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AN ABSTRACT OF THE THESIS OF Kamran Shaukat for the Master 

of Science in Physics presented August 5, 1981. 

Title: A Study of Leslie Model Under Stochastic 

Environments. 

APPROVED BY MEMBERS OF THE THESIS COMMITTEE: 

S. D. Tu 

Selma Tauber 

Semura 

ld R. · Sommer:te. 

The prediction and analysis of changes in the numbers 

of biological populations rest on mathematical formulations 

of demographic events (births and deaths) classified by the 

age of individuals. The development of demographic theory 

when birth and death.rates vary statistically over time is 

the central theme of this work. A study of the standard 

Leslie model for the demographic dynamics of populations in 

variable environments is made. At each time interval a 

Leslie matrix of survival rates and fertilities of a popu-

lation is chosen according to a Markov process and the 
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population numbers in different age classes are computed. 

Analytical bounds are developed for the logrithmic growth 

rate and the age-structure of a population after long times. 

For a two dimensional case, it is shown analytically that 

a uniform distribution results for the age-structure if 

the survival rate from the first to the second age-class is 

a uniformly distributed random quantity with no serial 

autocorrelation. Numerical studies are made which lead to 

similar conclusions when the survival rate obeys other dis-

tributions. It is found that the variance in the survival 

parameter is linearly related to the variance in the age-

structure. An efficient alogrithm is developed for numeri-

cal simulations on a computer by considering a time se-

quence of births rather than whole populations. The alog-

rithm is then applied to an example in three dimensions to 

calculate a sequence of births when the survival rate from 

the first to the second age-class is a random parameter. 

Numerical values for the logri~hmic growth rate and the 

logrithmic variance for a population and the probability of 

extinction are obtained and then compared to the analytical 

results reported here and elsewhere. 
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CHAPTER I 

INTRODUCTION 

The development of sound models for the time trajec

tory of population numbers, growth rate and extinction 

probabilities is of pr~me importance in ecological theory. 

Since such models are used to predict the environmental 

consequences of human activities, the strengths, weaknesses 

and domain of applicability of the models must be clearly 

understood to avoid costly ecological mistakes. 

The foundation of most ecological models is the deter

ministic model of Malthus (1798) which describes the expo

nential growth of a single species population. The model 

was greatly developed in modern times by Lotka (1907), 

Sharpe and Lotka (1911) and Volterra (1926, 1937). Such 

models assume an unvarying exponential growth rate which 1s 

unreasonable in real communities, albeit, is common in 

laboratory populations unlimited by nutrients or space. 

Another shortcoming of Lotka-Volterra type models is that 

they consider populations as a whole disregarding their 

internal structure and its effects. For example, the birth 

and the death rates which are used to estimate the rate of 

natural increase depend largely on the ages (or sizes) of 

individuals in a population. Questions about the impact 



of infant mortality and the reproductive span, of great 

interest in human demography, cannot be addressed properly 

without looking into the age-structure of a population. 

More complex versions of the basic Lotka-Volterra type 

models employ continuous time and age variables to account 

for age-structure. An equivalent class of models employs 

matrix algebra to describe age-structure in discrete time 

intervals. Such models use a discrete time variable and 

2 

a discrete age-scale and have been studied extensively un

der unvarying environments with age dependent birth and 

survival rates (Bernardelli, 1941; Lewis, 1942; Leslie, 

1945, Keyfitz, 1968, Pielou, 1977). Use of these models 

permits us to predict the age or size composition of a pop

ulation after long times along with the population number 

and the eventual rate of increase. The continuous time 

models will be referred to as Lotka models; the discrete 

time versions will be called Leslie models, following Lotka 

(1907) and Leslie (1945). 

Further development in ecological theory depends on 

more realistic extensions of the deterministic models above 

to include temporal variability of environments. Changing 

environmental conditions induce fluctuations in the vital 

rates of a population so the results of deterministic models 

are no longer applicable to the dynamics of populations. 

Temporal fluctuations in the vital rates of a popula

tion can be predictable or random. Predictable variations 



at seasonal and other frequencies have been studied by sev

eral workers. It has been shown by Skellam (1967), 

MacArthur (1968), Coale (1972) and Gourley and Lawrence 

3 

(1977) that periodicity in vital rates results in corre

sponding variations in population structure. For an arbi

trary but known sequence of vital rates which applies over 

all future times, Lopez (1961) has proven the weak ergodic 

theorm of demography, i.e., after. long times any initial age 

distribution eventually converges to the same but not neces

sarily fixed age distribution and the same growth rate. 

A more general approach to the problem would be to 

look at the Leslie model for age or size structured popula

tions in temporally unpredictable environments. The Leslie 

matrix of vital rates is then randomly determined at each 

time interval. Following Pollard (1973) and Sykes (1969) 

the Leslie matrices for a particular realization are assumed 

to be independent random variables or are chosen according 

to a Markov chain. Several workers have studied the mean 

and variance of the population vector (Pollard, 1973; Sykes, 

1969; Namkoong, 1972). Weissner {1971) and Athreya and 

Karlin (1971) have explored the question of asymptotic ex

tinction of a population. Long run growth rates in unpre

dictable environments have been studied numerically by Boyce 

(1977) and analytically by Cohen (1976, 1977a, b). Cohen 

(1977a) has also established the random version of the dem

ographic weak ergodic theorm for Markov sequence of vital 



rates. Tuljapurkar and Orzack (1980) have studied the ana

lytical distribution of the asymptotic growth rate of 

populations, and a given numerical example of a two dimen

sional stochastic model. 

4 

Here further results are developed for variability in 

survival and mortality schedules under random fluctuations 

using Monte Carlo techniques and analytical methods. We 

have focused on the problem of age-structure and its dis

tribution and have obtained various useful results. Next, 

an efficient alogrithm is developed for numerical work on 

the stochastic Leslie model. The alogrithm is applied in 

three dimensions to study the logrithmic growth rate and its 

variance, and examine the probability of extinction. The 

analytical approximations developed in Tuljapurkar (1981) 

are tested here against numerical calculations. 



CHAPTER II 

THE BACKGROUND ON POPULATION MODELS IN ECOLOGY 

a) The D'etermini'sti'c Mode·ls 

The central mathematical model of population due to 

Malthus (1798) describes a single species growing in an 

unvarying environment with fixed fertilities and mortalities; 

this model is the basis for deterministic models of .multi-

species ecological communities. The differential equation 

for the Malthusian model of change in population numbers 

with time is 

(1) dx(t) = r x(t), 
""dt 

where x(t) is population at time t, and r is the net growth 

rate. The analogus difference equation when time is mea-

sured in discrete intervals is 

(2) N(t+l) = m N(t), 

where N(t) is the population number at time t and m is the 

net growth rate in discrete time. Note that for equiva

lence of these two models, m =exp (r.). 

In the above equations, population numbers change ex-

ponentially; a trend which cannot continue for long in ac-

tual populations which would either disappear or become 
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infinitely large. Under normal circumstances both these 

events are quite unlikely a~d contrary to observation. 

