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ABSTRACT 

The Piceance Creek Basin in northwestern Colorado contains extensive 

oil shale deposits that produce natural gas and which could potentially yield ~1.5 

trillion barrels of shale oil. However, much of the oil shale lies at depths too great 

for traditional mining practices and various innovative approaches for in situ 

conversion of kerogen to oil have been proposed. A firm understanding of the 

existing hydrogeochemistry is needed as resulting mineralogical changes or 

rock-fluid reactions may affect rock porosity and permeability. Using an existing 

database complied by the USGS, the water chemistry of 267 surface and 

groundwater samples in the Piceance Creek primary drainage basin have been 

evaluated by mapping major ion concentrations and mineral saturation indicies 

with respect to hydrostratigraphic units and geologic structures. Controlling 

processes have been further assessed using statistical correlation and factor 

analysis. 

Results indicate that shallow waters in recharge zones are dominated by 

mixed cations (Na, Ca, Mg) and bicarbonate anions but with increased depth, 

groundwater transition to nearly 100% sodium bicarbonate type water. The 

chemistry of lower aquifer waters are principally controlled by nahcolite 

dissolution, but evidence of sulfate reduction and cation exchange aid in 

maintaining a sodium-bicarbonate water type. Ion evolution in surface and upper 

aquifer waters are influenced by an increase in sulfate concentration which is 

necessary to evolve water to an intermediate stage with sulfate-dominant anions. 
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The source of sulfate is speculative, but likely due in part to the oxidation of 

sulfide-enriched groundwater and possible dissolution of sulfate-bearing 

carbonates. Surface and upper aquifer water chemistry in the northern portion of 

the basin is the result of discharge of deeper groundwater which is controlled to 

some degree by preferential pathways created by faults. Lower aquifer water 

migrates upward and mixes with the less-concentrated near-surface water, 

resulting in sodium bicarbonate type water in all hydrologic units. 
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 CHAPTER 1 - INTRODUCTION & BACKGROUND 

INTRODUCTION 

The Piceance Creek Basin in northwestern Colorado is of great interest 

due to its vast economic potential. In addition to its large quantities of natural 

gas, the basin contains the world’s thickest and richest oil shale deposit, which 

has an estimated in-place reserve of ~1.5 trillion barrels of shale oil (Johnson et 

al., 2010). However, much of the shale resides at depths greater than 200 

meters, far too deep for traditional mining practices. Thus, innovative methods 

involving in situ conversion of kerogen to oil have been considered. 

Prior research has generally focused on characterization, origin, and 

richness of the oil shale units (e.g. Desborough, 1978; Eugster and Surdam, 

1973; Johnson et al., 2010; Smith et al., 2008; Tanavsuu-Milkeviciene and Sarg, 

2012), with little attention paid to the hydrogeochemistry of the basin. A firm 

understanding of the existing basin hydrogeochemistry is needed to predict the 

impacts of energy resource development on aquifer hydraulic properties and 

water quality. Mineralogical changes or rock-fluid reactions are likely to result 

from proposed development methods, including introduction of foreign fluids and 

in situ heating involving temperatures up to 300˚C. Such perturbations may affect 

formation porosity and permeability, as well as the composition of groundwaters 

(Palmer et al., 2009; 2010; Perkins et al., 2008).  
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The objective of this study is to understand the aqueous chemistry in the 

Green River and Uinta Formation in terms of major geochemistry distributions, 

mineralogical controls (saturation indicies) and residence times (sample depths 

and position along presumed flow paths). To accomplish this goal, a dataset 

published by the U.S. Geological Survey (USGS, 2009) was obtained and 

includes water chemistry data for different wells and depths across the basin. 

The database was queried for applicable information. The hydrochemical data 

was evaluated in Chapters 2 and 3 for the objective of understanding the 

hydrogeochemistry of the Piceance Basin. 

