample of 3 points per morning period (8-10am & 6-

8pm) were found to substantially reduce temporal autocorrelation compared to the full 
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sample with correlation coefficients for time lagged response variables presented in Table 

3.3.  

Table 3.2 Case Study 1 Matching diagnostics for total samples matched. Numbers in 

parentheses are for the full dataset. 

Time Period 

Time Aggregation 

Sample Size Treated Group Sample Size Matched 

Morning 5 min 17 

(143) 

17 

(143) 

Morning 15 min 18 

(46) 

18 

(46) 

Evening 5 min 25 

(188) 

25 

(188) 

Evening 15 min 19 

(58) 

19 

(58) 

 

 

Table 3.3 Case study 1 Summary of correlation coefficients between time-lagged 

response variables to reduce temporal autocorrelation for Case Study 1 evaluation 

periods. 

 NO & NOlag1 NO2 & NO2lag1 DS & DSlag1 

Full Dataset 0.75 0.55 0.92 

Morning Subset of 3 pts/period 0.54 0.25 0.07 

Evening Subset of 3 pts/period 0.59 0.28 0.23 

 

 

Figure 3.4 is an example of a visual check performed to assess improved balance 

across all of the covariates. The QQ plots of the matched samples on the right hand side 

of Figure 3.4 show smaller differences across each quintile compared to the relationships 

using all of the samples in the control and treatment groups. Figure 3.5 shows an example 

of a strong overlap of the propensity score values themselves in the treatment and control 

samples in the final matched dataset showing a strong region of common support. QQ 
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plots and propensity score histograms for matching conducted across all case study 

evaluation periods can be found in Appendix B, Figure B-1 through B-20. 
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Figure 3.4 Example of QQ plots used to asses balance in matched samples for morning 

Case Study 1. 
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Figure 3.5 Histograms of propensity score values for the control and treatment sample 

points in the final matched sample for morning case study 1. 

 

3.4.2 Average Treatment Effect- Case study 1 

 Cycle length was significantly reduced during treatment periods in all unmatched 

and matched samples clearly showing the treatment of reduced HCL was applied. Mean 

cycle lengths in the morning treatment periods were reduced by 11-13 seconds and 15-17 

second reductions were seen in evening mean cycle lengths during the treatment periods. 

However, for the morning peak period, DS values for the intersection and each approach 

(westbound, eastbound, and north/southbound) were not significantly different across the 

control and treatment groups for all matched samples (5 min, 15 min, full datasets, and 

subsets). Roadside NO and NO2 values were not significantly different either across the 

control and treatment groups in the matched samples. t-test results for all sampling 

groups including unmatched samples can be found in Appendix B, Tables B1-B5. 
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 For the evening peak period, 15min aggregated DS values for eastbound through 

lanes (EBTH) were significantly greater (p=.02) by 7% and westbound through lanes 

(WBTH) DS values were greater by 8% (p=0.11) for the subset data with reduced 

temporal correlation. Intersection DS values were also greater by 5%, but only significant 

in the full dataset. For this same time period and aggregation, normalized NO 

concentrations were significantly greater after matching (p<0.01) with a mean difference 

approximately of 5ppb when back transformed. Mean traffic volumes were higher during 

the treatment period by 50 vehicles but not significantly different. All other matched 

sampling evaluation periods showed no significant difference in DS values and no 

significant difference in roadside NOx concentrations during treatment and control 

periods. However, when a significant increase in DS occurred across multiple approaches 

for the study intersection by 5-8% (15 min subset), a 5ppb increase in NO was observed 

during the reduced HCL. 

3.4.3 Case Study 2 

A fifteen second reduction in HCL was applied to the study intersection from July 

21, 2014 to Sept 30, 2014. Control sample units were pulled from the time period of July 

11, 2013- Sept 30, 2013 to help control for seasonality effects instead of sampling the 

time periods directly before and after the treatment dates. A host of additional changes to 

SCATS along the corridor were implemented after Sept 20, 2014 making it unfit to be a 

control period for HCL conditions as well. Traffic anomalies removed from the control 

and treatment period include the Labor Day holiday weekend. Figure 3.6 shows the 

diurnal cycle length patterns for the control (grey points) and treatment periods (black 
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points) in case study 2. The effect of the reduced HCL was evaluated for the end of the 

evening rush hour from 18:00-20:00. In contrast to case study 1, a reduction of 15 

seconds versus 20 seconds did not result in a significant difference in cycle length for the 

morning periods which already have lower cycle lengths compared to evenings. Since no 

significant difference in cycle length was found for the morning peak period, no further 

evaluation of DS and NOx changes were performed.  

 

Figure 3.6 Case study 2 with a 15 sec reduction in HCL. Control samples points are in 

grey, treatment sample points in black, and evening rush hour period highlighted in 

yellow. 

 

Balanced matched samples were found that used all treated samples for the subset 

data with reduced temporal correlation. After removing values evaluated for convex hull 
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agreement, road wind only, and due to the large sample size in the treatment group, not 

all treatment samples were matched for the full datasets. Table 3.4 shows the matching 

diagnostics in terms of final sample points matched for each time aggregation (5 min and 

15min) for the full datasets and the randomly selected subset. A random sample of 3 

points per morning period were found to substantially reduce temporal autocorrelation 

compared to the full sample with correlation coefficients for time lagged response 

variables presented in Table 3.5. QQ plots and propensity score histograms for all subset 

and full matched samples can be found in Appendix B, Figure B-13 through B-20. 

 

Table 3.4 Case Study 2 Matching diagnostics for total samples matched. Numbers in 

parentheses are for the full datasets. 

Time Period 

Time Aggregation 

Sample Size Treated Group Sample Size Matched 

Evening 5 min 135 

(1052) 

135 

(968) 

Evening 15 min 140 

(392) 

140 

(342) 

 

Table 3.5 Summary of correlation coefficients between time-lagged response variables to 

reduce temporal autocorrelation for Case Study 2 evaluation periods. 

 NO & NOlag1 NO2 & NO2lag1 DS & DSlag1 

Full Dataset 0.74 0.62 0.94 

Evening Subset of 3 pts/period 0.2 0.2 0.01 

 

 

3.4.4 Average treatment effect- Case Study 2 

 Average cycle length values were reduced by 10-11 seconds during the evening 

evaluation treatment periods. For the 5 min matched subset, significantly greater DS 

values were found for intersection DS (> by 5, p=0.08), westbound through (> by 2, 
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p==0.05), and eastbound left turn lane (> by 5, p=0.05). Eastbound and north/southbound 

DS values were greater during the treatment but not significantly different. Roadside NO 

and NO2 when normalized to background and without normalization were significantly 

greater during the treatment period by 8ppb and 5ppb.  

 The 15 min matched subset also showed a positive average treatment effect of the 

reduced HCL. Westbound through DS values were greater by 5 (p<0.01). Intersection DS 

and eastbound through DS values were on average greater by 3% but not significant. 

Eastbound left turn DS was > by 6, p=0.06. Roadside NO and NO2 with and without 

normalization were significantly greater during the treatment period by 5ppb and 4ppb. 

Traffic volumes were not significantly different during the control and treatment periods 

but were greater on average by about 26 vehicles during the treatment period.  

 

3.5 Discussion and Conclusion 

 In most time periods evaluated for Case Study 1, a reduction in HCL did not 

result in a significant change in DS values and no significant difference in roadside NO 

or NO2 concentrations was observed. When a significant change was found for DS 

values, it was an increase during the reduced HCL period and there was an associated 

increase in NO as hypothesized in section 3.3. Case study 2 had many more sample 

points during the treatment period, but even with the data subsets to reduce temporal 

autocorrelation, significant increases and a more consistent pattern of higher DS values 
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during the treatment period were found. Increased NO and NO2 concentrations were also 

associated with the treatment period.  

 Using microsimulation modeling, De Coensel et al. (2012) found that cycle length 

did not have any significant influence on NOx, CO2 or PM10 emissions, while traffic flow 

and green split did significantly affect emissions and explain a majority of the variance in 

modeled emissions 27. SCATS is adaptively assigning green time to each phase in each 

cycle. For the study intersection, Powell Blvd has the highest traffic volumes compared 

to SE 26th Ave and so higher green times are appropriated to the east and westbound 

approaches during congested periods. DS values representing a change in traffic flows 

were affected by cycle length during the treatment periods here for some of the matched 

samples. For this intersection, traffic flow and green split are not independent of cycle 

length and the effect of these changes on roadside NOx are in line with modeling found 

by DeCoensel et al. (2012). 

 To further quantify the average treatment effect of reduced HCL on DS and 

roadside NOx, these measurement and analysis methods need to be applied to a larger 

intersection. The value of a significant increase in DS with a resulting increase in NO 

and/or NO2 was not consistent across the two case studies evaluated here. During the 

same treatment period from Case Study 1, HCL was also reduced for the larger 

intersection of SE Powell Blvd and SE Milwaukie Ave. At this intersection, the north-

south street, Milwaukie has two through approaches in each direction, larger left turn 

bays, and carries much more traffic then SE 26th Ave in the study intersection. Morning 

peak DS values and evening DS values for this intersection were found to be significantly 
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higher with mean difference values of 8 and 9% for multiple approaches, a larger and 

more consistent effect on flow than at the study intersection. Evaluating NOx 

concentrations at this type of intersection would provide more conclusive results about 

the effect size of reducing cycle length on roadside NOx.  

 Without PSM and random sampling to reduce temporal autocorrelation, the 

conclusions of this evaluation would have been much different. When using the full 

datasets with non-independent measurements, sample sizes are much larger. This leads to 

the possibility of finding significant differences when NOx ppb levels or DS values differ 

by very small values not necessarily reflecting a real world difference. Without matching, 

covariates can either mask if an effect occurred or overestimate an effect. For case study 

2, most unmatched samples show no significant difference in DS values. However when 

matched based on similar covariates, the small effect of cycle length on DS is evident. 

For case study 1 evening, unmatched roadside NO is significantly higher during the 

treatment period but no DS values are. However, when matched based on similar 

covariates, we see there is no significant difference in roadside NO which is consistent 

with the fact that no change in traffic flow occurred due to the reduced HCL for the 5 min 

sub samples. Observational data has many covariates, so any effect of a transportation 

measure on near-road air quality is likely to be a small signal above a lot of noise or 

natural variability. In order to assess the presence of effects and improve understanding 

of a true effect size, matched sampling could prove to be a valuable tool in future 

empirical evaluations of air quality mitigation strategies or projects.  
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Chapter 4  Evaluation of CAL3QHC dispersion modeling for predicting particulate 

roadside concentrations 

 

Abstract 

 Dispersion modeling is one of the major tools used to assess Clean Air Act 

conformity. The California Line Source Dispersion Model with Queuing and Hotspot 

Calculations (CAL3QHCR) is an approved regulatory model often used to assess the 

impacts of transportation projects on PM2.5 concentrations. In this study, predicted PM2.5 

concentrations are compared with roadside PM2.5 observations for peak traffic volume 

hours for the months of January 2013 and July 2013 for a signalized intersection in 

Portland, OR. Using the factor of two criteria, CAL3QHC performed well in predicting 

PM2.5 concentrations for winter peak traffic periods and poorly in predicting PM2.5 

concentrations for summer peak traffic periods. Summer predictions were biased high 

when observed concentrations were low. PM2.5 concentrations were modeled using three 

separate input scenarios; modeling scenario one is built using detailed temporal traffic 

volume and signal data; modeling scenario two is built using snapshot traffic survey data 

and default values for the queueing algorithm; modeling scenario three is built using free 

flow links only and the queuing algorithm is not applied. For both winter and summer 

periods, there were negligible differences in performance across the three scenarios. 

Lastly, CAL3QHC was used along with roadside PNC measurements to back calculate 

PNC emission factors for a mixed fleet and major arterial roadway in the U.S. These 

modeled particle number emission factors are comparable with emission factors 

calculated for other urban roadways during periods with slower traffic speeds and stop 

and go traffic patterns. Most field studies estimating in-road PNC emission factors have 
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occurred outside of the U.S. The values presented here provide a starting place to 

estimate total particle number emissions and to build initial particle number emission 

inventories needed in order to further characterize PNCs from traffic emissions.  

 

4.1 Introduction 

Dispersion modeling is one of the major tools used to asses Clean Air Act 

conformity requirements. This process based modeling is used in conjunction with 

emissions modeling by Metropolitan Planning Organizations (MPOs) and state 

Departments of Transportation (DOTs) to help build State Implementation Plans (SIPs) 

and Transportation Improvement Programs (TIPs) for maintenance and non-attainment 

areas. Dispersion modeling is also used in National Environmental Protection Act 

(NEPA) applications. Transportation conformity specifically requires dispersion 

modeling to assess how transportation projects may impact localized PM concentrations. 

Beginning in 2006 qualitative only PM2.5 hot-spot analyses were required until an 

appropriate motor vehicle emissions model for project-level analyses was released 95. 

With the release of the Motor Vehicle Emissions Simulator (MOVES) emission model in 

2009, quantitative PM hot-spot analyses were required with a grace period ending in 

December 2012 96. Currently, the United States Environmental Protection Agency (U.S. 