Ample evidence indicates that many populations regulate 

their numbers by some density dependent mechanism (Tanner, 

1966; Mcbridge, 1966). 

Density dependent population control can be incor-

porated into a growth equation by the addition of a damping 

term modifying the rate of growth as the population in-

creases. One of the many forms that this damping can take 

is illustrated by the logistic equation 

(3) dx 
dt = rx(l - x/k) 

where k, the carrying capacity, is the maximum number of 

organisms that the environment can support. The logistic 

6 

equation fits many population growth experiments well enough 

to be of considerable practical use. Only two constants 

must be determined, the intrinsic rate of natural increase 

and the carrying capacity. Neither of the two quantities 

can be given in general an exact mathematical or biologi-

cal definition independently of the eq. (3). Conceptually, 

the logistic suggests two extremes of evolutionary schemes: 

(a) evolution toward the fastest possible growth rate: 

"r-selection"; (b) evolution toward the most efficient use 

of the environment, resulting in the largest carrying capa

city, the "k-selection" (for a discussion see e.g. MacArthur 

and Wilson, 1967). The utility of the logistic equation 



and of the r or k "selection" concept is limited due to the 

many simplyfying assumptions underlying the models. 

There is no biological justification for the damping 

term in eq. (3) to vary with the square of population den

sity. Pielou (1977) suggests we can think of quadratic 

damping as the first approximation in a Taylor expansion of 

7 

more general density dependences. Inclusion of higher order 

terms would allow greater flexibility while curve fitting 

experimental data (Wangersky, 1978) but might also obscure 

biological insight. 

It is biologically likely that actual populations 

would not respond instantaneously to changes in their num-

hers as in the logistic equation. Thus, a time lag between 

the cause and effect should be introduced into single spe-

cies growth models. A simple model incorporating time delay 

is due to Hutchinson {1957). A general form of the equation 

for the model can be obtained by introducing a discrete time 

lag into the damping term of equation (3). 

 dx = rx C 1 - (x/k)) t- 't dt 

where 'C is the time lag between cause and effect. Several 

other forms of the differential equation and corresponding 

difference equations have been proposed (Ross, 19721 Mazanov, 

1973: May, 1973, May, 1974). Lefkovitch (1966) has incor-

porated delayed responses into a matrix algebra for popula

tion growth. The inclusion of time delay has a destablizing 



effect; there is an increase in the kinds of solutions pos

sible. Even under stable environments, oscillations can 

occur which grow large enough to produce extinction in 

single species populations. 

The logistic equation and other deterministic models 

discussed here display a monotonic approach to an equili

brium population. If they do show oscillatory behavior as 

in models with time delay, the fluctuations cannot be en

tirely explained in biological terms. The difficulty with 

these models is the assumption that populations live under 

constant environments. All ecological environments show 

some periodic or random variability, and such fluctuations 

eventually affect the patterns of growth of a population. 

8 

For this reason, the deterministic models of theo

retical ecology, though used extensively in demographic work, 

do not provide adequate estimates or predict future trends 

of a population. Since most natural communities exist in 

environments varying randomly over time, the deterministic 

models need to be modified to include the temporal varia

bility in the fecundity and mortality schedules. We need 

to consider the effects of environmental unpredictability 

on population size, the ultimate rate of increase and the 

asymptotic stable age distribution. 

b)· The· Stocha·s·tic· Mo·d·e·1s 

The study of population dynamics under stochastic 



environments is more realistic, put often phenomenological 

considerations lead to mathematically intractable formula-

tions. Perhaps the simplest models take a macroscopic view 

of the problem and treat population growth as a diffusion 

process. Rewrite equation (1) as 

(4) dx(t) = r(t) x(t), 
dt 

where the Malthusian parameter, r(t), is now assumed to be 

a function of time and takes on values consistent with the 

variability in environment. r(t) can be assumed to be made 

of two parts 

(5) r (t) = r + E (t) 

where r is a constant mean value of the growth rate and 

is a stationary stochastic process. over long time inter-

vals the process E (t) can be represented in a coarse

grained way by a ~-correlated white noise 

(6) < €. (t)) = 0 

( E {t1} E (t2)) = 2 ~ 6 (t2-t.) 

9 

where brackets denote ensemble averages and ~Ct2-t1 ) is 

the usual Dirac delta function. Here ~ is the spectral 

density for the random fluctuations. With random perturba

tions model behavior is more complex than in deterministic 

models. 
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We now have a first order stochastic differential 

equation; interest now focuses on the probability of observ-

ing a population size of x(t) at time t conditional on ,a 

known initial size. x(t) must now be viewed as a realiza-

tion of a continuous and time homogeneous process. Instead 

of a stable population we now look for a stable probability 

distribution of a population •. We also need to look at the 

probability of a population going extinct, since the envi-

ronmental fluctuations may be strong enough to make the ul-

timate rate of growth less than unity for some realizations. 

If the random fluctuations obey equations (5) and (6), 

the population size behaves as a Markov diffusion process 

and can be studied in terms of a Wiener process (Capocelli 

and Ricciardi, 1974; Tuckwell, 1974). The probability den

sity function f(x(t) I x(O)) for x(t) given initial popula-

tion, x(O) obeys the Kolmogorov forward equation 

~f ( x(t) I x(o)) 

'l)t 
: -( i'.Ja) ]_ ('ltf) +S :t (x1f) 

-r ~x. ' '1)('2 

where (r+ ~ ) x and 2 ~ x 2 are the drift and variance for the 

process. 

A similar transformation of the logistic equation 

leads to the stochastic differential equation 

d~~t) = r (t) x (t) (1-x·~t» , 0 ~ x (t)-' 00 

This equation has been studied by Levins (1969) and May 
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(1973); Tuckwell (1974) transforms it into an Ornstein-

Uhlenbeck process. Results can be immediately obtained for 

the probability distribution and the extinction probabili

ties since the process is fully understood analytically. 

Capocelli and Ricciardi (1974) have derived expressions for 

the expected first passage time T at some level s and its 

variance tr2.( S 1 'X.(o)) 

T ( s, k <o)) = \ Ln ( >t te) I s ) l I \ F \ 

a2 (S, ~(o)) = ( 2. ~I r 2 ) \ Ln (X(o)/ s) Ir l 

also the most likely value t for the first passage time is 

t" --
Ln 

2 
( X(o) IS) I 'f> , r = o 

''2 -ata.+[(C\/4)+(r/2~)2.ln(Xto)/s)1, r+o 

The use of diffusion approximations in the study of 

ecological models is mathematically convenient but not very 

realistic. It implies that both death and birth are con-

tinuous processes. It also assumes that a gross average 

rate of growth over the life span of an individual may be 

meaningfully deduced from the data. Both these assumptions 

seriously limit the applicability of the model. We know 

that birth and death processes are discrete and would be 

more accurately described by a Stochastic difference equa-

tion. It is also reasonable to assume that the fertilities 
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and the survival rates and hence the growth rate of a popu

lation is. a function of age or size distribution. These 

considerations lead us to Leslie's model discussed in the 

next chapter. 