Chapter 1 of the study focuses on previous research on the geology, 

history, stratigraphy, mineralogy, and hydrology of the Piceance Basin. In 

Chapter 2, the dominant groundwater flow paths in the different hydrologic units 

are defined and the dissolved constituent concentrations are analyzed by 

geographic location, flow path and aquifer to determine major geochemistry 

distributions and source. Chapter 3 focuses on mineralogic controls in the 

groundwater and residence times. The final chapter, Chapter 4, summarizes the 

conclusions of the study. The results of the research will expand the current 

knowledge of the Piceance Basin and can be applied to evaluations of 

environmental impacts of energy development within the basin.  
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BACKGROUND 

Geology 

The Piceance Creek Basin is located in northwestern Colorado (Figure 1). 

It is one of four continental basins that formed to the east of the Cordilleran fold 

in the central Rocky Mountain region, along with the Uinta Basin in Utah and the 

Green River Basin and Washakie Basin in Wyoming (Smith et al., 2008). The 

Uinta and Piceance Basin were occupied by ancient Lake Uinta, and the Green 

River and Washakie Basin were occupied by ancient Lake Gosiute (Tuttle, 1973). 

The basins were originally conjoined but were separated during the Laramide 

Orogeny by regional tectonics; the Uinta and Piceance Creek Basins were 

divided by the Douglas Creek Arch, a north-south trending faulted anticline, while 

the Piceance Creek and the Green River and Washakie Basin were divided by 

the Axial Basin uplift. For most of their history, these lake basins developed 

separately, but were occasionally hydrologically connected (Smith et al., 2008). 

There are three formations present in the Piceance Basin. From oldest to 

youngest, these are the Wasatch Formation, the Green River Formation (which  

consists of five members), and the Uinta Formation (Figure 2). The Wasatch 

Formation, comprised of clay, shale, lenticular sandstone and conglomerate, was 

deposited prior to ancient Lake Uinta development in the Piceance Creek Basin. 
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Lake development in the Piceance Basin began during the early Eocene 

and lacustrine sediments deposited ca. 53-48 Ma are assigned to the Green 

River Formation. Five members have been formally identified in the Green River 

Formation; they are, from oldest to youngest, the Cow Ridge, Garden Gulch, 

Douglas Creek, Anvil Point, and Parachute Creek Members. The Cow Ridge 

Member is comprised of a sandstone, shale, and limestone mixture. Continuous 

lacustrine sediment accumulation is marked by the Long Point bed, an ostracod, 

mollusc-rich bed, which also marks the overall transgression of the lake basin 

(Tanavsuu-Milkeviciene and Sarg, 2012). The Cow Ridge Member is overlain by 

basin margin limestones, sandstones, and mudstones of the Douglas Creek 

Member to the south and west, marginal sandstones of the Anvil Point Member 

to the north and east, and by clay-rich oil shale deposits of the Garden Gulch 

Member in the basin center (Tanavsuu-Milkeviciene and Sarg, 2012). The 

Parachute Creek Member is the largest unit, ranging between 325-400 meters 

thick (Cole and Picard, 1989). This unit consists of dolomitic oil shales 

interbedded with siltstone and sandstone layers. There is a particularly kerogen-

rich oil shale layer near the top of the member referred to as the Mahogany 

Zone, which is the richest, most laterally extensive oil shale layer in the Green 

River Formation (Taylor, 1987). Tongues of the overlying Uinta Formation form 

the upper boundary of the Parachute Creek Member.  

The Uinta Formation ranges from 180-250 meters thick (Cole and Picard, 

1989) and consists of alluvial, turbidite, and deltaic deposits. The deposits are 

primarily sandstones, fallout tuffs, and volcaniclastics from previously active 
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volcanic provinces, including the Absaroka Volcanic Province, Challis volcanic 

field, and other minor fields in the region (Smith et al., 2008; Tanavsuu-

Milkevicene and Sarg, 2012).  