EPA), recommends two air dispersion models for highway and intersection projects; the 

American Meteorological Society/EPA Regulatory Model (AERMOD) and the California 

Line Source Dispersion Model with Queuing and Hotspot Calculations (CAL3QHCR). 

Both are Gaussian dispersion models and this study focuses on evaluation of CAL3QHC.  
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Despite known limitations such as not producing valid concentrations under wind 

speeds < 1m/s, overpredictions for parallel wind directions, and improved predictions for 

receptors furthest from roadsides, CAL3QHC is applied to near roadway environments to 

assess PM2.5 for transportation projects 97. These modeling limitations are common for 

Gaussian models and have been found with CALINE4 and CAL3QHC in comparisons 

with measured concentrations 98–102. CAL3QHC is a Gaussian distribution model with 

horizontal and vertical dispersion. Motor vehicle emissions along a roadway segment are 

represented as a line source and each segment or link of the roadway has a defined 

mixing zone with traffic volume and emission factor inputs. Pollutants then disperse from 

each mixing zone in a Gaussian distribution and concentrations coming from each mixing 

zone are summed to calculate the average predicted concentrations at a given receptor 

99,103. CAL3QHC has a queueing algorithm to help simulate traffic signal flow patterns 

and emissions from idling.  

Detailed comparison studies of model predictions and measurements for roadside 

PM2.5 are limited. Chen et al. (2009) evaluated PM2.5 predictions from CALINE4, 

CAL3QHC and AERMOD using measurements from an intersection in Sacramento, 

California and CALINE4 and CAL3QHC for an intersection in London104. For the U.S. 

site, hourly modeled concentrations were compared with measurements for ten time 

periods of about three hours each. CAL3QHC was found to perform moderately well, 

defined by most measurements falling with the factor-of-two envelope. However, as 

pollution measurements increased, all models showed a trend of underprediction. In 

contrast to the Sacramento results, London measurements were available for 253 hours 
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from a continuous monitoring roadside site. CAL3QHC modeled results did not match 

well for measurements paired in space and time. The poorer performance of CAL3QHC 

for the London site was attributed partly to the fact that the receptor was much closer to 

the roadside compared to the Sacramento location. Due to the lack of detailed traffic 

signal-related parameters, the queuing algorithm in CAL3QHC was not used for these 

evaluations.   

When using the queuing algorithm, Gokhale et al. (2008) found CAL3QHC 

predicted 24 hour average PM2.5 concentrations better than CALINE3 by the assessment 

of much higher number of predictions falling within the factor-of-two and factor-of-five 

envelopes102. PM2.5 predictions were evaluated for four winter months for a busy 

intersection in India with the receptor/measurements occurring 22.4 m and 75 m away 

from the road. Gokhale et al. (2011) also performed a model evaluation for 1 hour and 8 

hour PM2.5 averages for three different road types with various scenarios of traffic 

assessed by field surveys. CAL3QHC and CALINE both underpredicted for all traffic 

flow scenarios, although CAL3QHC did relatively better at intersections than 

roundabouts105. 

 The queuing algorithm is not consistently applied in peer-reviewed assessments. 

CAL3QHC’s queuing algorithm requires signal-related data such as average cycle length 

and average red time for each approach in an intersection. These signal-related data are 

not typically available for intersections or easy to specify in creating models for project 

impacts 106. If such traffic and signal data are available, it is typically in the form of a 

snapshot survey measured by observing a roadway for a morning and evening peak 
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period for one day and applied to other days when modeling. Additionally, the advanced 

modeling options in MOVES can create composite emission factors which represent 

acceleration, deceleration and idling emission factors. EPA’s hotspot guidance actually 

recommends not using the queuing algorithm if MOVES emission factors are built 

according to their project guidelines. Despite this range in modeling setups and various 

sources of data for research and project applications, a comparison of PM2.5 predictions 

by CAL3QHC with varying levels of details for the traffic and signal modeling inputs 

and varying use of the queueing algorithm have not been made before.  

In this study, we first compare PM2.5 predictions with observed concentrations 

across three modeling scenarios for peak hours in the months of January and July 2013. 

The study intersection is equipped with a continuous air quality monitoring station and is 

operated by an adaptive traffic signal system which depends on continuous traffic and 

signal data collected by loop detectors in each lane: modeling scenario one is built using 

this detailed temporal traffic volume and signal data; modeling scenario two is built using 

snapshot traffic survey data and default values for the queueing algorithm; modeling 

scenario three is built using free flow links only and the queuing algorithm is not applied.  

  Second, CAL3QHC is used to back calculate particle number emission factors for 

the study’s intersection. Urban particle number concentrations (PNCs) are dominated by 

the ultrafine size range (<0.1µm) and are the result of traffic emissions107,108. Ultrafine 

particles have a high surface area to volume ratio increasing the capacity to carry toxins 

into the human body, the small size of these particles allows for deep deposition into the 

alveolar region of the lungs, pulmonary interstitial spaces, and into the circulatory 
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system, and lastly, the presence of high numbers of these particles in these sensitive areas 

of the lungs can increase inflammation and oxidative stress 109,110. Through such 

mechanisms, PNCs have been tied to adverse respiratory and cardiovascular effects, 

sometimes more so than total particle mass concentrations111–114.  

PM2.5 mass measurements at the roadside of this study intersection have not 

shown a strong signal of local traffic50. PNCs have been found to be a better marker of 

traffic emissions than PM2.5
115,116. However, PNCs are not typically measured since they 

are not currently incorporated into most air quality regulations. In the Portland 

metropolitan area, PNCs were found to vary spatially depending on land use; with the 

highest concentrations in more urbanized areas and the lowest concentrations in forested 

areas away from traffic sources (Figure C-4). In order to better quantify exposure to 

particle numbers and create and validate emission inventories, more measurements and 

emission factor estimates are needed 116–118. Episodic measurements of PNCs from the 

study intersection are presented here and CAL3QHC is applied to inverse model on-road 

emission factors.  

 

4.2 Methods 

4.2.1 Study Intersection 

Near-road PM2.5 concentrations are modeled for the signalized intersection of SE 

Powell Boulevard and SE 26th Ave in Portland, OR. SE Powell Boulevard is a major 

east/west arterial corridor with two through lanes, left turn bay, and right turning lane in 
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the eastbound direction and two through lanes plus a left turn bay in the westbound 

direction. Both the north and southbound approaches on SE 26th Ave contain a through 

lane, left turn bay, and a bike lane with a bicycle box which places the stop line of the 

vehicles in the through lanes approximately 10 feet back from the sidewalk. Figure 4.1 

shows a schematic of the study intersection depicting all approaches as well as the links 

used in the model setup. For each through approach, there is an approach link that 

extends into the middle of the intersection and then a depart link. For each through 

approach and turning approach, there is a queue link which ends at the stop line of each 

approach.  

 

Figure 4.1 SE Powell Blvd and SE 26th Ave intersection setup with links and receptors 

for dispersion modeling. 

 

4.2.2 Comparisons with Observed PM2.5 Concentrations 

All modeled PM2.5 concentrations are compared with roadside PM2.5 

measurements obtained from the air quality monitoring station located 1m from the 
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southwest corner (Receptor 1, Figure 4.1) of the study intersection. PM2.5 measurements 

are made using a TSI DRX DustTrak with a sampling inlet approximately 2.5 m above 

the sidewalk. Details on the monitoring station setup and methodology can be found in 

Kendrick et al. (2015)50. Background PM2.5 levels were obtained from the Oregon 

Department of Environmental Quality’s (DEQ) regional monitoring station located 3.4 

km east of the roadside station and 0.09 km south of Powell Boulevard. Data from this 

background station is collected, stored and accessed through the Portland Horizons 

database 58. The peak morning (8am) and peak evening (5pm) hours are modeled for each 

day in January 2013 and July 2013. Observed roadside and background PM2.5 

distributions, median, and mean concentrations for these time periods are summarized in 

Table 4.1.  

Table 4.1 Summaries of roadside and urban background PM2.5 observations for the 

modeled dates and times. 

 

 

Measurements and predictions are compared using factor of two plots and criteria. 

The factor-of-two criteria and plot are commonly used to assess dispersion model 

performance and if 75-80% of points fall inside this envelope the results are considered 
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good predictions104,119. Predictions and observations are first compared conservatively, 

paired in space and time by directly comparing predictions only at receptor 1 (SW 

corner). To understand the range of predicted concentrations for the study intersection’s 

roadside environment, a receptor was also placed on each corner (receptors 2-4, Figure 

4.1). By having a receptor in each direction, roadside concentrations predicted regardless 

of wind direction would be reported. Observations are compared paired in time only 

using predictions from all receptors.  

 

4.2.3 Model Scenarios 

 CAL3QHC was setup using three different scenarios. The model inputs in each 

scenario were built using varying levels of detail in emissions, traffic and signal (ETS) 

data. Each scenario is summarized below in Table 4.2. The model inputs and data sources 

are described in detail in the following sections. For each scenario, CAL3QHC was run to 

simulate PM2.5 concentrations for the morning peak hour (8am) and evening peak hour 

(5pm) for the months of January 2013 and July 2013 to capture seasonal differences. 

Since the traffic survey data used for Scenario 2 was only available for weekdays, only 

weekdays are modeled for all three scenarios. Hourly traffic volume and meteorological 

data are typically more readily available so are used in both scenarios 1 and 3.  
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Table 4.2 Model scenarios based on varying levels of detail available in emissions, 

traffic, and signal data for modeling inputs. 

Scenario 

 

ETS Data Overview Queuing 

Algorithm 

S1 

Most Detailed 

• Continuous, hourly traffic volumes  

• Continuous hourly signal data 

• Emission factors based on 

measured, hourly average speeds  

 

Yes 

S2 

Snapshot 

• Snapshot traffic survey volumes 

• Signal data based on static signal 

timing plan and default values 

• Emission factor based on speeds 

from snapshot traffic survey 

 

Yes 

S3 

No traffic 

signal 

simulated 

• Continuous, hourly traffic volumes  

• No traffic signal variables needed 

• Emission factors based on 

measured, hourly average speeds 

 

No 

 

 

4.2.4 Model Inputs  

SE Powell Boulevard is operated by the Sydney Coordinated Adaptive Traffic 

Signal System (SCATS). SCATS uses inductive loop detectors to collect continuous 

measurements of traffic volumes by lane and SCATS records the real-time dynamic cycle 

lengths, phase time for each approach, and degree of saturation (measure of total green 

time and available green time describing level of congestion) to determine how each 

approach is served in the next cycle and manage throughput on the main arterial 

throughout the corridor. These data were used for Scenario 1 model inputs as described 

below.  
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4.2.4.1 Traffic Volumes 

For Scenarios 1 and 3, traffic volumes for each lane were pulled from SCATS for 

every date and hour modeled. To determine approach and depart volumes, turning lane 

volumes were added to the appropriate directional depart volume. For Scenario 2, traffic 

volumes for peak hours were pulled from PortlandMaps which stores periodic traffic 

survey data55. Surveys were completed for the North and South direction on June 19, 

2013, and August 5, 2013 and for the East and West approaches of the study intersection 

on June 19, 2013 and Feb 2 & 26, 2014. The hourly AM and PM peak volumes for each 

approach were used as static inputs when running the model using the setup from 

Scenario 2. The traffic survey volumes were made at locations just past the intersection 

so to account for turning lane volumes, percentages of total approach volumes for each 

turning lane were determined from the SCATS data and then applied to the traffic survey 

data. 

4.2.4.2 Signal Inputs 

When using the queuing algorithm in CAL3QHC, average total cycle length, 

average red time for each approach, and average saturation flow rates for each approach 

are required inputs. Cycle lengths and red time from SCATS were averaged on an hourly 

basis and applied for each hour and date for scenario 1. Signal timing plans for the study 

intersection show set ratios of how to split green and red times for an intersection based 

on time of day. The signal timing plan available for the study intersection is from before 

the adaptive signal system was implemented. In order to still compare apples to apples, 

the cycle lengths and red times for each approach were averaged for each peak hour over 
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the whole month. These values averaged over the whole month were then used as static 

inputs for cycle length and approach red time for scenario 2. Arrival type for both 

scenarios using the queuing algorithm was set equal to the value of three, representing the 

average conditions during peak periods.  

Saturation flow rate is not a variable that could be continuously measured. 

Saturation flow rate is typically treated as a steady maximum flow rate at which queuing 

vehicles are discharged into the intersection after a signal changes to green and is then 

used to determine capacity if the signal variables are known120. Also defined as the 

vehicles per hour during effective green time. Morning and evening saturation flow rates 

for each direction were empirically collected using the field measurement technique for 

saturation flow rate from the 2010 Highway Capacity Manual methodology by watching 

recorded video from the winter of 2014 and direct observations at the intersection in the 

summer of 2015121. Additionally, saturation flow rates for turning lanes were derived 

values outlined by Wang and Benekohal (2010)122. The empirically derived saturation 

flow rates were used for Scenario 1. For scenario 2, which represents the common 

situation of having limited traffic and signal data resources, the recommended default of 

1600 from the CAL3QHC user’s guide for an urban intersection was used.  