CHAPTER III 

LESLIE'S MODEL 

Earlier we have discussed the need to work with a 

model that employs a discrete time variable and age struc

ture, giving due weights to the age-specific survivals and 

mortalities. This approach is also preferable because 

most available data is in the discrete form and because 

it coincides with the actuarial practice. Leslie's model 

is the best known and most detailed of such models. 

The Leslie model (1945) considers only one-sex (usu

ally females) in a single closed population divided into 

age groups corresponding to a discrete unit interval of 

time. A decision as to the best choice of a unit time 

interval is usually dictated by the available data. Pollard 

(1973) shows that there is little difference in the deter-

ministic asymptotic results when different age groupings 

are used in the case of human populations. The results may 

not be as satisfactory for other organisms. The model is 

best suited to a matrix formulation. The general form of 

a Leslie matrix is 

b: [~ ~1 



The first row in A, a k x k matrix, contains fertilities 

m(i) o, i=l,2, ••• k with m(k) having the last non-zero 

value. The survival rates for the first k age-classes are 

on the off-diagonal as indicated: 

A= r m(l) m(2) m(3) . . . m(k) 

p(l) 0 0 ... 0 

0 p(2) 0 . . . 0 

. . . 
0 . . . 0 p(k-1) 0 

A _is non-negative, irreducible since m(k) does not vanish 

Sykes (1969) and primitive if the greatest common divisor 
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of the indices of the positive elements in the first row is 

one {Rosenblatt, 1957). Also A satisfies the hypotheses of 

the Perron-Frobenius theory of non-negative matrices. 

According to this theory maxtrix· A has a positive dominant 

eigenvalue Ao of multiplicity one corresponding to some 

column eigenvector U and a row eigenvector V', both of which 

have positive elements~ further Ao is greater in absolute 

size than any other eigenvalue. An excellent account of 

the properties of A is given by Parlett (1970). 

It is well known that A contains all the important 

information about L. For example, the age groups beyond 

reproduction -do not contribute to the growth rate of the 

whole population. Hence, without loss of generality A can 



be used to work out the mechanics of the Leslie model. 

Consider the female population in the first k age 

groups arranged in the form of a k- dimensional vector Nt 

at any time t. At the end of each time interval (t, t+l], 

t=0,1,2, ••• a new population vector Nt+l is determined by 

the equation 

( 8) N'l+l -- 6 Nt 

Iteration of the above equation yields 

(9) Nt..1 -- ~+l No 

15 

where N is the initial population structure. Since A has 
0 -

a positive dominant eigenvalue Ao, largest in absolute size, 

it eventually swamps the effects of other eigenvalues while 

any initial age distribution asymptotically approaches U, 

the stable age distribution. Pielou (1969) illustrates the 

ergodic property nicely in a graph for population trajec-

tories belonging to different Leslie matrices with the same 

Ao. They both converge to the same stable age distribution 

though they choose different paths depending on higher 

eigenvalues. 

Within the foregoing deterministic description we can 

incorporate the temporal variability of the environment 

quite naturally into Leslie theory. Fertilities and survi-

val rates are considered as functions of time. At each time 

interval (t, t+lJ, t=l,2, ••• fertilities rnt(i), i=l,2, ••• ,k 



and survival rates pt(i), i=l,2, ••• ,k are contained in a 

Leslie matrix Xt. For any realization of the process the 

successive Leslie matrices are chosen from a random set to 

form a Markov sequence of environmental states such that 

( 10) Nt·t-t = ~t Nt • ~t ~t.-1 · · · ~o "'o 
Total population at any time t is 

k 
(11) Mt= t Nt<t) 

~-· 

16 

Define the cummulative growth in total population number in 

time t to be 

(12) 
Mt 

l\t = M-;, 

where M0 is initial fixed population corresponding to N
0

• 

Also since this is a geometric growth model, define the ul

timate rate of increase asi~., Ytln At. Boyce (1977) has 

studied the long run growth rates numerically. Cohen (1977) 

has established the demographic weak ergodic theorm for 

Markov sequences of vital rates. Tuljapurkar and Orzack 

(1980) have extended earlier results and looked at the long 

run distribution of growth rates in fluctuating environments. 

They establish that the logrithm of the cummulative growth 

in number is asymptotically normally distributed at long 

times 

(13) In /\+:. ,. --vN (~t 1 cr1t) 
-t-+oo 



where a,t:{ are the scaled mean and variance respectively. 

They have employed the lognormality of cununulative growth 

rate to explore the probability of extinction analytically 

and numerically. 

17 



CHAPTER IV 

BOUNDS FOR POPULATION GROWTH RATE AND AGE STRUCTURE 
IN VARIABLE ENVIRONMENTS 

Assuming for any given environment a reasonable esti-

mate can be made as to the span of variability of each 

fertility and survival rate for all times such that 

(14) P.,,.. ~i) ' pt~t) ~ fMaX ~\.) 

rt\m\n lt) ~ Mttl) ~ TY\max 't) 

using these bounds on fertilities and survivals we can con-

struct matrices X. , X . • Then elementwise -max -min 

(15) ~W\tn ~ ~t ' ~ M~X ; .for ail\ t 

Using equat~on (10) it can be shown by iteration 

t 
N-e' y..t N 

(16) X. ~o '--Mal\ -Ma.X 0 

Since the inequality is true elementwise, using equations 

(11) and (12) 

laH\ J.. \n f\ . / hM .L \n ,\.L " ~ \,·M .LI /\ 
c 11 l t-+oo t Min ~ t..._ -t. l;; =- ""' ~ l...., -t. " mix 

corresponds to a constant matrix involving Pmin(i) 

and irimin(i). From deterministic theory Nt~~i~ No where min 

is the dominant eigenvalue of !min and the logrithmic growth 

rate for the process is ~:00 1; II\ A111iA =.In >.miA. Similarly 
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l · 
I 

i'~ t \I'\ f\ M~ = \n )ift\~ This shows that the long run 

distribution of logrithmic growth rate is bound by the 

extremes of values taken by .survivals and fertilities. 

Also, the eventual rate of growth would lie somewhere be

tween A min and Amax. 