Structural overview 

The Piceance Creek Basin is part of a large syncline, modified by 

numerous smaller structures (Donnell, 1961). Dominant faults in the basin trend 

northwest and secondary joints trend northeast. The faults are high-angle normal 

faults with small displacements of less than 15 meters (Donnel, 1961). This is 

evident when comparing mapped faults on the surface with mapped faults on the 

top of the Mahogany Zone (Figure 3). The green lines in Figure 3 represent faults 

mapped at the surface from the U.S. Geological Survey, The National Map 

(2015), and the red lines represent mapped faults on the top of the Mahogany 

Zone from a USGS digital data series accompanying a publication by Johnson et 

al. (2010).  

Lake Evolution 

The mineral distribution in the Green River Formation is crucial to 

understanding the Piceance Basin's evolution. Discontinuous evaporite beds of 

halite and nahcolite are found at depth in the central, northcentral region, referred 

to as the saline zone (Figure 4 and Figure 5; Cole and Picard, 1978; Weeks et  
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Figure 2. Stratigraphic column of the Piceance Creek Basin (modified from 
Tanavsuu-Milkeviciene and Sarg, 2012). Fm stands for formation, Mb stands for 
member, and W stands for Wasatch.  
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Figure 3.  Mapped structures on the ground surface (green) and on top of the 
Mahogany Zone (red) (USGS, 2015; Johnson et al., 2010). 

al., 1974; Taylor, 1987). Calcite is distributed throughout the basin, but the 

dominant carbonate unit is dolomite, which requires a magnesium to calcium 

ratio of 5-10 to precipitate in hypersaline environments (Desborough, 1978; 

Müller et al., 1972; Folk and Land, 1975). To explain these observations, the 

basin has been described as a stratified lake (Bradley and Eugster, 1969), a 

playa lake (Eugster and Surdam, 1973), and a biogenic-chemical stratified lake 

(Desborough, 1978).  
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The stratified lake and playa lake models were deemed deficient as 

neither properly accounted for the mineral compositions or spatial distribution of 

minerals and organics. Desborough's (1978) biogenic-chemical stratified lake 

model addresses both. In this model, the basin is divided into two zones based 

on density differences: a lower zone, which is highly reduced and saline and a 

less saline, oxidized, upper zone. Primary production in the upper zone 

generated organic matter and biogenic calcite, which would sink to the bottom. 

During times of extreme salinity, nahcolite and halite would precipitate in the 

lower zone, which accounts for the evaporites in the center of the basin. 

According to Desborough (1978), magnesium is preferentially concentrated in 

blue-green algae, which, on settling out of the water column, release the 

magnesium to bottom sediments. When the Mg:Ca ratio is great enough, 

protodolomite precipitates. 

The lacustrine lake closed around 48 Ma as the climate cooled after the 

Early Eocene Climate Optimum (EECO) and precipitation increased (Tanavasuu-

Milkeviciene and Sarg, 2012). At the same time, active volcanism produced new 

sediment from the Absaroka Volcanic Province (northwest Wyoming and 

southwest Montana), Challis volcanic field (Idaho) or other nearby fields (Smith et 

al., 2008). Fluvial processes transported the new sediments to the basin until the 

lake filled up and disappeared. These volcaniclastic and deltaic deposits 

continued to cover the region, creating the Uinta Formation. 
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Figure 4.  Schematic diagram of mineral variations in the Green River Formation 
of the Piceance Creek Basin. Solid lines indicate the mineral is relatively 
abundant; dashed lines indicate the mineral is common; dotted lines indicate the 
mineral is rare; no lines indicate the mineral is absent (Cole and Picard, 1978). 
Note the narrow presence of saline minerals, nahcolite and halite, in the basin 
center. 