4.2.4.3 Emission Factors 

Speed-based PM2.5 emission factors for arterials ranging from 2-60mph and idling 

emission factors were provided by modelers at Metro (Portland’s regional government) 

based on the 2014 MOVES outputs produced for Metro’s 2014 Regional Transportation 

Plan (RTP)123,124. Composite emission factors accounting for characteristics of both 
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Oregon and Washington fleets were used. The speeds to determine speed-based emission 

factors for free-flow links were based on travel time data collected using a method that 

utilizes Bluetooth data developed by Quayle et al. (2010)125. The travel time data was 

accessed from the Portland Oregon Regional Transportation Archive Listing (PORTAL), 

converted to speed over a known distance, and averaged over 60 minute intervals for the 

peak periods modeled. Emission factors for free-flow links in scenarios 1 and 3 were 

dynamically selected based on the median speed for the hour and date modeled. Scenario 

2 used a static emission factor based on the median speed values for North and South 

directions from PortlandMaps survey data and median speeds for the East and West 8am 

and 5pm hours from the Bluetooth data. These speeds and emission factors are 

summarized in Table 4.3 

Table 4.3 Summary of hourly averaged speeds and emission factors (EF) for all model 

scenarios. 

 Scenario 1 and 3 

 

Scenario 2 Scenario 1 and 3 Scenario 2 

Modeling 

Period 

East 

Bound 

(mph) 

min 

max 

Speed 

Based 

EF 

(g/mile) 

 

East 

Bound 

(mph) 

median 

Speed 

Based 

EF 

(g/mile) 

 

West 

Bound 

(mph) 

min 

max 

Speed 

Based 

EF 

(g/mile) 

 

West 

Bound 

(mph) 

median 

Speed 

Based 

EF 

(g/mile) 

 

Jan    

2015 

8am 

24 

34 

0.0433 

0.0345 
29 0.0396 

12 

37 

0.0598  

0.0333 
20 0.0493 

Jan   

2015 

5pm 

18 

26 

0.0518 

0.0413 
22 0.0463 

21 

29 

0.0478 

0.0396 
26 0.0413 

July 

2015 

8am 

13 

30 

0.0449 

0.0308 
28 0.0316 

14 

32 

0.0438 

0.0288 
24 0.0339 

July 

2015 

5pm 

11 

24 

0.0473 

0.0339 
14 

0.0438 

 

20 

30 

0.0378 

0.0308 
23 0.0349 
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4.2.4.4 Meteorology 

Hourly meteorological data is more readily available for modeling projects so for 

all three scenarios, hourly average wind speed and directions are used as inputs according 

to the date and time being simulated (Figure 4.2). Wind data was collected at the 

intersection as part of the air quality cabinet (RM Young 3D Sonic Anemometers Model 

81000) and also supplemented with measurements from the DEQ urban background 

station  
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Figure 4.2 Windroses for January and July peak hours modeled.  

 

Stability class was determined using the relationships put forth by Pasquill et al. 

(1961) and key stability categories in Turner et al. (1969) in which stability category is 

estimated from wind speed and incoming solar radiation during the day126,127. Hourly 
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average wind speeds and solar radiation from the DEQ background site were used to 

determine the stability class A-G (1-7) for each date and time modeled.  

4.2.3.5 PM2.5 

Due to the small size of PM2.5, deposition and settling velocities were set to 0, a 

method commonly employed in research and regulatory PM2.5modeling96,104. Background 

concentrations were also set to 0 which is commonly recommended in guidance 

documents and then the background concentrations are added to the PM2.5 predicted 

concentrations. Background concentrations added to modeled values in this study are 

from the DEQ site and summarized in Table 4.1. 

4.2.4 Particle Count Measurements and Modeling 

Spanning across Sept 21, 2013 to April 2, 2014, 339 hours of PNC measurements 

were made at the study intersection using a TSI P-Trak particle counter. Measurements 

were made typically from 5am to 10:30pm and the alcohol wick was recharged every 6 

hours. Figure 4.3 shows the diurnal distributions of weekday and weekend PNC 

measurements. There is a clear difference in range of concentrations and diurnal pattern 

reflecting the higher traffic volumes on weekdays and the distinct morning and evening 

traffic peaks versus a later, single traffic peak on the weekends. PM2.5 mass 

concentrations did not show a strong difference across weekdays and weekends for the 

study intersection (Table 2.1).  
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Figure 4.3 Weekday and weekend PNC diurnal distributions. Purple line is the 50th 

percentile, black lines are the 10th and 90th percentile, and individual points in light grey. 

 

Since PNC roadside measurements do show a relationship with local traffic, the 

morning 8am and evening 5pm peak hour periods on the days when PNC measurements 

occurred were modeled using CAL3QHC. These simulations were run the setup of 

scenario 3 with hourly based traffic and meteorological data as inputs. Scenario 3’s 

model setup was chosen based on model comparison results described in subsequent 

sections. Predicted particle concentrations were matched to observed PNC measurements 

and that ratio was used to back calculate a particle number emission factor for each time 

period. There is a limit to the number of digits visible in the CAL3QHC outputs so the 

emission factor and predicted values were scaled up. This method was confirmed 

applicable because the relationship between the emission factor and predicted 

concentration is linear. CAL3QHC was run in particle mode with deposition and settling 

velocity set to zero.  
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4. 3 Results and Discussion 

4.3.1 PM2.5 Predictions 

The range of predicted PM2.5 concentrations without background for all three 

modeling scenarios is summarized in Table 4.4 by season and the 8am and 5pm hours. 

The majority of predicted concentrations for all three scenarios and both seasons ranged 

from 0- 2 µg/m3. The higher concentrations from 4-8 µg/m3 occurred on days with wind 

speeds less than 1m/s as shown in Figure 4.4. Considering predictions when wind speeds 

are greater than 1m/s, the values predicted here for traffic contributions are similar to 

other studies and reports for arterial roadways. Lin and Vallamsundar et al. (2013) found 

contributions from traffic of 0-3 µg/m3 and 0-1.5 µg/m3 for two separate arterial 

projects128. The limitations of CAL3QHC performance under low wind speeds are well 

documented and when using CAL3QHCR for hot-spot guidance all calm time periods 

(wind speeds <1 m/s) are flagged and not used in calculating final daily or annual 

concentrations. For the rest of the analysis, these low wind speed hours are excluded.  

 

Table 4.4 Range of predicted PM2.5 (µg/m3) from traffic for each peak hour by season. 
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Figure 4.4 Predicted PM2.5 versus wind speed for model scenario 2. Transparent orange 

represents predictions when wind speed is < 1m/s and transparent black represents 

predictions when wind speeds > 1m/s. Darker colors on the plot show overlapping points. 

 

4.3.2 Comparisons with Observations 

All comparisons with observations are made using predicted PM2.5 concentrations 

with background included. When paired in space and time, winter predicted 

concentrations match well with roadside measured PM2.5 concentrations (Figure 4.5). 

Table 4.5 summarizes the percentage of points falling within the factor of two envelope 

for each winter modeled scenario broken up by peak hours and all hours. When paired in 

space and time, 86-87% of all points fall within the factor of two envelope for the winter 

morning hour of 8am and 100% of the points do for the 5pm hour in winter across all 

three scenarios. Winter results continue to show good model performance when paired 

only in time and all receptors are considered (Figure 4.6). The percentage of points within 

the factor of two envelope increase slightly to 93% for the morning hour in all three 
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scenarios and decrease slightly to range from 94-97% for the evening peak hour across all 

three scenarios (Table 4.5).  

Model performance is poor for the summer results with 19-24% (morning hour) 

and 6% (evening hour) of predictions falling within the factor of two envelope for the 

SW corner receptor only (Figure 4.7, Table 4.6). When paired in time only, model 

performance slightly improves but does not meet the factor of two criteria showing only 

23-25% (morning) and 11% (evening) of predictions falling within the factor of two 

envelope (Figure 4.8, Table 4.6). Using the same factor of two criteria, Chen et al. (2009) 

found 100% of hourly predictions to be within the factor of two envelope for both a 

California near-road site and a London roadside with background concentrations 

included, but 69% and 59% without background included104. Gokhale et al. (2008) found 

66% of 24 hour PM2.5 predictions to be within a factor of two of measurements for a 

near-road site at an intersection in India102. 

 

Figure 4.5 Predicted versus observed PM2.5 for winter peak hours and receptor 1 (SW 

corner) only, (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3 model setup. 
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Figure 4.6 Predicted versus observed PM2.5 for winter peak hours and all four corner 

receptors, (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3 model setup. 

 

 

Figure 4.7 Predicted versus observed PM2.5 for summer peak hours and receptor 1 (SW 

corner) only, (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3 model setup. 

 

 

 

Figure 4.8 Predicted versus observed PM2.5 for summer peak hours and all four corner 

receptors, (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3 model setup. 
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Table 4.5 Percentage of points falling within the factor of two envelope for all 3 scenarios 

and winter time periods. 

 

 

Table 4.6 Percentage of points falling within the factor of two envelope for all 3 scenarios 

and summer time periods. 

 

  

While being within the factor of two envelope, the majority of winter PM2.5 

predictions were below the 1:1 line showing a tendency to be biased low. Summer 

modeled concentrations are biased high compared to observations. Chen et al. (2009) 

showed a similar pattern in CAL3QHC results for a site with observations made very 

close to the roadside and the model overpredicted for low concentrations and 

underpredicted for high concentrations104. Observed PM2.5 is higher in the winter 



77 

 

compared to summer explaining the large seasonal difference in model performance. 

PM2.5 observations also show that the PM2.5 contribution from traffic is low which is 

supported by the model results when wind speeds are greater than 1 m/s. This low 

contribution from traffic makes model performance heavily dependent on the background 

concentration data used to add to predicted concentrations. Chen et al. (2009) attributes 

the poor performance possibly to the close proximity of the receptor to the road segment 

and a street canyon effect resulting in complex meteorology. Both of these explanations 

support that CAL3QHC is not suitable for estimating PM2.5 levels at locations where 

stable state cannot be achieved104. For urban arterials and modeling impacts in the near 

road-road environment where urban residents are waiting for transit, walking, and/or 

biking, these results do not support CAL3QHC as an appropriate model.  

For the near-road site in Chen et al. (2009), there were 253 hours assessed 

spanning across two years, but no seasonal component or difference in trends were 

presented. Winter modeled periods presented here would have lower boundary layer 

heights compared to summer modeled periods and increased cloud cover which may 

introduce more variability in meteorological conditions than the stability classes used by 

CAL3QHC can capture. AERMOD, the other EPA approved model for PM2.5 hot-spot 

analysis, incorporates the effects of the planetary boundary layer based on more recent 

atmospheric science128,129. Running similar simulations as presented in this study using 

AERMOD is proposed to help further resolve the difference in performance with the 

range in measured PM2.5 observations. Additionally, EPA has proposed changes to 

Appendix W to list only AERMOD as the recommended model for transportation 
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conformity analyses with a final decision to come in 2016. Understanding how 

AERMOD performs compared to the various scenarios presented here are important as 

model research and development may become more focused only on AERMOD and 

practitioners will need to switch modeling processes.  

Using the factor of two criteria presented in Tables 4.5 and 4.6, model 

performance did not vary much based on the three input scenarios. Meteorological data 

used for each scenario was the same. These results demonstrate that the meteorology is 

the dominant factor in model performance for this study intersection and the varying 

emissions, traffic, and signal inputs only altered results slightly. Idling emissions are 

found to be the lowest in empirical on-road emissions measurements compared to 

acceleration and deceleration so the small impact of idling emissions shown here between 

scenarios 1 and 3 is not unsupported25. The study intersection during peak periods like 

many urban arterials also has very consistent traffic volumes so the range in variation that 

did exist between using real-world hourly volumes in Scenario 1 and static traffic surveys 

in scenario 2 was not enough to show a strong effect on predicted PM2.5 concentrations. 

These results can help support modeling or research projects using CAL3QHC when 

detailed signal and traffic data is not available. 

  

4.3.3 PNC Emission Factors 

The morning 8am peak hour and evening 5pm peak hour periods on the days 

when PNC measurements occurred were simulated using CAL3QHC. Predicted particle 
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concentrations were matched to observed PNC measurements and that ratio was used to 

back calculate a particle emission factor for each time period. Figure 4.9 shows the 

distributions of particle number emission factors (particles/km) derived for each time 

period modeled. Table 4.7 compares the Portland emission factors with other field studies 

that used a variety of empirical on-road and modeling techniques to determine particle 

number emission factors. The emission factors from other studies in Table 4.7 are from 

urban roadways with the exception of Kittelson et al. (2004) which used measurements 

from a highway, but is also the only other U.S. study with field derived particle number 

emission factors.  

 

 

Figure 4.9 CAL3QHC derived particle emission factors for morning and evening peak 

hours when PNC measurements occurred. 