Another useful inequality provides the bounds on age 

structure. Consider a Leslie matrix for which all entries 

19 

are constant except Pt{l) = p. p is a random variable with 

probability density W{p) and bounded by constants Pl and P21 

Pi' p(t)' ~2 • Define Ut = ~~1~l , t = 0,1,2 ••• the ratio 

of the second age class to the first at time t. The choice 

of a new matrix at the end of a time interval {t, t+l] is 

in effect a choice of a new p. We can write 

{18) Ut-tl -- fp (Ut) 

fp( tp(· .. .fp(Ua)··· )) --

where fp{u) is some function of p and ut determined by the 

equation for the model. If u
0 

at t=o is known then from the 

bounds on p it can be deduced 

(19) ff (Uo) ~ fp (llo) ~ f p (lto) 
\ . 2 

and 

· fr, (fp
1 
(~o))' fr Ur (Uo)) ~ tr~ ( fp1 <I.to)) 

etc. 
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If we fix p = c, a constant then Nt-+ A; U where Ac.,is the 

dominant eigenvalue and U is the corresponding right eigen-

vector. After long time we have a stable age distribution 

which implies ut_.. Uc' a constant. Applying this to 

equation (18) we have 

(20) up ' u t -'. u , for al 1 t. 
1 P2 



CHAPTER V 

A TWO DIMENSIONAL EXAMPLE 

Let the survival from first to the second age class 

be a random variable chosen from some distribution w(p). 

The basic equation is: 

(21) Nt+l(l)I = lm(l) m(2) Nt (1) 

Nt+l(2) p 0 Nt(2) 

Here m(l) and m(2) are fertilities of the first and the se-

cond age classes and p is the survival rate from the first 

to the second age class. Define yt(l) = Nt(l)/Mt and 

Yt(2). = Nt(2)/Mt' the fractions of population in the two age 

classes and ut = Nt( 2 ) as their ratio. 
N (1) 

Numerical si*iulations of such a model to explore the 

convergence to lognormality and the effects of environmental 

variance and auto correlation have been reported by 

Tuljapurkar and Orzack (1980). Here we study the following: 

Starting from a known distribution w(p) of the survival par-

ameter p how are yt(i) and Ut distributed after long times? 

How is the variance in p related to the variance in Yt and 

Ut? How .is the aver~ge of yt related to average value of p? 

For m(l) = .as, m(2) = 1.0 and w(p)""triangular <P> with 
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p = 0.4 Monte Carlo simulations were done on a computer. 

500 population trajectories were calculated for the process, 

each one being 500 generations long. For these trajector

ies the parameters yt, ut were calculated at t = 500 and 

their histograms were plotted. The triangular distribu-

tion for p was chosen because it is compact as compared to 

normal and can be generated more efficiently on a computer. 

The method to generate the triangular distribution and a 

Fortran program for the process is given in Appendix A. 

We find a triangular distribution also results for Yt and 

Ut (see Figures 1 - 3). 

To study the variance and average of yt and ut, cal

culations were made for a number of different values of ~ 

about a fixed mean. Figure 4 illustrates the relationship 

between the variance in p and in yt(l): An increasing 

variance in p increases the variance observed in Yt(l). 

The results are similar for yt(2) and ut. With E(p) 

( E(·) denotes expectation) held fixed, changes in var (p) 

did not affect the position of the means of Yt and Ut. 

Also, E(Ut) and E( yt) are found to be in excellent agree

ment with what one would expect from the deterministic 

theory if p is replaced by its average value. 

We also looked at the problem of age structure ana-

lytically. From equations (18) and (21) we have 

(22) +rt4) = 
p 
-

ft\\-tM2 U 
c:. 

I 
U I sa~ 
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.72 .74 
Ysoo< 1 > 

Figure 1. A histogram fo~ the distribution 
of Y500 (1), the fraction of population is 
the rirst age class when the survival rate 
is distributed triangular (.02). 
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0.2 

YsooC1> 
Figure 2. A histogram for the distribution 
of Y500 (1), the fraction of population is 
the first age class when the survival rate 
is distributed""' triangular (.10). 
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Figure 3. Distribution for u50g, the 
ratio of the second age class ~ the . 
first, when the survival rate is dis
tributed~ triangular (0.1). 
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Figure 4. The variance in Y SOO{l) is 
plotted as a function of the variance in 
the survival rate with triangular distri
bution. 
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then 

(23) U= 
-\ I I. P Mt 

ff (U ) • ~p~I.\ ) •. ~t - t;i2. 

Let the stationary di~tribution of U be 

h(i) cl'\ = Prob\. U E (rt) ~Tel,) to get the distribution of u' 

as h(l) di ::. Prob l U / E ( i J i+d5) . Then we have 

c24> h<5) d ~ = ) dp w(p) ht~)~~ 
I 

where I means that for each p we use that ~ which satis

fies S =.fp(~). So on R.H.S. of equation (24) 

27 

{25) h (i) .. i d.p w (f>) h ( 1pG)) f52 , 5 \~ .f1ired on ~Jt.S. 

Rewriting (25) after a change of variables '1 = ~p('i) , 

f : (rY\ l-\- M 2. '1) S 1 d p c b i d~ 

c26> h(3) = J w[5(o.+b'1)1hl~)(~+b'\H~ 

A relatively simple result can be obtained if p is uni

formly distributed, since then w(p) = constant. As 

s h(J) ds = \ we have 

(27) hG) = ur,,- up, 
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If p belongs to other more complex distributions, the 

analytical results are not easily extended and it may be 

necessary to look for a numerical solution to the problem. 

To investigate the stationary probability distribution 

numerically, a Markov matrix with row sums equal to unity 

is constructed by considering a mapping of ut on u • The 

alogrithrn for the process and its implementation in Fortran 

are given in the Appendex B. As an example we take p dis

tributed uniform on (·3,•5) with other parameters having 

the same values as.described earlier. As expected the 

results show a uniform distribution for ut within the ana

lytical range of ut obtained in the last section. 

RESULTS 

In summary, we find the following: (1) the age str~c

ture distribution closely follows the distribution of the 

random variable in the Leslie matrix; this random variable 

is the survival rate in the above two dimensional examples. 

(2) the variance in age structure is a linear function of 

the variance in the random variable and (3) the mean age

structure is tied to the predicted deterministic age struc-· 

ture for the average value of the random variable. We 

expect the results would be true for higher dimensional 

models. 



CHAPTER VI 

SIMULATION IN THREE DIMENSIONS 

A more efficient and faster alogrithm is developed 

to calculate the population trajectories and relevant sta-

tistics on a computer. The process is viewed as a sequence 

of births in time. Numbers in higher age classes can be 

computed using the relevant survival rates. Define 

~-I 

'+' 1 = l = 'f 2 ; \l' ~ = P2 , · · · > 't't = 1f Pi. 

and 

-ti! • = t'r\ • ll.1. 
l'-L \.TL 

2. 

z I ::. ' ; ~ 2. = P, (1:-1) ) . . . , :l t = P, ( t-l-t ' ) 

Then the number of births B(t) at time t can be written as 

\c. 
(28) 

Nt (I) :. B ti:) = l. iti!t ~(t-l) 
• '-=-' 

The above equation assumes the variability in environment 

affects only the first survival rate. we can write a simi-

lar equation for B(t) when other parameters show random var-

iations. 
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The equation can be iterated to yield a sequence of 

births of appropriate length provided the births at the 

first k intervals could be supplied. The latter condition 

is no more restrictive than the specification of an initial 

age distribution vector N
0 

in the matrix multiplication 

method. In any case, due to the ergodic property of the 

process, it is not critical what values are chosen for the 

first k births. 