Mineralogy 

The sedimentary rocks of the Piceance Basin fall into three primary 

categories: carbonates, evaporites, and clastics. The principle carbonate 

minerals in the Green River and Uinta Formation include calcite (CaCO3), 

dolomite ((CaMg)(CO3)2), and ankerite (Ca(Mg,Fe)(CO3)2). Halite (NaCl), 

nahcolite (Na(HCO3)), and dawsonite ((NaAl(CO3)2(OH)2) are the common 

evaporite minerals in the basin and volcaniclastics and siliciclastic sediments, 
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primarily found in the Uinta Formation, are high in quartz (SiO2), albite 

(NaAlSi3O8), and secondary analcime (NaAlSi2O3) which formed from the 

alteration of detrital clays during evaporation on the marginal mudflats of Lake 

Uinta (Birdwell et al., 2013). 

Cole and Picard (1978) analyzed the relative distribution of minerals in the 

Parachute Creek Member and determined four zones based on spatial 

relationships to the lakeshore: The deltaic and interdeltaic mudflat, carbonate flat, 

proximal open lacustrine, and distal open lacustrine zone. Their results indicated 

that dolomite is the dominant carbonate mineral in the basin and evaporites of 

nahcolite and halite are found only in a narrow region in the distal open lacustrine 

zone (Figure 4). Poole (2014) analyzed 117 core samples in the basin and 

confirmed similar results to Cole and Picard (1978); The center basin is enriched 

in saline minerals dawsonite, nahcolite, and halite, and the margins are enriched 

in the zeolite analcime. Poole reported a large proportion of carbonates in the 

Green River Formation with dolomite or ferroan dolomite being the dominant 

carbonate mineral. 

Groundwater Characterization and Flow Paths 

Coffin et al. (1971) identified two aquifers in the Piceance Basin: the upper 

and lower aquifer. The upper aquifer extends from the water table down to the 

top of the Mahogany Zone and the lower aquifer, from the Mahogany Zone to the 

boundaries of the Parachute Creek Member of the Green River Formation. The 
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Mahogany Zone is an oil shale layer approximately 20-70 meters thick and 

serves as a laterally extensive leaky aquitard preventing mixing of water types 

from the upper and lower formations, except through slow permeation, and major 

faults and joints (Figure 5). The Douglas Creek and Garden Gulch members, 

along with the saline zone are considered impermeable and bound the hydrologic 

unit. Robson and Saulnier (1981) estimate the saturated thickness of the aquifers 

in the northeast part of the basin to be 610 meters and estimate the hydraulic 

conductivity to range from 3.5 to 60 cm/day laterally, and 2x10-2 to 30.5 cm/day 

vertically.  

Weeks et al. (1974) developed a groundwater flow model in which water 

enters the basin as recharge from precipitation along the western, southern, and 

eastern margins and flows towards the center, exiting the subsurface through the 

groundwater-fed Piceance Creek (Figure 6). This suggests that the residence 

times in the Piceance Creek Basin depends on the flow path taken, with the 

longest transit infiltrating the lower sediments and the shortest transit existing as 

shallow groundwater flow.  

Robson and Saulnier (1981) refined the groundwater model by contouring 

the potentiometric surface of the upper and lower aquifer. Ground water levels 

range from approximately 1750m near the discharge point of Piceance and 

Yellow Creeks in the north, to approximately 2250m along the southern margin in 

both aquifers (Figure 7 - Figure 8). This indicates a general groundwater 

movement from the recharge areas to the northern discharge region of the 

creeks. Groundwater gradients in the upper aquifer range from 3.5 to 22.5 m/km 
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and 3.5 to 25 m/km in the lower aquifer (Robson and Saulnier, 1981). Differences 

in the potentiometric surface between two adjacent wells screened in the two 

aquifers can be up to 70m and are displayed in Figure 9 (Robson and Saulnier, 

1981). The differences between potentiometric levels in the aquifers indicates a 

potential for downward flow of groundwater along the western, southern, and 

eastern margins, along the drainage divide between Piceance and Yellow Creek, 

and the divide between Piceance Creek and Dry Fork. Potential for upward 

movement of water is along Piceance Creek and the downstream reaches of its 

tributaries (Robson and Saulnier, 1981).  