 

 The range of particle number emission factors for this study are within the ranges 

found in the literature (Figure 4.7). Portland mean particle number emission factors are 
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very comparable to LDV emission factors derived from urban roads with lower speeds as 

found by Jones and Harrison (2006)130 and Imhof et al. (2005)131. Morawska et al (2005) 

found diesel specific particle number emission factors to be an order of magnitude higher 

than petrol only particle number emission factors for an urban road with stop and start 

traffic. The Portland mean particle number emission factors match well to the petrol 

emission factor values in stop and start conditions found by Morawska et al. (2005) while 

the diesel specific emission factor matches closer to the 95th percentile emission factors 

found in Portland. The large difference in range in Portland particle number emission 

factors between the morning and evening could possibly be due to a difference in traffic 

fleet composition across these two time periods. Additionally, the CAL3QHC modeling 

is not taking into account any transformation processes such as dilution, nucleation, 

coagulation, condensation, evaporation, dry and wet deposition or complex flow and 

mixing characteristics as some aerosol specific dispersion models can118. However, this 

method of combining roadside measurements with CAL3QHC did produce credible 

particle number emission factors which can be used as starting points to estimate total 

emissions for a major urban arterial and could be extended to other types of roadways to 

help build an initial emission inventory by road type.
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Table 4.7 Comparison of urban roadway particle number emission factors from field studies. 

Study Location Road Description Particle Number 

Emission Factor 

particles/km 

5th- 95th percentiles 

This study Portland, 

OR 

Major urban arterial 

Morning median speeds 32-45 

kph 

Evening median speeds 23- 42 

kph 

7.9   x 1013  (all runs) 

9.9   x 1013  (morning) 

5.7   x 1013  (evening) 

2.3 x 1013 – 24 x 1013 

2.5 x 1013 – 27 x 1013 

2.2 x 1013 – 13 x 1013 

Wang et al. 

2010 65 

Copenhagen Urban road 18.7 x 1013  (mixed 

traffic) 

10.1 x 1013  (LDV) 

220  x 1013  (HDV)  

 

Keogh et 

al. 2009 117 

Queensland,  

Australia 

Mix of urban roads 36.3 x 1013  (LDV) 

650  x 1013  (HDV) 

98 x 1013 (upper 95% CI bound) 

601- 698 x 1013 (95% CI 

bounds) 

Jones and 

Harrison 

2006 130 

London Urban road, speeds < 50 kph 5.84 x 1013 (LDV) 

6.36 x 1013 (HDV) 

 

8
1
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Imhof et al. 

2005 131 

Switzerland Urban road, 50 kph 8      x 1013 (LDV) 

550  x 1013 (HDV) 

 

Morawska 

et al. 2005 

132 

Brisbane, 

Australia 

Urban road with stop-start 

traffic 

2.18 x 1013 (petrol) 

20.4 x 1013 (diesel) 

 

Kittelson et 

al. 2004 133 

Minneapolis, 

Minnesota 

Highway, gasoline dominated 

fleet 

19    x 1013 (minimum) 

 

99 x 1013 (maximum) 

8
2
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4.4 Conclusion 

When compared with roadside PM2.5 observations, CAL3QHC performed well in 

predicting PM2.5 concentrations for winter peak traffic periods and poorly in predicting 

PM2.5 concentrations for summer peak traffic periods using the factor of two criteria. 

Despite general agreement between winter PM2.5 predictions and observations, 

predictions are biased low when observations are high and summer predictions are biased 

high when observed concentrations are lower.  These performance results are similar to 

other studies with roadside measurements and hence a model receptor occurring very 

close to the roadway. In order to understand the seasonal differences and biases further, a 

comparison with AERMOD is recommended. AERMOD is also a Gaussian distribution 

model but accounts for planetary boundary layer effects which do increase variance in 

PM2.5 observations during the winter season. 

PM2.5 concentrations were modeled using three separate input scenarios, one with 

hourly emissions, volume, signal, and meteorology data to use with the queuing 

algorithm. The second scenario used default signal values and static traffic survey data. 

The third scenario used hourly volumes, emissions, and meteorology data but no queuing 

algorithm or traffic signal inputs were used. For both winter and summer periods, there 

were negligible differences in performance across the three scenarios. These results help 

support modeling or research projects using CAL3QHC when detailed signal and traffic 

data is not available. 

 Lastly, CAL3QHC was used along with roadside PNC measurements to back 

calculate PNC emission factors for a mixed fleet and major arterial roadway in the U.S. 
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These modeled particle number emission factors are comparable with particle number 

emission factors calculated for other urban roadways during periods with slower traffic 

speeds and stop and go traffic patterns. The majority of the emission factors calculated 

from field studies have been done so for non U.S. roadways. The values produced here 

are a starting place to estimate total particle number emissions for arterial corridors and 

emission inventories needed in order to further characterize particle number 

concentrations from traffic emissions for U.S roadways.  
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Chapter 5 Implications and Future Directions  

 

The integration of roadside air quality and traffic-related data from a major urban 

arterial in Portland, OR has led various findings that help improve the roadside 

environment in terms of exposure assessment and traffic management through the 

analyses presented in chapters 2- 4. Seasonal and diurnal characterizations demonstrated 

that morning time periods are a more consistent input throughout the year for modeling 

transportation and air quality impacts. Modeling projects focusing on evening periods 

only because traffic volumes are higher may be overestimating or underestimating 

exposure concentrations depending on the time of the year. Using traffic volumes as a 

proxy for exposure was demonstrated to be only reliable for annual mean exposures but 

not for 15 minute aggregated data, showing this method can capture chronic but not acute 

exposures such as experienced by urban road users. The results presented here can next 

be used in combination with health endpoint monitoring and modeling to improve 

understanding of the impacts of short, peak pollutant concentrations on health. 

Additionally, exposure questions such as understanding the tradeoffs between increased 

NOx concentrations versus a shorter time for a pedestrian spent waiting at the 

intersection can be explored.  

Lessons learned from designing, building, and maintaining a roadside air quality 

monitoring station in a traffic signal cabinet are being directly applied to the deployment 

of a second arterial air quality monitoring station in Portland, OR. These two monitoring 

stations are integral pieces of an on-going design of a spatially distributed network of air 

quality and meteorological measurements. These two stations as not only important data 
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collection sites but also essential reference sites when paired with more low-cost and 

moderately priced air quality sensors to help improve data quality and data usefulness for 

such sensors. 

 As cities, including Portland, OR, continue to embrace the technology and 

planning ideas under the emerging topic of Smart Cities, which includes increased sensor 

infrastructure to help better quantify and evaluate system operations, methods for data 

integration will continue to be needed. This work has directly informed and identified 

additional research and design needs for building an integrated network of air quality, 

meteorological, and traffic data system. Such data integration has to combine varying 

levels of data quality control procedures and feedback loops to maintain data quality and 

produce integrated data streams useful to researchers, modelers, urban planners, and 

transportation engineers.  

A direct use of such integrated datasets and increased monitoring will be to 

continue evaluation of transportation management and operations strategies. The 

matching method presented in chapter 3 will be used for future assessments of 

understanding the impact of freight priority signaling and improved transit signal priority 

on roadside NOx and black carbon concentrations. This method will also be combined 

with increased spatial measurements of traffic-related pollutants to help understand long-

term trends of pollutant concentrations and evaluate the impact of changes in fleet 

composition such as increased mode share of electric vehicles and even connected or 

autonomous vehicles which are being incentivized in future city plans. These evaluations 

are important for providing baselines, understanding how to decrease roadside exposures 
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for urban residents and to provide feedback on actual decreases being achieved in terms 

of greenhouse gas emission levels from the transportation network.  
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A. Appendix A: Literature Review Tables of Near-Road Air Quality Studies 

 

Table 0-1 Near-road air quality monitoring studies with at least one curbside or sidewalk location. 

First Author 

& Year 

Location NOx PM 

Mass 

PM 

Number 

Roadway 

Type 

Roadway 

Descriptors 

Stuy 

Length 

Traffic 

Data 

Type of 

traffic data 

Kendrick et 

al 2015 

Portland, OR Yes Yes Yes Major urban 

arterial 

2800 veh/hour 

for peak periods 

1 year & 6 

months, 

ongoing 

Yes Traffic 

volume, 

degree of 

saturation, 

travel 

times, 

cycle 

length 

Mavroidis et 

al 2012 

Athens, 

Greece 

Yes   Major urban 

arterial 

67,000 veh/day 25 years No  

Pirjola et al 

2012 

Helsinki, 

Finland 

Yes Yes  Main urban 

arterial 

40,000 veh/day  2.5 weeks No  

Wang et al 

2010 

Copenhagen, 

Denmark 

Yes Yes Yes Highway & 

busy urban 

street 

 4 weeks Yes Highway 

only, 

automatic 

traffic 

counts 

Kumar et al 

2008a 

Cambridge, 

UK 

  Yes Urban street 

canyon 

Two way traffic  

10m width, 1 

7 days Yes Visual 

traffic 

counts & 

 9
9
  



 

 

lane in each 

direction 

compositio

n 

Kumar et al 

2008b 

Cambridge, 

UK 

  Yes Urban street 

canyon 

One lane of 

traffic (18mph) 

17 days Yes Traffic 

volumes 

movement 

sensitive 

CCTV 

camera 

Jamriska et 

al 2008 

Brisbane, 

Australia 

  Yes Highway & 

Major urban 

arterial 

Steady speed 

100km/h & max 

speed 60km/h 

5 months Yes  Traffic 

flow rate & 

intermittent  

compositio

n (video) 

Agus et al 

2007 

Leicester, 

UK 

Yes  Yes Urban 

arterial 

1100 veh/hour 4 weeks Yes Traffic 

volume & 

detector 

occupancy 

SCOOT 

system, 

piezo-

electric 

loops 

Charron et 

al 2003 

London, UK Yes Yes Yes Major urban 

arterial 

80,000 veh/day Up to 3 

years 

Yes Traffic 

volume & 

compositio

n induction 

loops 

1
0
0
  



 

 

Ntziachristo

s et al 2007 

winter 

Los Angeles, 

California 

 Yes Yes Freeway 

(10m away) 

150,000 – 

200,000 

veh/day, up to 

25% heavy duty 

2 months Yes State DOT 

(loops) and 

manual and 

videotaped 

counts  

Harrison et 

al 2005 

London, UK   Yes Major urban 

arterial 

80,000 veh/day 3 years  No  

Namdeo and 

Bell 2005  

London, UK Yes Yes  Major urban 

arterial  

 1 year No  

Imhof et al 

2005 

Zurich, 

Switzerland 

Yes Yes Yes Motorway 

Highway 

Signalized 

urban road    

62,000 veh/day     

25,000 veh/day      

22,000 veh/day 

w/ stop and go 

traffic 

12-60 days Yes Traffic 

counts, 

vehicle 

lengths 

with 

induction 

loops & 

Optical 

counter 

Molnar et al 

2002 

Gothenburg, 

Sweden 

 Yes Yes Main 

commuting 

road 

20,000/13,000 

veh/day 

weekday/weeke

nd 

3 weeks No  

Lena et al 

2002 

Hunts Point 

(peninsula in 

Bronx, NY) 

 Yes 

(focus 

on 

 6 different 

intersections 

155 - 340 

cars/hour 

9 - 277 

trucks/hours 

11hrs/day,  

3 

days/week 

for 3 weeks 

Yes Manual 

counts & 

compositio

n 

1
0
1
 



 

 

compo

sition) 

Lal et al 

2001 

Mumbai, 

India 

Yes   Major urban 

arterial & 

intersection 

300 veh/hour, 

3x density for 

junction 

2 days/site Yes Vehicle 

density 

Ruellan et al 

2001 

Paris, France  Yes Yes Highway 8 lanes 3 months Yes Traffic 

volumes, 

speed, % of 

road 

occupation 

Wahiln et al 

2001 

Copenhagen 

& Odense 

Denmark 

Yes  Yes Urban street 

canyon       

Urban road 

26,000 veh/day 

 

22,000 veh/day 

47 days 

 

17 days 

No  

Janssen et al 

1999 

Wageningen 

& Arnhem, 

Netherlands 

 Yes  2 Urban 

roads 

8,900 veh/day  

15,000 veh/day 

8hrs/weekd

ay for ~3 

months 

Yes Manual 

traffic 

counts for 

10min of 

each hour 

Shi et al 

1999 

Birmingham, 

UK 

 Yes Yes Busy road 30,000 veh/day 4 days No  

Harrison et 

al 1999 

Birmingham, 

UK 

 Yes Yes Highway 30,000 veh/day Up to 3 

months 

No  

 

1
0
2
 



 

 

 

Table 0-2 Near-road air quality monitoring studies with measurement locations at various distances from roadways. Colors indicate 

papers published with data collected from the same monitoring study. 