To work with the equation (28) we need to store 
t-k S· k .s k-\ 

{SC.t) }t ) l.'X-k}, , and i..:lt \
1 

1 3k quantities in 

all. Iteration, requires 2k multiplies and k adds in each 

step. This scheme saves substantial storage space and 

operations. By contrast if matrix methods are employed we 

need to store k 2+k quantities (a k 2 matrix and a k vector) 

and require k 2 multiplies and k(k-1) adds in each step. 

We also note that the result obtained by Tuljapurkar 

and Orzack (1980) for the lognormality of t can be easily 

extended for the birth sequence. Their proof is strict in 

the sense that the process converges to lognormality element-

wise as t ~ oo . Hence, we can conveniently write for the 

logrithmic growth rate 

\,M 
a. = ~~00 ..L \n ~ 

-i:7. Ba 

We used this alogrithm for numerical simulations in 

three dimensions. The main purpose of the study was to 



look at the logrithmic expectation and variance of the 

growth rate in relation to the extent of fluctuations. 

Also, a numerical test of the analytical results reported 

by Tuljapurkar {1981) was sought. 
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In time populations may decline and finally may dis

appear if the envirorunental fluctuations are too strong. 

A stochastic model should be able to predict the possibil

ity of such an event, i.e., the probability of extinction. 

Since N
0 

has nonnegative components in our model, Nt and 

Mt would always be positive however small {Keiding, 1975). 

The problem is avoided by defining an extinction level, a 

pre-assigned number at which populations can be considered 

extinct. We explore this problem numerically. 

EXAMPLE 

·We study an example in three dimensions due to Boyce 

{1977) using the alogrithm developed earlier. Here m(l) = O, 

m{2) = 1.5, m(3) = 2.2 are the fertilities for the three 

age classes. The survival rate for the second to the third 

age class p2 = 0.25 is a constant. The survival from the 

first to the second age class incorporates the random vari-

ability of the environment in p ( 1) = • 6:!:, e,, where E 1 is 

uniformly distributed on (- ~, ~) with no serial correlation. 

Also, the number of births at the first three time intervals 

is: B(O) = 1000, B(l) = 1100, B(2) = 1200. A program for 

the process is given in the Appendix c. 
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A sequence of births for 500 time intervals was cal

culated. A random number generator ""U(0,1) was first used 

to decide the sign of variation in p1 and again for the mag

nitude of variation. Various statistics were calculated 

using 200 such birth sequences. Calculations were made for 

several different ~ • Estimates of errors were made by 

doing the experiment a large number of times. Another set 

of calculations was made for a given ~ and E (p1 ) but dif

ferent values of mn)~ Test calculations were also made for 

Leslie models appropriate for fish populations with large 

fecundity ( 105 ) and very small survival of the first age 

class ( 10-5) with essentially the same results. 

RESULTS 

(1) An increasing value of parameter ~ decreases the 

logrithmic average, a and increases the logrithmic variance, 

er 2 • A graph between a and (I' 
2 (Figure 5) shows that the 

two parameters are linearly related. The intercept on the 

a- axis provides the expected deterministic result for the 

logrithmic growth rate. 

(2) If ~ is held fixed and different values are 

assigned to m(3),. we obtain a system of parallel lines for 

different average values of p1 in a plot of a vs o- 2 • It 

shows that a decreasing logrithmic average whether it is due 

to larger fluctuations or a decreasing fertility increases 

the logrithmic variance. 
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(3) The values of a obtained from simulations for 

small (3 are remarkably close to the calculated values when 

the analytical formula reported by-Tuljapurkar (1981) is 

used. We find the formula over-estimates for larger values 

of~; as much as by 50% when ~is as large as E(p1 ). The 

formulae for variance in Tuljapurkar (1981) provides equally 

good results for small perturbations; for higher perturba

tions it underestimates the variance (see.Table I). 

(4) The probability of extinction at any level (see 

Figure 7 for numerical values) for a population trajectory 

decreases rapidly for a given environment with time~ The 

maximum number of births remain fairly stable with increas

ing fS, i.e., some populations grow large even under severe 

conditions and escape extinction. 
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o- 2 x 10-2 

5 

6 

. s h b . . hm. a x io-2 Figure • A grap etwee2 logr1t 1c 
average a and variance a . E <Pi) = • 6 



0.9 

c:r 2 x 10-2 

0.8 

5 ro 
a x 10 

Figure 6. A systern2of parallel lines in 
the plot of a vs.tr when E(p) is fixed 
butm(3) is allowed to have dif~erent values. 
Here = 0.05 
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TABLE I 

COMPARISON OF NUMERICAL AND ANALYTICAL VALUES OF a AND 0" 2 l 

Magnitude of 
Fluctuation 

< r > 

0.025 

0.050 

0.075 

0.100 

0.150 

0.200 

0.300 

0.400 

0.500 

Simulated 

a x 10-l ~2 · x 10-2 

0.914 

0.912 

0.911 

0.907 

0.896 

0.880 

0.832 

0.756 

0.643 

0.011 

0.041 

0.105 

0.179 

0.410 

0.748. 

1.80 

3.52 

6.31 

Analytical 

. -1 2 -2 
a x 10 ~ x 10 

0.915 

0.914 

0.912 

0.910 

0.902 

0.892 

0.862 

0.820 

0.766 

0.004 

0.015 

0.038 

0.060 

0.135 

0.240 

0.540 

0.961 

1.50 

1. Numerical values are obtained with E(p1 )=0.6, m{l)=O 
m(2)=1.5, m(3)=2.2 and p2=0.25 corresponding analytical ' 
values are calculatea using formulas reported in 
Tuljapurkar (1981). 

and 

a = 
r2 

lnAo + 2')\o 

2 _. c 2 
er - no 
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Figure 7. Extinction probability as a 
function of time. Here E(p1 ) = .s,p=·3. 
Extinction boundary for is 500 births, 
for 100 births. 
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APPENDIX A 

.. ALOGRITHM FOR TRIANGULAR DISTRIBUTION AND 
FORTRAN PROGRAM FOR STATIONARY DISTRIBUTION 

For a triangular distribution 

f (a) cA c :. Prob ta E (z) -a+clc) 

where 

with 

) "~ <. \ + it/~ ) l 

t(il) - l ,,~ ( \ - 2/~) ) i! Q 0 

~' 0 

-~ ~ i! ~ ~ 

The cummulative distribution function is 

F(a) --
2. 

~1'~) /2~2.. > i!' C> 

2. 
l- (f>-2) I 2 ~ '2. , i! ~ o 

The mean and variance are zero and ~2/6 respectively. We 

note the following theorm without proof before we describe 

the alogrithm. 

Theo rm 

Let z be any random variable with cummulative distri

bution function F (x) = p ( z 'x) • Let U be a random variable 
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uniformly distributed (0,1). Then we can write z = F~1 (u). 