Using carbon isotopes, Kimball (1984) concluded that groundwater ranges 

from approximately 750 years, for wells near recharge areas (defined as regions 

along the western, southern, and eastern margin), to over 20,000 years for wells 

farther down the hydrologic gradient. The longer the flow path, the more time the 

water has to equilibrate with the surrounding bedrock. Thus, waters at depth will 

likely have achieved equilibrium with a larger quantity of minerals, owing to both 

the longer residence times and increased rates of reaction due to the geothermal 

gradient.  

Groundwater Chemistry in the Piceance Basin 

This study focuses on the geochemistry of groundwater in the Piceance 

Basin, a topic that has been largely ignored in literature. Thomas and McMahon 

(2012) evaluated the groundwater-quality for an area encompassing, but much 
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larger than, the study area. Thomas and McMahon evaluated the concentrations 

of major and minor ions and compared them to drinking water standards. 

Additionally, Robson and Saulnier (1981), who evaluated previously published 

water chemistry data (included in this study), observed the following changes 

occurring towards the basin center and with increasing depth: a change in water 

type from mixed cation bicarbonate water to a sodium bicarbonate water, 

oxidation and reduction of sulfur species, and relatively large increases in certain 

trace elements, such as strontium and fluoride. They suggest the high sodium 

values are the result of ion exchange and nahcolite and halite dissolution.  

Reduced sulfur in the basin is evident from the presence of pyrite (FeS2), 

and the occurrence of hydrogen sulfide gas (Kimball, 1984; Robson et al., 1981). 

The abundant organic material helps to maintain reduced conditions which 

stabilizes the reduced sulfur species and likely contributes significant sulfur itself 

(Robson et al., 1981; Thomas and McMahon, 2009). However, the source for 

oxidized sulfur is speculative. Robson et al. (1981), Hansen et al. (2010), and 

Thomas and McMahon (2009), offer two suggestions: 1) gypsum dissolution; 2) 

the upward movement and oxidation of water enriched in sulfides along faults 

and fractures. The mention of gypsum in literature for the study area is 

inconsistent. Although some research articles note the presence or theoretical 

presence of gypsum (Thomas and McMahon, 2009; Sanborn, 1977), these 

articles generally characterize the Uinta Basin (Utah) and the Piceance Basin 

together, and/or include a much larger area of the Piceance Basin than is 

considered in this study without much spatial differentiation. Papers that focus on 
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the particular area of this study generally note halite, nahcolite, and dawsonite as 

the evaporative minerals present in the basin with no mention of gypsum or 

anhydrite (Cole and Picard, 1978; Tanavasuu-Milkeviciene and Sarg, 2012; 

Hansen et al., 2010). Robson et al. (1981) note that gypsum has been found in 

discharge areas of the Uinta Formation but not in recharge areas or near the 

water table. 

USGS Database 

In this study of the groundwater chemistry of the Piceance Basin, a 

database published in 2009 by the U.S. Geological Survey (USGS, 2009) was 

used. This database is a compilation of data from over 22 agencies, spanning the 

period 1947 to 2009. The database was complied with the goal of creating a 

publicly-accessible repository of water quality data to aid in the “planning, 

monitoring, conservation, and management of water resources in the face of 

large-scale energy development” (USGS, 2009). Contributors to the collective 

database came from industry, local, State, Federal, and other sources.  