First 

Author & 

Year 

Location Study 

Length 

Closet Site to Road 

Edge 

Furthest Site from 

Road Edge 

Roadway 

Type 

Roadway 

Descriptors 

Pollutants 

Measured 

Down-

wind 

Upwind Down-

wind 

Upwind 

Kimbrough 

et al 2013 

(a) 

Las Vegas, 

Nevada 

1 year 20m 100m 300m  Interstate 

highway 

206,000 

veh/day  10% 

heavy-duty 

CO, NO2, 

NOx, BC, 

traffic 

volumes, 

speed, vehicle 

composition 

Kimbrough 

et al 2013 

(b) 

Las Vegas, 

Nevada 

1 year 20m 100m 300m  Interstate 

highway 

200,000 

veh/day 10% 

heavy-duty 

NO2 

Zhu et al 

2009 

Austin, 

Texas 

1 month 13m                 

15m                    

9m 

5m                 

30m                   

52m 

138m               

113m                  

137m 

None                    

None                               

91m                        

State 

highway 

Interstate 

Surface road 

5% heavy duty 

19% heavy 

duty 34% 

heavy duty 

CO, NOx, 

UFP, PM2.5, 

Clements 

et al 2009 

Austin, 

Texas 

1 month 13m                 

15m                    

9m 

5m                 

30m                   

52m 

138m               

113m                  

137m 

None                    

None                               

91m                        

State 

highway 

Interstate 

Surface road 

5% heavy duty 

19% heavy 

duty 34% 

heavy duty 

CO, NOx, 

UFP, PM2.5 

1
0
3
 



 

 

Birmili et 

al 2009 

Berlin, 

Germany 

10 weeks 4m  400m  Motorway 180,000 

veh/day 

PNC, PSDs, 

traffic counts 

& composition 

Buonanno 

et al 2009 

Cassino, 

Italy 

4hrs/day 

for 6 days 

20 300m 400m  Highway 6 lanes wide 

(53±15 

veh/min 

weekend)   

(95±12 

veh/min 

weekday) 

PNC, PSD, 

particle 

surface area, 

traffic counts 

& composition  

Hu et al 

2009 

Los 

Angeles, 

California 

3 winter 

days, 2 

summer 

days 

100m 30m 2600m 1000m Freeway  PNC, PSD, 

PM2.5, BC, 

particle bound 

PAH, CO, 

CO2, NOx, 

traffic flow 

Baldauf et 

al 2008 

Raleigh, 

North 

Carolina 

~2 months 5m 50m 300m  Interstate 

highway 

125,000 

veh/day 

CO, CO2, 

NOx, THC, 

PM10, PM2.5, 

PNC, PSDs, 

SF6, traffic 

volumes, 

speed & 

composition 

Hagler et al 

2009 

Raleigh, 

North 

Carolina 

12 hrs/day 

for 8 days  

20m 50m 300m  Interstate 

highway 

125,000 

veh/day 

PNC, THC, 

CO, NO, BC, 

PM2.5, PM10 

1
0
4
 



 

 

Thoma et 

al 2008 

Raleigh, 

North 

Carolina 

14 hrs/day 

for 14 

days 

7m  17m  Interstate 

highway 

125,000 

veh/day 

NO (path-

integrated 

optical remote 

sensing), 

traffic 

volumes 

Cho et al 

2009 

(combined 

with 

toxicology) 

Raleigh, 

North 

Carolina 

Weekly 

samples (2 

weeks) 

20m  275m  Interstate 

highway 

125,000 

veh/day 

PM10. PM2.5, 

UFP 

(chemical 

composition) 

Venkatram 

et al 2009 

(combined 

with 

modeling) 

Raleigh, 

North 

Carolina 

 NO: 7m          

VOC: 

10m 

 NO: 

17m        

VOC: 

100m 

 Interstate 

highway 

125,000 

veh/day 

NO, VOCs, 

traffic data,  

Baldauf et 

al 2008 

(noise 

barrier 

effect) 

Raleigh, 

North 

Carolina 

2 months 20m  300m  Interstate 

highway 

125,000 

veh/day 

CO, PNC, 

traffic data 

Beckerman 

et al 2008 

Toronto, 

Canada 

1 week 4m                           

57m 

38m             

28m 

875m                 

986m 

438m               

194m 

2 highways 395,400 AADT 

349,100 AADT  

NOx, O3, 

VOCs, PM2.5, 

PNC, SO2 

1
0
5
 



 

 

Richmond-

Bryant et al 

2009 

Brooklyn, 

New York 

~3 days Beneath 

express

way w/ 

inlet at 

8m road 

height 

 400m  Expressway 

to   Street 

canyon  to 3 

stories 

indoors 

115,000 

veh/day   

30,000 veh/day 

PNC, PM2.5, 

NOX, SOX, 

CO, CO2 

Hahn et al 

2009 (b) 

Brooklyn, 

New York 

4hrs/day 

for 6 days      

24hrs for 

2 days  

3m  420m  Expressway 

to   Street 

canyon   

115,000 

veh/day   

30,000 veh/day 

PNC 

Eisner et al 

2009 

Brooklyn, 

New York 

4 hours 40 

mins 

0m  420m  Expressway 

to   Street 

canyon   

115,000 

veh/day   

30,000 veh/day 

PNC 

Zhu et al 

2002 (a)          

summer 

daytime 

Los 

Angeles, 

California 

6hrs/day 

for 9 days  

15m 285m 285m   I-405 

freeway 

9 lanes                   

13,900 veh/hr      

>93% gasoline 

PNC, PSD, 

CO, BC, PM 

mass 

Zhu et al 

2002 (b)             

summer 

daytime 

Los 

Angeles, 

California 

5.5 

hrs/day 

for 7 days  

3m 187m 287m  710 

Freeway 

8 lanes                    

180-230 

veh/min  >25% 

heavy-duty 

PNC, PSD, 

CO, BC, PM 

mass 

Zhu et al 

2004 

Los 

Angeles, 

California 

4-6 

hrs/day   

for 7 days 

15m                    

3m 

285m                

187m 

285m                   

287m 

 I-405 

freeway         

710 freeway 

See details 

above 

PNC, PSD, 

CO, BC  

1
0
6
 



 

 

winter 

daytime 

Zhang et al 

2004 

Los 

Angeles, 

California 

Data from 

all 3 

above 

combined 

Data 

from all 

3 above 

combine

d 

Data 

from all 

3 above 

combine

d 

Data 

from 

all 3 

above 

combin

ed 

Data 

from all 

3 above 

combine

d 

Data from 

all 3 above 

combined 

Data from all 3 

above 

combined 

Data from all 

3 above 

combined 

Zhu et al 

2006 

winter 

nighttime 

Los 

Angeles, 

California 

5hrs/night 

for 7 

nights 

15m 285m 285m  I-405 

freeway 

See details 

above 

PNC, PSD, 

PM2.5, PM10 

Kuhn et al 

2005 

summer 

Los 

Angeles, 

California 

7hrs/day 

for 6 

weeks 

2.5m  50m  Freeway Only light duty 

vehicles 

allowed. 

5700veh/hour 

Particle 

volatility & 

composition, 

PM2.5, PM10, 

PNC, PSD, 

traffic 

volumes 

Kuhn et al 

2005b 

winter 

Los 

Angeles, 

California 

7hrs/day 

for 2 

weeks 

2.5m  50m  Freeway Only light duty 

vehicles 

allowed. 

5100veh/hour 

Particle 

volatility & 

composition, 

PM2.5, PM10, 

PNC, PSD, 

traffic 

volumes 

1
0
7
 



 

 

Nanzetta 

and 

Holmen 

2004 

Sacramento

, California 

3 days 3m 6m  9m Freeway Free flow 

speeds 65-

85mph 

PNC, PSDs, 

traffic counts, 

composition(v

ideo) 

Gidhagen 

et al 2004 

Stockholm, 

Sweden 

6 weeks 38m (Backgr

ound 

site 

45km 

away) 

91m  Highway 52,300 veh/day 

(rush hour 

5000 veh/hour) 

PNC, NOx, 

PSD traffic 

volume, 

speed, 

composition 

Tiita et al 

2002 

Kuopio, 

Finland 

16hr/day 

for 27 

days 

12m  87m  Motorway 19,000 veh/day PM2.5 

Hitchins et 

al 2000 

Brisbane, 

Australia 

32 hours 

total for 

both sites 

15m               

15m  

 375m            

280m 

 2 major 

roads 

3400 veh/hour   

2130 veh/hour 

PNC, PM2.5, 

traffic counts 

& composition 

 

1
0
8
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B. Appendix B: Supplemental Plots and Tables for Chapter 3’s Matching Analysis 

 

Figure B-1 QQ plots for unmatched and matched 5 min subset, Case Study 1 Morning. 
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Figure B-2 QQ plots for unmatched (All) and matched 15 min subset, Case Study 1 

Morning. 
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Figure B-3 Propensity score histograms for matched 5 min subset, Case Study 1 

Morning. 

 

Figure B-4 Propensity score histograms for matched 15 min subset, Case Study 1 

Morning 



 

 

 

Table B-1 Case study 1 Morning: CL and DS t-test results for unmatched and matched samples. Full datasets are in parentheses. 

Data Subset CL 

Control 

CL    

Trmt 

CL          

t-value 

CL         

p-value 

DS 

Control 

DS   

Trmt 

DS         

t-value 

DS        

p-value 

Unmatched 

5 min 

130 

 

(130) 

117 

 

(118) 

8.5 

 

(24) 

<0.01 

 

(<0.01) 

123 

(124) 

118 

(121) 

1 

(1.4) 

0.33 

(0.18) 

Matched     

5 min 

130 

 

(130) 

117 

 

(118) 

5.7 

 

(18) 

<0.01 

 

(<0.01) 

121 

(123) 

118 

(121) 

0.5 

(0.9) 

0.6 

(0.35) 

Unmatched 

15 min 

129 

 

(129) 

118 

 

(118) 

12 

 

(19) 

<0.01 

 

(<0.01) 

127 

(125) 

122 

(125) 

1.3 

(0.3) 

0.22 

(0.8) 

Matched   

15 min 

129 

 

(129) 

118 

 

(118) 

9 

 

(17) 

<0.01 

 

(<0.01) 

126 

(127) 

122 

(125) 

0.8 

(0.7) 

0.4 

(0.5) 

 

 

 

 

1
1
2
 



 

 

 

Table B-2 Case Study 1 Morning: Approach DS t-test results for unmatched and matched samples. Full datasets are in parentheses 

 

Data  

Subset 

EB 

Through 

DS  

Control 

EB 

Through 

DS    

Trmt 

EB 

Through 

DS          

t-value 

EB 

Through 

DS        

p-value 

WB 

Through 

DS 

Control 

WB 

Through 

DS    

Trmt 

WB 

Through 

DS         

t-value 

WB 

Through 

DS       

p-value 

NB/SB 

Through 

Control 

NB/SB 

Through   

Trmt 

NB/SB 

Through        

t-value 

NB/SB 

Through       

p-value 

Un- 

matched  

5 min 

43 

(43) 

44 

(44) 

-0.2 

(-1.7) 

0.82 

(0.1) 

86 

(89) 

84 

(84) 

0.6 

(2.5) 

0.55 

(0.01) 

82 

(83) 

84 

(79) 

-0.4 

(1.9) 

0.68 

(0.06) 

Matched     

5 min 

43 

(43) 

44 

(44) 

-0.3 

(-1.7) 

0.81 

(0.1) 

90 

(90) 

84 

(84) 

0.9 

(2.2) 

0.36 

(0.03) 

88 

(82) 

84 

(80) 

0.8 

(1.5) 

0.43 

(0.14) 

Un- 

matched  

15 min 

44 

(44) 

45 

(45) 

-0.6 

(-1.6) 

0.6 

(0.12) 

96 

(90) 

89 

(87) 

1.1 

(0.7) 

0.26 

(0.51) 

85 

(82) 

78 

(80) 

2.1 

(0.9) 

0.05 

(0.35) 

Matched   

15 min 

44 

(44) 

45 

(45) 

-0.6 

(-0.6) 

0.53 

(0.57) 

92 

(90) 

89 

(87) 

0.4 

(0.7) 

0.69 

(0.5) 

84 

(82) 

78 

(80) 

1.5 

(0.9) 

0.15 

(0.4) 

 

 

1
1
3
 



 

 

 

Table B-3 Case Study 1 Morning: Normalized NO and NO2 t-test results for unmatched and matched samples. Full datasets are in 

parentheses. 

 

Data Subset N- NO 

Control 

N- NO   

Trmt 

N- NO        

t-value 

N- NO       

p-value 

N- NO2 

Control 

N- NO2 

Trmt 

N- NO2        

t-value 

N- NO2       

p-value 

Unmatched 

5 min 

1.7 

(1.6) 

1.8 

(1.6) 

-0.91 

(-0.2) 

0.37 

(0.88) 

1.2 

(1.2) 

1.2 

(1.1) 

0.8 

(3.8) 

0.43 

(<0.01) 

Matched     

5 min 

1.6 

(1.6) 

1.8 

(1.6) 

-1.3 

(-0.8) 

0.21 

(0.4) 

1.2 

(1.2) 

1.2 

(1.1) 

-0.3 

(3) 

0.76 

(<0.01) 

Unmatched 

15 min 

1.6 

(1.6) 

1.6 

(1.6) 

-0.3 

(-0.4) 

0.8 

(0.68) 

1.2 

(1.2) 

1.1 

(1.1) 

1.2 

(2.2) 

0.24 

(0.03) 

Matched   

15 min 

1.6 

(1.5) 

1.6 

(1.6) 

0.06 

(-2.1) 

0.95 

(0.04) 

1.2 

(1.2) 

1.1 

(1.1) 

0.8 

(0.7) 

0.42 

(0.51) 

 

 

1
1
4
 



 

 

 

Table B-4 Case Study 1 Morning: Roadside NO and NO2 (cuberoot transformed) t-test results for unmatched and matched samples. 