In the case of triangular distribution, we have 

(Al) 
F-\(u) 

~ ~ (.fii:i - l) 
l f> ( \ - J2.(J-U)') 

J \A-6 '12 

, u q l/z. --

To get triangle random variables z, some appropriate ~ is 

chosen. On computers very reliable random number generators 

uniform on (0,1} are available. On Honeywell 66/20 we used 

FLAT to get a number U ""'uniform (0,1) in each step. We 

check if u is greater or less than half and accordingly com

pute z from equation (Al). A Fortran program for the pro

cess follows. 



·*** PROGRAM TO COMPUTE HISTOGRAMS FOR POP+ 
**** NUMBERS AND OTHER PARAMETERS 

DOUBLE PRECISION NC2r1)rC,NXC2r1)rXC2r2>rTPC2),FC2r2) 
INTEGER GC500),WAC100),WBC100>rWCC100),WDC100) 
IMPLICIT DOUBLE PRECISION CA-FrO-TrX-Z> 

********** INITIAL VALUES FOR PARAMETERS 
DD 8. MD:::: j_, 2 
TP< :I.)::::().? 

TP(2)::::.3 
1:~X::::. :I. 
FC1r1)=.85 
FC:l.,2)=1. 
f(2,1)=+4 
FC2,2)=0. 
POP=NC1r1)tNC1r2) 
DO 50 
DO 50 
~:=; () 

c~·y::::()" 

BY::::(). 

CY====O ~ 
DY::::(). 

Vt"1Y::::O. 
l..JBY::::() ,, 

t.)CY====O. 
l.JD Y====O. 
DO 3 I:::: :I. v ~500 

3 G (I)::::() 

DO "? I====:I., :1.00 
1 .... .1,~~ ( l ) :::: 0 
l1.JB (I)::::() 

klC < I ) ::::() 
WD (I)::::() 

I=1r2 
J=1r2 

XCirJ)=FCirJ) 

7 CONTINUE 
POP=NC1r1>tNC2r1) 
DO 50 I=1r2 
DD 50 J=1r2 
50 X<IrJ)=FClrJ) 
A=0.000000333557711 
DD 3 I:::: 1, ~7;00 
~3 CH I ) :::: () 

********************** NUMBER OF RUN LOOP 
SM=O. 
AVLM=O+ 
SQLM=O. 
DD ~7j M:::: :I. '~:;oo 
IH=500 
P=0.5 
K=O 
l=O 
NC1r1)=10+ 
NC2r1)=10+ 

********************* TIME LOOP BEGINS 
30 K=Ktl 

44 



**** TRIANGULAR DISTRIBUTION: 6 LINES 
Y=FLATCA> 
IFCY.LT.0.5) GOTO 71 
Z=l.-<2.*<1.-Y>>**0.5 
GOTO 72 
71 Z=C2*Y)**0.5-1. 

******** RX IS MEASURE OF FLUCTUATION: BETA 
72 X(2v1)=0.4tRX*Z 
60 
80 
DO 90 
DO 90 

DO 80 
NXCivl)=O. 

1=1v2 
J=1v2 

I::::J, 2 

90 NXCiv1)=NXCI,1>tXCivJ>*NCJ,1) 
DO 100 I=1v2 
100 NCivl>=NXCivl) 
B====N (:I., :I. ) +N ( 2, :I. ) 

************* RESCALING OF NUMBERS: 16 LINES 
IF<B.GT.1) GO TO 27 
IFCK.GT.IH> GO TO 23 
IH====I'~ 
D 0 1 9 I ::::I< , ~:=; 0 0 
:l <;> G ( I ) :::: D ( I ) + :I. 
23 CONTINUE 
IF"CB+GT.:t./(::~.**:·:~O.)) GO TD 27 
l...====l...····:I. 
B====B;{< ( 2 ":t:t30 ·~ ) 
DD :I./ J:::::I. ~· 2 
:1.7 NCiv1)=NCiv1>*C2.**30.) 
2? CONTINUE 
IF<B.l...T.<2.*>l<30.))l:J0 TO 130 
l ... ====l ... +:I. 
DO :1.1~5 I:::::I., 2 
115 NCiv1>=N<Iv1)/(2.**30.) 
B::::B/ ( 2 + **:.30 + ) 

:1.30 CDNTINUE 
IF<K+LT.500)G0 TO 30 

******************************** TIME LOOP ENDS 
************CALCULATION OF YCT),LJ(T) AND 
********THf IR HISTOGRAMS 

PY=NC1v1)/B 
AY=AYtPY 
VAY=VAYtPY**2 

JY=PY*100. 
IFCJY+l...T100.) GOTO 31 
WACClOO>=WAC:l.00>+1 

GOTO 32 
31 WACJY+1>=WACJY+1>+1 
32 PY=NC2v1)/B 
BY=BY+PY 
VBY=VBY+PY**2 
KY=PY*100 
IFCKY.LT.100) GOTO 33 
WBC100>=WBC100>t1 
GOTO 34 
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33 WBCKY+1>=WBCKYt1>t1 
34 PY=NC1111)/NC2111) 
CY=CYtPY 
VCY=VCY+PY**2 
JY=PY*10 
PY=N<2111)/N(1111) 
DY====DY+PY 
VDY=VDY+PY**2 
KY=PY*100 
IFCKY+LT.100) GOTO 37 
WD<100>=WDC100>t1 
GOTO 42 
37 WD<KY+1>=WDCKY+1>+1 
42 CONTINUE 
B=C30*L*CDLOGC2>>+DLOGCB/PQP))/500. 
SM::::SM+B 
Sn I ... M ::::SQ I ... M + B * * ;.:!. 
~.) CONT I NUE 

**************************************** RUN LOOP ENDS 
***** CALCULATION OF AVERAGES AND VARIANCES OF ***** PARAMETERS AND PRINT STATEMENTS 

y y t:1 :::: ,~) y / ~5 0 0 • 
Y'tB====BY /~:.=j()(). 
u n t) ==== c \' /~=so o 
C~IJ:f:::::DY/~::j00. 

VYA=CVAY-AY**2!500.)/499. 
VYB=CVBY-BY**2/500.)/499. 
VVA=(VCY-CY**2/500.)/499. 
VVB=CVDY-DY**2/500.)/499. 
r.1Vl...M::::nM./~:.=.iOO. 