The data subset used for this research included the following parameters: 

water temperature, pH, total dissolved solids, specific conductivity, sample depth, 

geographic locations (decimal degrees) and dissolved concentrations (generally 

in ppm or ppb) of major ions. 
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Figure 7. Potentiometric surface contours for the upper aquifer (image modified 
from Robson and Saulnier, 1981). 
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Figure 8. Potentiometric surface contours for the lower aquifer (image modified 
from Robson and Saulnier, 1981). 
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Figure 9. Map displays difference in potentiometric heads between the upper and 
lower aquifers in the Piceance Creek Basin (image from Robson and Saulnier, 
1981). 
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 CHAPTER 2 - SPATIAL DISTRIBUTION OF MAJOR IONS IN PICEANCE BASIN GROUNDWATERS 

INTRODUCTION 

The Piceance Basin has been of great interest since the Green River 

Formation was identified in 1874 (Thomas and McMahon, 2012). More recent 

studies have generally focused on characterizing the grade and extent of 

recoverable shale oil. Little research has been conducted on the aqueous 

geochemistry in the basin. Thomas and McMahon (2012) published a 

groundwater investigation using the same dataset used in this report. They 

focused on the sources of recharge to wells, comparison of ion concentrations to 

EPA drinking standards, and describing the distribution of some major, trace, and 

organic compounds.  

This study differentiates itself by focusing on a smaller study area and 

fewer number of constituents for a more in-depth analysis of groundwater 

geochemistry. Specific objectives of the study are 1) to select and summarize 

data, 2) to evaluate groundwater flow paths, 3) to describe the general 

distribution and source of major and minor ions and, 4) to determine controls on 

major chemistry changes in the basin. 
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METHODS 

Data Selection 

The USGS Piceance Basin Water-Quality Data Repository (USGS, 2009) 

contains more than 100,000 entries. The dataset was first narrowed by selecting 

only data in the area of interest - the main watershed of Piceance Creek (Figure 

1). In many cases, the analyses of multiple samples collected over time are 

reported for specific spatial (well) locations. One sample was chosen to represent 

the water quality at each location, based on two factors. The first was the degree 

of completeness; a sample analysis (“sample”) was considered complete if it 

contained concentration values for common major ions (defined as calcium, 

magnesium, sodium, potassium, chloride, sulfate, and either (bi)carbonate or any 

alkalinity measurement), pH, temperature, and sample depth. If a site did not 

contain a complete set, the ion and/or parameter values of incomplete sets were 

still used, but complete sets were chosen preferentially as they are important for 

assessing mineral equilibrium. The second factor was the sample date – all else 

being equal, the most recent sample was chosen for analysis.  

The resulting subset of data was checked and edited for consistency. For 

example, well locations were reported by various agencies in decimal degrees, 

UTM, and DMS format. Non-detect (ND) and minimum detection limit (MDL) 

values were replaced with one-half the detection limit value per methodology 

validated by Antweiler and Taylor (2008). Additionally, data were examined for 

statistical consistency in reporting values for temperature, pH, specific 
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conductivity, calcium, magnesium, sodium, potassium, chloride, alkalinity, and 

sulfate between different agencies, decades, and by season. Agency to agency 

variations may be attributed to differences in methodology, equipment and 

sampling techniques. Decadal variations may be caused by long-term chemical 

changes to the system or advancement in sampling and laboratory detection 

equipment, and seasonal variations may exist due to fluctuation in flow rates and 

temperature differences. If at all, seasonal variations will likely have the greatest 

impact on surface samples. To test for evidence of these in the selected data, a 

t-test was performed for normally distributed data and a Mann-Whitney test was

used for non-normally distributed data (APPENDIX A). 

After the relevant data were selected, it was important to determine 

sample depth relative to a datum, such as average sea level, instead of surface 

elevation. To determine sample elevation, digital elevation models (DEM) of the 

region were obtained from the U.S. Geological Survey, The National Map (2015), 

and sutured together via the mosaic tool in ArcGIS (version 10.3; Figure 10). The 

DEM raster provided a surface with units of meters above mean sea level. The 

'extract values to points' function in the spatial analyst toolset extracted the cell 

values of the raster based on the coordinates of the point features. Thus, for 

each point in the subdataset, the surface elevation relative to mean sea level was 

obtained. The sample depths were subtracted from the surface elevations to 

obtain the sample elevations.  