Full datasets are in parentheses. 

 

Data Subset CR- NO 

Control 

CR- NO   

Trmt 

CR- NO        

t-value 

CR- NO       

p-value 

CR- NO2 

Control 

CR- NO2 

Trmt 

CR- NO2        

t-value 

CR- NO2       

p-value 

Unmatched 

5 min 

3.5 

(3.5) 

3.7 

(3.4) 

-0.8 

(1.4) 

0.44 

(0.16) 

2.8 

(2.8) 

2.9 

(2.8) 

-0.6 

(-1) 

0.55 

(0.29) 

Matched     

5 min 

3.5 

(3.5) 

3.6 

(3.4) 

-0.9 

(1.3) 

0.39 

(0.18) 

2.8 

(2.8) 

2.9 

(2.8) 

-0.9 

(-0.1) 

0.36 

(0.94) 

Unmatched 

15 min 

3.6 

(3.5) 

3.5 

(3.5) 

1 

(0.4) 

0.32 

(0.7) 

2.8 

(2.8) 

2.8 

(2.9) 

-0.6 

(-2) 

0.55 

(0.05) 

Matched   

15 min 

3.5 

(3.7) 

3.5 

(3.5) 

0.1 

(1.3) 

0.9 

(0.2) 

2.7 

(2.8) 

2.8 

(2.9) 

-1.1 

(-1) 

0.28 

(0.31) 

 

 

1
1
5
 



 

 

 

Table B-1 Case Study 1 Morning: Background NO and NO2 (cuberoot transformed) t-test results for unmatched and matched 

samples. Full datasets are in parentheses. 

 

Data Subset DEQ NO 

Control 

DEQ NO   

Trmt 

DEQ NO        

t-value 

DEQ NO       

p-value 

DEQ NO2 

Control 

DEQ NO2 

Trmt 

DEQ NO2        

t-value 

DEQ NO2       

p-value 

Unmatched 

5 min 

2.3 

(2.3) 

2.2 

(2.2) 

0.7 

(-6.4) 

0.47 

(0.04) 

2.3 

(2.3) 

2.5 

(2.5) 

-1.6 

(-6.4) 

0.12 

(<0.01) 

Matched     

5 min 

2.2 

(2.4) 

2.2 

(2.2) 

0.3 

(2.3) 

0.76 

(0.02) 

2.4 

(2.3) 

2.5 

(2.5) 

-0.2 

(-3.6) 

0.85 

(<0.01) 

Unmatched 

15 min 

2.5 

(2.4) 

2.3 

(2.3) 

0.8 

(0.7) 

0.43 

(0.46) 

2.4 

(2.3) 

2.5 

(2.5) 

-1.8 

(-4.2) 

0.08 

(<0.01) 

Matched   

15 min 

2.3 

(2.6) 

2.3 

(2.3) 

0.1 

(.23) 

0.93 

(0.03) 

2.4 

(2.5) 

2.5 

(2.5) 

-1.4 

(-1.4) 

0.19 

(0.17) 

 

 

1
1
6
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Figure B-5 QQ plots for unmatched and matched 5 min subset, Case Study 1 Evening. 
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Figure B-6 QQ plots for unmatched and matched 15 min subset, Case Study 1 Evening. 
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Figure B-7 QQ plots for unmatched and matched 5 min full dataset, Case Study 1 

Evening. 
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Figure B-8 QQ plots for unmatched and matched 15 min full dataset, Case Study 1 

Evening. 
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Figure B-9 Propensity score histograms for matched 5 min subset, Case Study 1 Evening. 

 

Figure B-10 Propensity score histograms for matched 15 min subset, Case Study 1 

Evening. 
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Figure B-11 Propensity score histograms for matched 5 min full dataset, Case Study 1 

Evening. 

 

Figure B-12 Propensity score histograms for matched 15min full dataset, Case Study 1 

Evening.



 

 

 

Table B-6 Case Study 1 Evening: CL and DS t-test results for unmatched and matched samples. Full datasets are in parentheses. 

 

Data Subset CL 

Control 

CL    

Trmt 

CL          

t-value 

CL         

p-value 

DS 

Control 

DS   

Trmt 

DS         

t-value 

DS        

p-value 

Unmatched 

5 min 

133 

(133) 

116 

(116) 

9.2 

(26.4) 

<0.01 

(<0.01) 

109 

(111) 

112 

(115) 

-0.7 

(-2.9) 

0.48 

(<0.01) 

Matched     

5 min 

131 

(131) 

116 

(116) 

4.4 

(13.6) 

<0.01 

(<0.01) 

107 

(110) 

112 

(115) 

-0.9 

(-2.6) 

0.36 

(0.01) 

Unmatched 

15 min 

133 

(134) 

116 

(116) 

10.1 

(19.7) 

<0.01 

(<0.01) 

113 

(114) 

116 

(117) 

-0.7 

(-1.5) 

0.5 

(0.15) 

Matched   

15 min 

131 

(133) 

116 

(116) 

4.3 

(11.1) 

<0.01 

(<0.01) 

114 

(114) 

116 

(117) 

-0.4 

(-0.9) 

0.7 

(0.4) 

 

 

 

 

1
2
3
 



 

 

 

Table B-7 Case Study 1 Evening: Approach DS t-test results for unmatched and matched samples. Full datasets are in parentheses. 

 

Data  

Subset 

EB 

Through 

DS 

Control 

EB 

Through 

DS   

Trmt 

EB 

Through 

DS        

t-value 

EB 

Through 

DS        

p-value 

WB 

Through 

DS 

Control 

WB 

Through 

DS   

Trmt 

WB 

Through 

DS         

t-value 

WB 

Through 

DS       

p-value 

NB/SB 

Through 

Control 

NB/SB 

Through   

Trmt 

NB/SB 

Through        

t-value 

NB/SB 

Through       

p-value 

Un- 

matched  

5 min 

62 

(63) 

64 

(67) 

-0.7 

(-2.9) 

0.49 

(<0.01) 

52 

(52) 

54 

(52) 

-0.9 

(-0.4) 

0.4 

(0.72) 

71 

(71) 

70 

(72) 

0.1 

(-0.9) 

0.89 

(0.39) 

Matched     

5 min 

62 

(62) 

64 

(67) 

-0.6 

(-2.9) 

0.53 

(<0.01) 

53 

(52) 

54 

(52) 

-0.2 

(-0.5) 

0.82 

(0.6) 

74 

(70) 

70 

(72) 

0.8 

(-1.2) 

0.43 

(0.22) 

Un- 

matched  

15 min 

63 

(64) 

70 

(66) 

-1.7 

(-1) 

0.09 

(0.33) 

51 

(52) 

56 

(52) 

-2.1 

(-0.4) 

0.05 

(0.69) 

71 

(72) 

74 

(73) 

-0.7 

(-0.6) 

0.51 

(0.52) 

Matched   

15 min 

62 

(64) 

70 

(66) 

-1.7 

(-0.7) 

0.11 

(0.48) 

49 

(52) 

56 

(52) 

-2.5 

(-0.12) 

0.02 

(0.9) 

72 

(72) 

74 

(73) 

-0.5 

(-0.6) 

0.61 

(0.55) 

 

 

1
2
4
 



 

 

 

Table B-8 Case Study 1 Evening: Normalized NO and NO2 t-test results for unmatched and matched samples. Full datasets are in 

parentheses. 

 

Data Subset N- NO 

Control 

N- NO   

Trmt 

N- NO        

t-value 

N- NO       

p-value 

N- NO2 

Control 

N- NO2 

Trmt 

N- NO2        

t-value 

N- NO2       

p-value 

Unmatched 

5 min 

2.2 

(2.2) 

2.4 

(2.3) 

-2.2 

(-3.2) 

0.03 

(<0.01) 

1.4 

(1.3) 

1.3 

(1.4) 

0.6 

(-1.3) 

0.59 

(0.21) 

Matched     

5 min 

2.3 

(2.2) 

2.4 

(2.3) 

-0.9 

(-3.1) 

0.4 

(<0.01) 

1.4 

(1.3) 

1.3 

(1.4) 

0.6 

(-1.8) 

0.53 

(0.08) 

Unmatched 

15 min 

2.2 

(2.2) 

2.5 

(2.3) 

-2.3 

(-1.5) 

0.03 

(0.15) 

1.3 

(1.4) 

1.4 

(1.4) 

-0.4 

(0.03) 

0.69 

(0.97) 

Matched   

15 min 

2.2 

(2.2) 

2.5 

(2.3) 

-2.8 

(-2.2) 

<0.01 

(0.03) 

1.4 

(1.4) 

1.4 

(1.3) 

-0.1 

(0.9) 

0.89 

(0.36) 

 

 

1
2
5
 



 

 

 

Table B-9 Case Study 1 Evening: Roadside NO and NO2 (cuberoot transformed) t-test results for unmatched and matched samples. 

Full datasets are in parentheses. 

 

Data Subset CR- NO 

Control 

CR- NO   

Trmt 

CR- NO        

t-value 

CR- NO       

p-value 

CR- NO2 

Control 

CR- NO2 

Trmt 

CR- NO2        

t-value 

CR- NO2       

p-value 

Unmatched 

5 min 

2.7 

(2.7) 

2.7 

(2.7) 

0.2 

(1.7) 

0.86 

(0.08) 

2.7 

(2.7) 

2.6 

(2.6) 

0.8 

(1.3) 

0.45 

(0.19) 

Matched     

5 min 

2.9 

(2.6) 

2.7 

(2.7) 

0.9 

(-0.4) 

0.38 

(0.67) 

2.7 

(2.6) 

2.6 

(2.6) 

1.2 

(-0.7) 

0.22 

(0.51) 

Unmatched 

15 min 

2.8 

(2.8) 

2.8 

(2.7) 

0.04 

(1.8) 

0.97 

(0.07) 

2.6 

(2.7) 

2.6 

(2.6) 

0.06 

(1.1) 

0.95 

(0.27) 

Matched   

15 min 

2.6 

(2.6) 

2.8 

(2.7) 

-0.8 

(-0.4) 

0.44 

(0.73) 

2.6 

(2.7) 

2.6 

(2.6) 

-0.5 

(0.3) 

0.66 

(0.73) 

 

 

 

1
2
6
 



 

 

 

Table B-10 Case Study 1 Evening: Background NO and NO2 (cuberoot transformed) t-test results for unmatched and matched 

samples. Full datasets are in parentheses. 

 

Data Subset DEQ NO 

Control 

DEQ NO   

Trmt 

DEQ NO        

t-value 

DEQ NO       

p-value 

DEQ NO2 

Control 

DEQ NO2 

Trmt 

DEQ NO2        

t-value 

DEQ NO2       

p-value 

Unmatched 

5 min 

1.3 

(1.3) 

1.1 

(1.2) 

3.2 

(8.3) 

<0.01 

(<0.01) 

2 

(2) 

2 

(1.9) 

0.8 

(4.5) 

0.42 

(<0.01) 

Matched     

5 min 

1.2 

(1.2) 

1.1 

(1.1) 

2.6 

(4.5) 

0.01 

(<0.01) 

2 

(2) 

2 

(1.9) 

0.8 

(1.9) 

0.45 

(0.06) 

Unmatched 

15 min 

1.3 

(1.3) 

1.1 

(1.2) 

3.4 

(4.8) 

<0.01 

(<0.01) 

2 

(2) 

2 

(2) 

1 

(1.8) 

0.31 

(0.07) 

Matched   

15 min 

1.2 

(1.2) 

1.1 

(1.2) 

2 

(2.8) 

0.05 

(<0.01) 

2 

(1.92) 

2 

(2) 

0.2 

(-0.4) 

0.82 

(0.69) 

1
2
7
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Figure B-13 QQ plots for unmatched and matched 5 min subset, Case Study 2 Evening. 
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Figure B-14 QQ plots for unmatched and matched 15 min subset, Case Study 2 Evening. 
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Figure B-15 QQ plots for unmatched and matched 5 min full dataset, Case Study 2 

Evening. 
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Figure B-16 QQ plots for unmatched and matched 15 min full dataset, Case Study 2 

Evening. 
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Figure B-17 Propensity score histograms for matched 5min subset, Case Study 2 

Evening. 

 

 

Figure B-18 Propensity score histograms for matched 15min subset, Case Study 2 

Evening. 
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Figure B-19 Propensity score histograms for matched 5min full dataset, Case Study 2 

Evening. 