VAR=500.*CSQLM-SM**21500.)/199. 
F·'Pil .... !T :1.4()'1i~l)LM~·V1~F~'I CG<I> vI::::j.y~~j()()) 
P F;.: I N T :I. 2 2 Y 1 .... .11~~, Y l;J B Y W C Y ~.J :0 
122 FORMATC//5(5XY20I3/)//) 
QL=DEXPC-AVLM*DLOGCPOP)/VAR> 
PF~ I NT :I. ~=50 'I QI... 
1 ~j () F 0 i:;: M () T ( / I y ~:.=; x 'I II E )( T I N c T I Cl N I ... (] ~.J [ F~ B CJ u N D II l' ~=:i x ~,I D 1 ~=:; • '? ) 
PRINT 153,YYA,YYByQQAyQQBvVYA,VYB,VVA,VVB 
1~3 FORMATC//5X,"MEAN Y(T),LJ(T)"/4C5X,D15.7/)//5X, 

"VARIANCE YCT),LJ(T) 11 /4(5X,D15.7/)) 
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140 FORMAT(///20X,"AVERAGE LM",5X,D23~16,//y2QX,"VARIANCE",7X, 
D23.16,///v5X~ 11 CUMMULATIVE EXTINCTION 11 '1//,20(5Xv15I4/)) 

B CONTINUE 
~JTOF' 

END 



APPENDIX .B 

ALOGRITHM FOR STATIONARY DISTRIBUTION 
AND ITS FORTRAN IMPLEMENTATION 

Let U and p be bounded as indicated: x 1 ~ U -'x2 and 

p 1 ( p .( p 2 • The intervals (x1 , x 2 ) and (Pj_, p 2) are divided 

into convenient intervals: 

E. -= (X2-X1) /N ; N :,"'+trv.a\s Toe., ~=l,2, ..... ,N 

with µ.(I°") ... Pt"Ob {. U ~ l:o< 1 
and "\ = ~p2. - P1) / M ; M '"~~rv&.\s St / \, = l,'2J 0

" JN 

with p .. as midpoints of St 
1 

Now for each pi we calculate 

~ 1 = + ( P.: , x,•~-\) e.) 

zl. - .f ( t't > ¥. '""" Qt '-

the maximum and minimum value of u1 for every oc.. (z 1 , z
2

) 

would map on several I ( ~), p = 1, 2, ••• N. Calculate Coe~ (i) 

= fraction of (z1 , z2 '] in I ( ~). This gives c (i) a N x N 

matrix for all values of ex and ~ • Since we do this for 

every p .. we get a set of m ma trices C ( i) 
1· -

calculate 
h\ 

E[c.] - L c. (.l.) v \Si.) - -. 
\,,.: l 
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where 

v (s~) -= Prob \ p (; s~ ~ I l ... \;2, ... , t.\ 

E r~1 is Markov since CO(,.(.i.) ~ 0 I. c p. c.t) = \ 
~ 0(,.. 

The probability measure for the mapping of u1 on U
0 

is 

14 Cl\ I.~ ) = .r. f'\ \"I.c) Coe et. t l) 
")cc-. ,... 

y(S~) 

p.' E ['] --
The probability density vector for ut is 

p. C.t) = f-' E'[t) n « 11'' 

where lf 
/ 
E(<;.1 =- TI 1 , the left eigenvector of E (~] . A 

Fortran implementation of the alogrithm follows. 
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**************PROGRAM TO COMPUTE STATIONARY DISTRIBUTION:KSTAT 
IMPLICIT DOUBLE PRECISION CA-H,O-Z> 
DIMENSION BC56,56),C(100,100), PIC56),CCC56Y56) 
QM1=+85 
QM2=1. 
X1=0. 
X2=1+ 
Pl=.3 
p2:::: + ~:; 

********* INTERVAL LENGTHS 
E1=CX2-X1)/200. 
E2=CP2-P1)/50. 
DO 11 1=1,56 
11 PI(l)=i+ 
DO 12 I=l,100 
DO 12 J=l,100 
12 C(J,J)=O. 
DO 6 1=1,50 
PP=P1+CI-.5>*E2 
DO 4 J=40,95 

**********BOUNDS ON MAPPING 
Z1=PP/CQM1+QM2*<X1t(J-1)*E1>> 
Z2=PP/CQM1+QM2*CX1+J*E1>> 
Z1=Z1*200. 
Z2=Z2*200t 
Al=ABSCZ2-Z1> 
K1=IFIXCZ1)t1 
K2=IFIXCZ2)t1 
IFCK1-K2> 9,9,9 
8 CCJ-39,K2-39)=CCJ-39,K2-39)t1~ 
GOTO 4 
9 CCJ-39,K2-39)=CCJ-39,K2-39)t(K2-Z2)/AL 
IFCCK1-K2>.LT.2> GOTO 3 
DO 5 M=K2+1,K1 
5 CCJ-39,M-39)=C<J-39,M-39>+<E1*200.)/Al 
3 CCJ-39,K1-39)=C<J-39,K1-39>+<Zlt1-K1)/Al 
4 CONTINUE 
6 CONTINUE 

******** PRINTING OF CCI,J) 
DO 15 1=1,56 
PRINT 51,ccc1,J),J=1·100) 
51 FORMATC10(5X,10CF4+2•2X)/)/) 
15 CONTINUE 
DO 18 I=1,56 
DO 18 J=l,56 
18 CCCI,J>=ABS(C(I,J)/50+) 
DO 33 I=l,56 
PRINT 52,ccccI,J),J=1,56) 
52 FORMAT<5<5X,10CF4+2,2X)/)//) 
33 CONTINUE 

**********ITERATION FOR CCCI,J) 
MM=O 
7 MM=MM+1 
DO 2 !=1,56 



OS 

rJN] 

((/9t•£~CT&X£)9£/u~OlJ]n N38I3 1J3lu'X£>lVW~OJ 0£ 
Id

6
0~;;i lNI~:ld 

C? !:~~ & ·r. ;::: I <:·; <:: 0 fl 
< r 

11 
r) ~:l~J+NS====N~3 £(~: 

9!:; II 'j: ::::r f(':: [II] 

<£IliX£':& n :z:: .:ID ~:l::IMDdu ·~X~:~~)Jl:;JW;~:ID.::I <~it" 

WW & 6t;· .l.N I ;~:Id 
:::lfiN I .lNO~J tr£: 

(//(/CXl11~~61])911X~)£)lVW~O~ ££ 
<9£6t=r

11
cr*I>JJ>11££ J.NI~d 

</!;; 11 t::::I tvf 01] 
• O::::NS l <·:; 

l O.l.08 Co£•.t1·w~>JI 

r~ 0108 ((£->**01·11·cAA-XX>sa~>JI 
<tt&l)JJ/(0t6Z)JJ=AA 
Ctt11t)JJ/COt&t)JJ=XX 

crliI>a=cr11I>JJ t£ 
<;.> !:~~ i\ ·1: :::: f" 'j: ~~ C) I] 

.::;~;; 11 ·r. ::.-: I ·r. f DG 
c~~r)JJ*Cr6I>JJ+C~6I>e=c~~I>a 61 

9!; Ii ·1: ::::f" 61: (JI] 

9~·;~*1==>-1 6! OII 
9£11 l=I 6t ()I] 

•o::::(f"'4I)H <·~ 

9 £ 11 J :::: f" <:: (JI] 



APPENDIX C 

A Fortran program to calculate birth sequences and 

relevant statistics is given beginning on the next page. 
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*******POPULATION TRAJECTORIES & EXTINCTIONS: KBTHU 
INTEGER GC50),H(5) 
IMPLICIT DOUBLE PRECISION <A-F,o-T,X-Z> 
**** SEED: DD 

CC=42317765+77 
DD=3456721+001 

******** FERTILITIES 
ZZ=O. 
DO 1 MA=l,5 

DXM=O+ 
DXX=-10. 
QM2=1+5 
QM3=2.20 

******* PROBABILITlES 
P1=0+5 
P2::::Q. 2~5 
DO 3 I=1v50 
3 GCI>=O 

*** BAD WEATHER COUNTER! IR 
~)M::::Q • 

,:~ 1v1 I ... M :::: 0 • 
f>Dl...M::::O ·> 

XMt~l X::::() + 

Xf'·l IN:::: :I. 000. 
XMtlS:::: .... :I. 0. 