Once sample elevations above mean sea level were ascertained, the next 

step was to evaluate the samples relative to the position of the Mahogany Zone. 
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A raster model of the top of the Mahogany Zone was available from a USGS 

digital data series accompanying a publication by Johnson et al. (2010) (Figure 

11). The raster was in units of feet above mean sea level and were converted to 

meters using map calculation tools in ArcGIS. The 'extract values to points' 

function was used again to obtain an elevation for the top of the Mahogany Zone 

at each data point.  

The sample elevation was compared to the Mahogany Zone elevation and was 

assigned one of three categories: Surface samples (samples with depths equal 

to zero - rivers, streams, and springs, although the database does not accurately 

distinguish between the specific types), upper aquifer (samples collected above 

the Mahogany Zone), and lower aquifer (samples collected below the top of the 

Mahogany Zone). 
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Figure 10. Digital elevation model of the study region. The highest expressions 
are along the west, south, and southeastern boundary, and the elevation 
decreases towards the north (USGS, 2015). 

Statistical Analysis 

Preliminary statistics conducted on the selected dataset include the 

minimum and maximum concentrations for each analyte/parameter of interest, 

the number of samples, and sample means for each hydrologic unit. Correlation 

and factor analyses (FA) were used to evaluate relationships among variables 

and reduce dimensions to a smaller number of factors based on correlations in 

the data. Cluster analysis was performed to evaluate homogenous groups of 

classes and determine the number of groups present in the system. Z-scores 

were calculated for each observation and used to normalize the data and limit 
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effects due to relative magnitude of variables. Additionally, outliers were removed 

prior to analysis by a Grubbs Outlier Test (Grubbs, 1969).  

Correlation coefficients were calculated using Pearson’s correlation 

coefficient. The correlation coefficient table is a measure of the linear 

dependence between to random variables, A and B; it indicates how strongly two 

variables are related to each other with +1 being highly positively correlated, 0 

indicating no correlation, and -1 indicating high negative correlation (see Table 1 

for a more detailed correlation strength breakdown).  

FA is a statistical data reduction technique in which values of observed 

data are expressed as linear combinations that describes variability in terms of a 

reduced number of unobserved variables, or factors. The results of the factor 

analysis were used to identify similar groups of variables associated with a 

particular factor contributing the most variability in the data. The analysis was 

carried out in Matlab (Version 2011a) with the major ion data, pH, temperature, 

and depth (APPENDIX B). 

The factor analysis implemented the maximum likelihood extraction 

method and was rotated to make the pattern of loadings more pronounced. 

Varimax rotation, an orthogonal rotation method which assumes no correlation 

between the factors, was used in this study as it provided the “simplest” structure 

(Costello and Osborne, 2005). The loadings for each factor, i.e. the correlation 

between the observed score and latent score, were evaluated and categorized 

as very weak, weak, moderate, strong, or very strong according to the values 

summarized in Table 1 (Evans, 1996). When the loadings or correlation  
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Figure 11.  Digital elevation model for the structural contours of the Mahogany 
Zone (Johnson et al., 2010).  

coefficients are positive numbers, the relationship is said to be positively 

correlated, and the opposite is true for negative values. Loadings that were 

strong to very strong were considered most influential to the factor. Next, the 

factor scores were computed. Factor scores are the estimated contribution of 

each factor to each observation. The factor scores were plotted by depth 

categories in ArcGIS to assess the spatial distribution of the dominant factors 

found in this analysis. Between points were interpolated using universal kriging 

with linear drift (see methodology for concentration distribution maps for 

information on kriging and the interpolation selection processes). 
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Table 1. Correlation strength interpretation terms 

|𝐹𝑎𝑐𝑡𝑜𝑟 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑉𝑎𝑙𝑢𝑒𝑠
/𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡| 