 

 

Figure B-20 Propensity score histograms for matched 15min full dataset, Case Study 2 

Evening. 



 

 

 

Table B-11 Case Study 2 Evening: CL and DS t-test results for unmatched and matched samples. Full datasets are in parentheses. 

Data Subset CL 

Control 

CL    

Trmt 

CL          

t-value 

CL         

p-value 

DS 

Control 

DS   

Trmt 

DS         

t-value 

DS        

p-value 

Unmatched 

5 min 

134 

(134) 

124 

(124) 

19.5 

(25) 

<0.01 

(<0.01) 

112 

(112) 

111 

(113) 

0.7 

(-0.6) 

0.48 

(0.58) 

Matched     

5 min 

133 

(134) 

124 

(124) 

7.2 

(25) 

<0.01 

(<0.01) 

106 

(112) 

111 

(112) 

-1.8 

(-0.2) 

0.08 

(0.81) 

Unmatched 

15 min 

135 

(135) 

124 

(124) 

20.5 

(22) 

<0.01 

(<0.01) 

115 

(115) 

114 

(116) 

0.7 

(-0.6) 

0.47 

(0.55) 

Matched   

15 min 
134 

(135) 

124 

(124) 

12 

(22) 

<0.01 

(<0.01) 

111 

(115) 

114 

(115) 

-1.2 

(-0.02) 

0.24 

(0.98) 

 

 

 

 

 

1
3
4
 



 

 

 

Table B-12 Case Study 2 Evening: Approach DS t-test results for unmatched and matched samples. Full datasets are in parentheses. 

 

 

 

Data  

Subset 

EB 

Through 

DS 

Control 

EB 

Through 

DS   

Trmt 

EB 

Through 

DS        

t-value 

EB 

Through 

DS        

p-value 

WB 

Through 

DS 

Control 

WB 

Through 

DS   

Trmt 

WB 

Through 

DS         

t-value 

WB 

Through 

DS       

p-value 

NB/SB 

Through 

Control 

NB/SB 

Through   

Trmt 

NB/SB 

Through        

t-value 

NB/SB 

Through       

p-value 

Un- 

Matched 

5 min 

68 

(68) 

64 

(65) 

2.3 

(2.8) 

0.02 

(<0.01) 

53 

(53) 

54 

(56) 

-1.6 

(-6.6) 

0.11 

(<0.01) 

76 

(76) 

74 

(74) 

0.9 

(2.5) 

0.38 

(0.01) 

Matched     

5 min 

62 

(68) 

64 

(65) 

-1.15 

(3.3) 

0.25 

(<0.01) 

52 

(53) 

54 

(56) 

-1.9 

(-6.2) 

0.05 

(<0.01) 

72 

(75) 

74 

(73) 

-1.3 

(-1.5) 

0.21 

(0.14) 

Un- 

matched  

15 min 

69 

(69) 

66 

(67) 

1.5 

(1.5) 

0.13 

(0.13) 

53 

(53) 

56 

(57) 

-3.1 

(-4.7) 

<0.01 

(<0.01) 

77 

(77) 

74 

(74) 

2.1 

(2.3) 

0.03 

(0.02) 

Matched   

15 min 

63 

(69) 

66 

(66) 

-1.4 

(2.1) 

0.17 

(0.03) 

52 

(53) 

56 

(56) 

-4 

(-4) 

<0.01 

(<0.01) 

75 

(77) 

74 

(74) 

0.8 

(2.7) 

0.42 

(0.01) 

1
3
5
 



 

 

 

Table B-13 Case Study 2 Evening: Normalized NO and NO2 t-test results for unmatched and matched samples. Full datasets are in 

parentheses. 

 

Data Subset N- NO 

Control 

N- NO   

Trmt 

N- NO        

t-value 

N- NO       

p-value 

N- NO2 

Control 

N- NO2 

Trmt 

N- NO2        

t-value 

N- NO2       

p-value 

Unmatched 

5 min 

2.22 

(2.22) 

2.93 

(2.86) 

-7.5 

(-12.4) 

<0.01 

(<0.01) 

1.29 

(1.3) 

1.37 

(1.38) 

-2.8 

(-6.5) 

<0.01 

(<0.01) 

Matched     

5 min 

2.09 

(2.22) 

2.93 

(2.83) 

-8.2 

(-12.1) 

<0.01 

(<0.01) 

1.25 

(1.3) 

1.37 

(1.38) 

-3.5 

(-6.3) 

<0.01 

(<0.01) 

Unmatched 

15 min 

2.29 

(2.29) 

2.9 

(2.82) 

-7.3 

(-10.3) 

<0.01 

(<0.01) 

1.34 

(1.34) 

1.39 

(1.42) 

-1.9 

(-3.9) 

0.06 

(<0.01) 

Matched   

15 min 

2.21 

(2.28) 

2.9 

(2.81) 

-7.7 

(-9.3) 

<0.01 

(<0.01) 

1.28 

(1.34) 

1.39 

(1.41) 

-3.8 

(-3.6) 

<0.01 

(<0.01) 

 

 

 

1
3
6
 



 

 

 

Table B-14  Case Study 2 Evening: Roadside NO and NO2 (cuberoot transformed) t-test results for unmatched and matched 

samples. Full datasets are in parentheses. 

 

Data Subset CR- NO 

Control 

CR- NO   

Trmt 

CR- NO        

t-value 

CR- NO       

p-value 

CR- NO2 

Control 

CR- NO2 

Trmt 

CR- NO2        

t-value 

CR- NO2       

p-value 

Unmatched 

5 min 

2.41 

(2.41) 

2.63 

(2.51) 

-3.7 

(-3.8) 

<0.01 

(<0.01) 

2.39 

(2.39) 

2.61 

(2.6) 

-5.6 

(-9.3) 

<0.01 

(<0.01) 

Matched     

5 min 

2.26 

(2.41) 

2.63 

(2.5) 

-4.9 

(-3) 

<0.01 

(<0.01) 

2.31 

(2.39) 

2.61 

(2.57) 

-5.6 

(-8.5) 

<0.01 

(<0.01) 

Unmatched 

15 min 

2.49 

(2.49) 

2.63 

(2.58) 

-2.6 

(-2.2) 

0.01 

(0.03) 

2.45 

(2.45) 

2.61 

(2.63) 

-1.62 

(-6.7) 

<0.01 

(<0.01) 

Matched   

15 min 

2.4 

(2.49) 

2.64 

(2.55) 

-3.7 

(-1.4) 

<0.01 

(0.16) 

2.43 

(2.45) 

2.61 

(2.6) 

-4.3 

(-5.6) 

<0.01 

(<0.01) 

 

 

1
3
7
 



 

 

 

Table B-15 Case Study 2 Evening: Background NO and NO2 (cuberoot transformed) t-test results for unmatched and matched 

samples. Full datasets are in parentheses. 

Data Subset DEQ NO 

Control 

DEQ NO   

Trmt 

DEQ NO        

t-value 

DEQ NO       

p-value 

DEQ NO2 

Control 

DEQ NO2 

Trmt 

DEQ NO2        

t-value 

DEQ NO2       

p-value 

Unmatched 

5 min 

1.09 

(1.09) 

0.95 

(0.96) 

6.1 

(15.3) 

<0.01 

(<0.01) 

1.89 

(1.89) 

1.96 

(1.92) 

-1.9 

(-1.7) 

0.06 

(0.1) 

Matched     

5 min 

1.09 

(1.09) 

0.95 

(0.95) 

5.4 

(15.1) 

<0.01 

(<0.01) 

1.89 

(1.89) 

1.96 

(1.9) 

-1.5 

(-1) 

0.13 

(0.3) 

Unmatched 

15 min 

1.1 

(1.1) 

0.95 

(0.96) 

7 

(10.3) 

<0.01 

(<0.01) 

1.87 

(1.87) 

1.93 

(1.9) 

-1.5 

(-1.2) 

0.13 

(0.23) 

Matched   

15 min 

1.09 

(1.1) 

0.95 

(0.96) 

6 

(9.7) 

<0.01 

(<0.01) 

1.95 

(1.87) 

1.93 

(1.88) 

0.48 

(-0.6) 

0.63 

(0.54) 

 

1
3
8
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C. Appendix C: Cascades to Coast GK-12 Curriculum  

 

 

Cascades to Coast GK12 Curriculum 

Nitrogen Dioxide Inquiry: Measuring Air Pollution in Your Own 

Neighborhood 

Fellow: Christine Kendrick (Environmental Science) 

Teacher: Kathy Childress (Gresham High School) 

Advisor: Dr. Linda George (Environmental Science) 

 

Learning Goal: 

• Develop, conduct, analyze, and present the results of an inquiry-based field study 

on air pollution in the local neighborhood or surrounding environment of the 

school.  

 

Learning Objectives: 

• Introduce the concept of combustion and air pollutants, specifically nitrogen 

dioxide (NO2), sources, and environmental and health impacts  

• Introduce students to note taking through a presentation on NO2 background 

information 

• Introduce the nitrogen dioxide passive sampler technique to measure NO2 

• Have students develop a research question and conduct a study based on air 

quality lesson using the passive sampler method 

• Have students map NO2 concentration values using GoogleEarth and data analysis 

to compare values at different sites 

• Students will present and communicate their study methods, results, and 

conclusions in class presentations using PowerPoint 

 

Target Grade: 9th Grade 
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State Standards: 

H.2P.1 Explain how chemical reactions result from the making and breaking of bonds in 

a process that absorbs or releases energy 

H.2E4 Evaluate the impact of human activities on environmental quality and the 

sustainability of Earth systems. 

H.3S.2 Design and conduct a controlled experiment, field study, or other investigation to 

make systematic observations about the natural world, including the collection of 

sufficient and appropriate data.  

H.3S.3 Analyze data and identify uncertainties. Draw a valid conclusion, explain how it 

is supported by the evidence, and communicate the findings of a scientific investigation. 

 

Activity Summary: 

Students will learn about combustion and the creation of nitrogen dioxide as an air 

pollutant and its effects through an interactive lecture on the white board and take notes. 

Students will also learn about passive samplers for measuring nitrogen dioxide through a 

demonstration.  

 

Students will then develop their own inquiry/research question for a field study using the 

passive samplers. Students will carry out the measurement campaign, analyze the tubes as 

a class, and then create class presentations including background on their research 

question, methods, results, conclusions, errors, and future questions therefore modeling a 

scientific research study.  

 

Timeline: (more details about activities provided in below in Activity Plan) 

First class period (90 minutes): 

Give students a presentation on combustion as source of nitrogen dioxide, describe 

sources, health and environmental impacts. Presentation is given using a white or 

chalkboard so students can contribute answers and have the lecture/presentation be more 

interactive. Also introduce what the passive samplers are, how they work overall, and 

how to setup the samplers at chosen study sites. 
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Second class period (90 minutes): 

Have students break into groups and come up with 3 examples of research 

questions/hypotheses. List group questions on board and discuss as a whole class. Then 

have each group decide on most interesting question and develop an experimental design. 

 

Third class period (60 minutes):  

Have each group describe their question and research plan (where to place the tubes 

(passive samplers)) to the whole class. Hand out the samplers. Students will take home or 

place them in the field (indoor or outdoor environments) as proposed in their study 

design, this will take place outside of class.  

 

Samplers are left out in the field for approximately 2 weeks. 

 

Fourth class period (90 minutes): 

Students are required to bring the samplers back into class. Chemistry of the analysis is 

discussed and students interested will help analyze all of the samplers (graduate student + 

6 students). Values will be determined and students will begin to map values onto 

GoogleEarth maps. Students are also working simultaneously on slides for presentations. 

 

Fifth class period (90 minutes): Class time to complete the presentations and conclusions. 

Begin presentations if students ready. 

 

Sixth class period (90 minutes): Students continue to give presentations on their field 

study and research question. 
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Activity Plan: 

First Class Period- Introduction 

Activity begins with an air quality lecture from visiting scientist/graduate student using 

only drawing and listing on the white board in front of the class with participation from 

the students answering questions as the lecture progresses. The lecture does not use 

Powerpoint so that this presentation is more interactive and students are participating in 

creating the background knowledge. The lecture covers the composition of the 

atmosphere, what happens to gasoline or diesel in the engine of a motor vehicle 

(introducing combustion), sources of NO2 pollution (anthropogenic and natural), and why 

do we care (human health, environmental factors like acid rain and eutrophication, etc.). 

Students are required to take notes in science spiral notebook they bring to class everyday 

under each topic of the lecture (what happens in combustion, sources of NO2, and 

impacts of NO2). If teachers chooses, you could use assessments such as “one sentence 

summary” or have students write “one thing I learned, one thing that was not clear, and 

one thing I would like to learn more about” and turn in after the lecture. 

 

 

Research Development 

Then scientist or teacher introduces the sampling technique by bringing in the samplers 

and showing the pieces of the samplers, the general mechanism of how the sampler 

measures NO2, and how to set up in the field (indoor or outdoor environment). See pdf of 

instructions attached for step by step details on assembly and analysis and Figure 1 for 

description of tube (sampler). 