XM IS:::: :I. 00 + 

ZZ::::ZZ+. 0~~~5 
** RUN LOOP BEGIN 

DD ~:=; M:::: :I. I' 200 

***** COUNTEF'~~;) 
DO 4 I:::=l.,~5 

4 H<I)::::() 
I 1=<::::() 
I'\:::: 0 
1...::::() 

*******BIRTHS BT'S 
BT3:::: :I. 000. 
BT2:::: :I. 096. 
BT 1::::120 :I.. 
****** P:I. AT TIME T-2vT-1 

P :I. T :l.::::P:I. 
P:l.T2=P1 

******************BIRTHS AT TIME ZERO 
BZ=QM2*Pl*BT2tQM3*P2*Pl*BT3 
BTX=BT2 
BTY=BT1 
BTZ=BZ 
************************* TIME l...OOP BEGIN 

30 K=K+1 
Y=FLATCDD) 
BT=QM2*P1T1*BTYtQM3*P2*P1T2*BTX 
P1T2=P1T1 
IFCY.LE.0.5) GOTO 51 
Z=FLATCCC) 
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P :I. T 1. ::::p :I.+ ZZ*Z 
GOTO 63 
~=;:I. Z::::FL.1~ T (CC) 
P :I. T :I. ::::p :I. ·~·ZZ*Z 
If.;::::J:l:;;+:I. 
1,,3 CONT I NUE 

**********************HISTOGRAMS 
IFCL+NE.O> GOTO 23 
IFCBT.GT.1000) GOTO 27 
IF<H<l>.EQ.1) GOTO 21 
H (:I.):::: :I. • 
G < :I. ) ::::G <:I. ) +:I. 
2:1. CONTINUE 
IF< BT. GT .·~500) GOTO 2? 
IF<H<2>.EQ.1) GOTO 22 
G < 2 > ===G < 2) +:I. 
HC2)::::1. 
22 CONTINUE 
IFCBT.GT.300) GOTO 27 
IF<HC3).EQ.1) GOTO 24 
G < ~3) ::::G ( 3) +:I. 
H < 3) :::: :I. 
24 CONTINUE 
IF<BT.GT.:1.00) GOTO 27 
IFCHC4).EQ.1) GOTO 25 
G ( 4) ::::G < 4) + 1 
H ( 4) :::::1. 

2~=5 CONT I NUE 
IF<BT.GT.10> GOTO 27 
IF<H<5>.EQ.1) GOTO 23 
G ( ~:;) ::::G < !5) + 1 
H ( ~=.=;):::::I. 
23 CONTINUE 

******* SCALING SEGMENT: 12 LINES 
IFCBT.GT.1/(2•**30.)) GO TD 27 
1 ... ::::1...····:1. 
BT::::BT* < 2. **30.) 
BTY=BTY*<2·**30.) 
BTX=BTX*<2·**30.) 
BTZ=BTZ*<2•**30.) 
27 CONTINUE 
IF<BT~LT.<2.**30.))GO TO 130 
L.===L+:I. 
BTY=BTY/(2•**30.) 
BTX=BTX/(2•**30.) 

BT=-.:BT/ < 2 + **~30 + ) 

BT?.:===IHZ/ < 2. **30. ) 
:L 30 
IF(K+NE.10) GOTO 31 
CH6>=K 
DD 4:1. I::::1,..~; 

41 G<6+I>=GC6+I>+H<I> 
3:1. CONTINUE 
IF<K.NE.50) GOTO 32 

CONTINUE 
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GC12>=K 
DO 42 I=1,5 
42 GC12tI>=GC12+I>+HCI> 
32 CONTINUE 
IFCK.NE.100) GOTO 33 
GC18>=K 
DO 43 1=1,5 
43 G<18+I>=G<1B+I>+H<I> 
33 CONTINUE 
IFCK.NE+200> GOTO 34 
GC24>=K 
DO 44 I=lv5 
44 GC24+I>=G<24tI>+HCI> 
34 CONTINUE 
IF<K.NE.300) GOTO 35 
GC30>=K 
DO 45 I=lv5 
45 GC30tI>=GC30tI>+H<I> 
~5~5 BTX:::=BTY 
BTY=BTZ 
BTZ=BT 
IFCK.LT+500>GO TO 30 

***TIME LOOP END 
BX=C30*L*<DLOGC2.>>+DLOGCBT/BZ))/501. 
XMAS=DMAXl<XMASvBX> 
XMIS=DMINlCXMISvBX) 
XMAX=DMAX1CXMAXvC30*L*DLOGC2.>+DLOG<BT>>> 
XMIN=DMIN1CXMINvC30*L*DLOGC2t>+DLOGCBT>>> 
SM=SM+BX 
13 SQLM=SQLM+BX**2 
PRINT 106vBvLvIR 
106 FORMATC5X,"MT:SCALE"v5XvD23.16v5X,215) 
5 CONTINUE 
** RUN LOOP END 

PRINT 191vCG(I), I=l,5> 
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191 FORMATC/5Xv"EXT. LEVEL:1000v500v300v100v10"/5C5XvI4)/) 
PRINT 192v<G<I>v 1=6v35) 
192 FORMAT<5Xv 1 TIME"v10Xv"EXT. LEVEL 100, ••• "/5C5Xv6I6/)) 
AVLM=SM/200. 
VAR=500.*CSQLM-SM**2/200.)/199. 
PRINT 140vAVLMvVAR 
PHINT :l.22YWAvl ... JBvlJ .. 1Cyt...JD 
122 FORMATC//5(5Xv2013/)//) 
140 FORMAT(///20Xv"AVERAGE LM 0 v5XvD23+16,//v20X, 

"VARIANCE",7XvD23.16///) 
QL=DEXPC-AVLM*DLOGCBZ>IVAR> 
PRINT 150vQL 
PRINT 153vYYAvYYBvQQAyQQBvVYAvVYBvVVArVVB 
153 FORMATC//5Xv"MEAN Ylv •• •;4c5x,D23.16/)//5Xv 
"V~R VY1v •• •/(5XvD23.16/)) 

150 FORMATC//v5Xv"EXTINCTION LOWER BOUND"v5XvD23.16) 
PRINT 143vXMAXvXMINvXMASvXMIS 
143 FORMATC//5X//aN.LOG OF MAX&MIN POP & LOG AV"y/ 
4C5XvD23.16/)) 
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