 

 

Once placed in the 

field, this cap comes 

off and air flows into 

the tube from this end 

(passive sampler). This cap stays on 

and contains 2 

mesh screens 

with 50 µL of a 

Brij-35 and TEA 

solution.  

Label with 

tube number 

Figure C-1 Image of three NO2 Passive Samplers. 
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The mesh screens provide a place for the Brij-35 and TEA solution to attach too. The 

Brij-35 is a wetting agent and helps spread out the TEA and helps it stick to the mesh 

screens. The TEA is the chemical that will react with nitrogen dioxide from the air that 

passes into the tube. The tubes are left out in the field for approximately 14 days, then re-

capped and analyzed.  

 

For analysis, distilled water and a sulfanilamide-NEDA solution will be added to each 

tube and you let the reaction stand for 15 minutes. The solution in the tube will become 

pink. The coloring is the result of the NEDA dye reacting with NO2 captured by the tubes 

while out in the field. 

The solution in the tubes is then poured into cuvettes and the absorbance of each solution 

is measured using a spectrometer, like the Spectronic-20 pictured below. The 

spectroscopic analysis will shine a light through the cuvette and measure how much light 

is absorbed at the wavelength of 540nm (appropriate for the pink color in the reaction). 

The higher absorbance, the higher the NO2 concentration. The instructions then have 

calculations to convert the absorbance into a NO2 concentration at the ppb level (graduate 

student will conduct calculations and provide NO2 concentration values to the student 

during analysis not the absorbance values). 

 

 

Figure C-2 Image of Spectronic-20, an example of a simple spectrometer that can be used 

for analysis of NO2 passive samplers. 
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Second and Third Class Periods- Develop Field Protocols 

Students are broken up into groups. For a class size of 36, we did six students per group. 

Then given time to brainstorm ideas of research questions or places they would like to 

put the passive samplers and measure NO2 or compare NO2 levels. Each group should 

come up with 3 ideas or research questions. 

 

As a class we will write study questions from the groups on the board and discuss each 

idea. Is it feasible to place samplers where the students have come up with? Will the 

question they asked be possible to answer using the passive samplers? Are there ways to 

improve or alter the question so study design is improved? We will also discuss possible 

sampler locations for the questions. For example, many students typically come up with 

the question of measuring NO2 concentrations at a fast food drive through versus inside 

the restaurant but it is highly unlikely for a private restaurant to let students place the 

samplers there.  

Then students will go back into their groups and decide on one research question they 

will carry out for a field study. Students are instructed that for each group of six students, 

they will be getting 24 NO2 samplers The students must decide on a protocol of where to 

place the samplers and who will do what.  

 

If there is time, each group will present verbally to the class the decided upon research 

question and the locations they will plan to place samplers. This gives an extra 

opportunity for feedback from the teacher, graduate student, and class. This step also 

ensures the students have come up with a detailed study plan. 

 

 Examples of successful questions from past classes 

• “What is the effect of a straight neighborhood road versus living on a 

court with less through traffic? We will place 12 samplers on two 

straight roads with similar traffic levels and the other 12 on two courts 

with similar number of residences.”  

• “Is there a difference in NO2 levels at the front of the school versus 

the back where there are parking lots?” 

 

Passive samplers already assembled and labeled with numbers are then handed out to 

each group. The students are given zip-ties and wire to attach samplers to field sites.  

Students will place samplers in the field outside of class time and need to record the 

following: 
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• Number and location of each tube  

• Date and time uncapped 

 

This information will go onto the same page in their science spiral notebooks with the 

NO2 lecture notes. No additional data sheet is provided. For 9th grade, they use a spiral 

notebook in class throughout the whole year that they bring to class each day.  

 

Samplers are left out in the field for 2 weeks and reminders are given to students 

when they need to bring the tubes back into the classroom.  

 

Fourth, Fifth, and possibly Sixth Class Periods- Analysis and Presentations 

Volunteers interested in chemistry conduct the analysis with the graduate student so 

about six students per class are working on the analysis protocol (see detailed steps and 

equipment list in attached pdf). 

 

Other group members are marking locations of samplers on GoogleEarth maps on the 

computer and board with the class. As concentration values are determined using the 

spectrometer, values are given to the groups and students put on the map. Students use 

the data to determine the answer to their question or if their question has been answered. 

Data analysis may include calculating the mean concentrations for sites with different 

environmental conditions (for example the mean value of NO2 at the front of the school 

vs mean value of NO2 at the back of the school near the buses). Data analysis may also 

include calculating concentrations differences or possibly a statistical t-test if this method 

is taught in class lessons before the NO2 inquiry.  

 

All other group members are preparing slides for a PowerPoint presentation. Each 

presentation should have the following slides: 

• Title slide with a descriptive title relating to the group’s research question 

and names of group members (1 slide) 

• Introduction with research question and some background information on 

why we might care about NO2 (health or environmental impacts) (1 slide) 

• Methods relating to where they placed their samplers, not about the actual 

samplers since the whole class used the same method (1 slide) 

• Results including a map of the values and another slide with data analysis 

results (means, differences, greater or less than statements) (2 slides) 
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• Conclusions, answer to their research question, and overall what they 

found out (1-2 slides) 

• Sources of error and possible future question. Describe error such as 

forgot caps to close the tubes when picking them back up, dropped tubes 

in the mud, didn’t record the location or time uncapped and re-capped 

accurately, and what type of question might you ask next related to the 

current findings (1-2 slides) 

 

Each group will give a presentation to the class and each student in the group is required 

to speak some component of the presentation. 

 

Related Concepts: weather, climate, chemistry, inquiry 

 

Materials:  

• Instructions to prepare and analyze passive nitrogen dioxide sampler (list of 

materials within this set of instructions), see accompanying pdf file. 

• Access to computers to make research presentations 

 

Handouts and worksheets: Students will take notes during the air quality lecture and the 

notes will be a required entry in each student’s science/lab spiral. The students are free to 

write the notes in any fashion but just need some notes for each topic as described above 

in the Activity Plan, Introduction. The second half of this notebook page will be used to 

record the location, date, and time uncapped and re-capped for the samplers that student 

puts out in the field.  

Extensions: Can use the passive NO2 sampler method for future inquiry projects and 

Science Fair projects. We introduce this inquiry a few weeks before they are supposed to 

design a science fair project. Also, air pollution concepts introduced in this lesson are 

built on to conduct a similar inquiry project concerning particles in the air. The air quality 

lessons are also used to develop air quality research questions in the spring Cascades to 

Coast project. An additional possible extension is to have the students present their 

findings to a middle or elementary or another high school science class to extend the 

communication piece of this lesson and possibly count towards community service. 

Assessment: Clarity of the presentations, students can explain their study design and how 

confident they feel their results answer the study question, and presentations have all 

components (title, introduction and background on research question, methods relate to 

their particular study design, results, conclusions, errors, and future questions).  
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GK12 Inquiry Activity: Ultrafine Particles  

Fellow: Christine Kendrick (Environmental Science) 

Teacher: Kathy Childress (Gresham High School) 

Advisor: Dr. Linda George (Environmental Science) 

 

Learning goals: 

• Expand on prior knowledge of air quality and introduce the definition and sources 

of particulate matter and specifically ultrafine particles (<.1µm) 

• Introduce an example of a scientific poster and presentation, thus introducing 

outcomes of their upcoming research projects and scoring rubrics for future class 

presentations 

• Have students develop a research question and conduct a mini-research study 

using a TSI P-Track instrument to measure ultrafine particle concentrations and 

can use a TSI DustTrak to measure larger size fractions of particles if their 

question needs such measurements 

• Introduce mapping with data 

 

Target Grade: 9th Grade 

 

State Standards: 

H.2E4 Evaluate the impact of human activities on environmental quality and the 

sustainability of Earth systems. 

H.3S.2 Design and conduct a controlled experiment, field study, or other investigation to 

make systematic observations about the natural world, including the collection of 

sufficient and appropriate data.  

 

Activity Summary: 

Students will learn about particulate matter, air quality standards, and the definition and 

sources of ultrafine particles, a very small size fraction of particulate matter. Students 

will then learn about the research of the graduate student through listening to a 

PowerPoint presentation on the various research projects the graduate student has worked 

on and learn about the experience the student has had in conducting such work including 

research questions, methods, results, and what it is like working along roadways. 

Equipment such as the TSI P-Trak Ultrafine Particle Counter and DustTrak to measure 



 

148 

 

mass concentrations of particulate matter will be brought in and demonstrated to the 

class. Students will have a question and answer period with the graduate student and then 

set to a mini-challenge to come up with a research question that could be answered using 

the equipment brought in and the weather station at the school. Students will vote on the 

most intriguing question and then a mini-study will be carried out with the group of 

students who developed the question. Data will be brought in after going out in the field 

and mapped as a class.  

 

Activity Plan: 

Using PowerPoint and a projector, the graduate student will begin by explaining research 

interests and story of how scientific interest led them to air quality research. The 

presentation will then continue with background information on particulate matter, air 

quality standards and the Clean Air Act, and then specific background on ultrafine 

particles. The presentation will then continue with actual slides from presentations given 

at scientific conferences so the students learn about a new aspect of the graduate student’s 

job and the research projects the student has been involved in. The presentation will end 

with a slide of an example of a scientific poster and posters brought in to leave in the 

classroom as well. The graduate student will have a question and answer period for about 

15minutes with the 9th graders.  

 

Second, the graduate student will introduce two pieces of equipment seen in the 

presentation called the TSI P-Trak ultrafine particle counter to measure ultrafine particles 

and the TSI DustTrak to measure larger size fractions of particulate matter. The students 

will be able to handle the equipment, move dust around, etc and see changes in the values 

in the measurements. 

 

Split into groups, the students will come up with what they think is an interesting 

question regarding particles and can be answered by using the equipment brought in. As a 

class, all of the questions will be listed on the board and then a vote on the question 

everyone would like to see the results of conducted. Whichever group came up with the 

most voted on question gets to head outside the class with the graduate student and do a 

mini-measuring campaign using the equipment. Values recorded will be brought back 

into the classroom and will be mapped as a class. Then a discussion of the values found 

will follow, noting on any unexpected results, etc.  

 

Related Concepts: weather, climate, inquiry, air quality, presentation skills 
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Materials:  

• Research presentation and poster from a science graduate student 

• TSI P-Trak ultrafine particle counter 

• TSI DustTrak particle monitor 

•  

Handouts and worksheets: Specified pages in lab notebooks for student notes from the 

presentation 

 

Extensions: Equipment and air quality parameters introduced with this lesson are used in 

the spring measurements on the Cascades to Coast field  

 

Assessment: Types of questions asked by the students in the question and answer period 

following the presentation and participation in research question development 
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Cascades to Coast GK-12 Field Trip Inquiry:  

How does land use affect air and water quality? 

 

Fellow: Christine Kendrick (Environmental Science) 

Teacher: Kathy Childress (Gresham High School) 

Advisor: Dr. Linda George (Environmental Science) 

 

The previous two pieces of curriculum presented in Appendix C are examples of class 

activities conducted with 9th grade science students to introduce measurement methods, 

research question development, and presentation of inquiry-based results necessary to 

complete the final field trip inquiry activity towards the end of the school year. Examples 

of additional class activities throughout the year are a small field trip to a local park to 

practice water quality assessment techniques and an in-class macroinvertebrate 

bioassessment project.  

 

The field trips involved field data collection of water and air quality variables at three 

different locations with varying land uses (Figure C-3). Figure C-3a is an urban location, 

Main City Park along Johnson Creek. Figure C-3b is a rural location dominated by 

agriculture land uses such as nurseries, Stone road also along Johnson Creek. Figure C-3c 

is a forested area called Metzler Park along Clear Creek. Students had the choice of 

several water and air quality variables to measure at each site. At each location, three 

groups each measured the water quality variables of dissolved oxygen, percent of EPT 

macroinvertebrates, turbidity, streamflow, nitrate, and conductivity. Air quality variables 

included particle number concentrations, PM2.5 and PM10 mass.  

 

 

Figure C-3 Images of the three field trip locations showing varying land use. (a) Urban: 

Main City Park, Gresham, OR, (b) Rural: Stone Road, Gresham, OR, (c) Forested: 

Metzler Park, Estacada, OR. 
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After the field trips and data collection were complete, students decided on a research 

question that they could answer using one or more of the variables measured at the three 

sites under the umbrella topic of the effect of land use on air and water quality. Average 

particle number concentration data collected at all three sites in 2011 are shown in Figure 

C-4. The highest PNCs were found at the urban location closest to sources of traffic. 

Very low PNC values were found at the forested site demonstrating background 

concentrations when no large traffic sources are present. Figure C-5 shows an example of 

the type of analysis and research questions the students could develop using the measured 

variables and some additional research.  

 

 

Figure C-4 Average particle number concentrations measured in the three field strip sites 

with urban, rural, and forested land uses. 
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Figure C-5 Example of the type of research question and project the students could 

develop based on field collected data. 
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