Strength (Evans, 1996) 

0.00 – 0.19 Very weak 

0.20 – 0.39 Weak 

0.40 – 0.59 Moderate 

0.60 – 0.79 Strong 

0.80 – 1.0 Very strong 

Ion Concentration Distribution Maps 

Total ion concentrations were evaluated spatially by plotting the 

concentration values for each hydrologic unit in ArcGIS and interpolating 

between the points. Careful consideration was given to the type of interpolation 

method used for this evaluation. Li and Heap (2008) published a comprehensive 

report addressing the different types of interpolation methods and the limitations 

and strengths of each per different data types. Based on the decision tree 

included in their publication, universal kriging as chosen as the best interpolation 

method for this project. Kriging is a geostatistical method used to predict values 

in regions with no data and is commonly used in geology, soil science and to 

model geochemical phenomena (Childs, 2004). Kriging is stochastic and 

assumes a degree of error in the input values and estimates the output values as 

statistical probabilities (Childs, 2004). Universal kriging also assumes an 

overriding trend exists in the data that can be modeled and that the function 

changes over space. This is appropriate for the dataset as there are known 
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spatial changes in mineralogy (Cole and Picard, 1986). There is not one perfect 

interpolation method for each dataset. Rather, a large part of choosing the right 

interpolation method involves intuition (Li and Heap, 2008); an intimate 

knowledge of the dataset is required and ultimately, finding an interpolation 

method that best captures the data variations is the goal. Therefore, different 

interpolation methods were tested on the same set of data (calcium 

concentration values from the lower aquifer). The tested interpolation methods 

included: ordinary kriging (linear, Gaussian, exponential, circular, spherical), 

universal kriging (linear and quadratic), and trend surface analysis. Only inexact 

interpolators were considered because the exact input value is not as important 

to this study as the overall trend of the system.  

Upon selection of the best interpolation method (universal kriging), 

dissolved constituent concentration distribution maps were produced for the 

following major ions: calcium, magnesium, sodium, chloride, sulfate, and 

alkalinity. Other mapped parameters include temperature, pH, and specific 

conductivity. Standard residual errors were calculated for each sample point 

comparing the measured results value with the interpolated value. Residual 

errors were added to the map as sample point symbols for three categories: less 

than one, one to three, and greater than three. 

Parameter values displayed on the maps were separated into four 

different classifications, displayed as different colors. The selected categories 

were chosen by Jenks natural breaks optimization method (Jenks, 1967). The 

Jenks method aims to reduce the variance within a class and maximize the 
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variance between classes. The break values were then rounded up for clean 

interval values. 

Evaluation of Groundwater Evolution Along Flow Paths 

Concentrations for major cations and anions were converted to 

milliequivalents per liter (meq/L) and then converted to a percent of the total 

cations/anions. For example, the cation percent for calcium in a sample is the 

meq/L of calcium divided by the sum of meq/L calcium, magnesium, potassium 

and sodium. The percentages were plotted at specific points along a presumed 

groundwater flow path. Dominant cations and anions were plotted over relative 

distance using Microsoft Excel.  

RESULTS 

Data Selection 

Upon refining the dataset, a maximum of 267 sites were included in the 

final subdataset from three agencies, spanning the time range from 1966 to 2008 

(Table 2). Less than 1% of the data used was gathered in the 1960s, 67.6% was 

sampled in the 1970s, 20.2% was from the 1980s. No data used in this study is 

from the 1990s and 11.3% was from the 2000s. The reason for the data gap in 

the 1990s is primarily many wells that were sampled in the 1990s were also 

sampled in the 2000; thus, the most recent samples were used for this project 
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leaving a temporal gap in the 1990s. Figure 12 displays the data by decade with 

different size symbols to represent hydrologic unit. 

The samples were placed into one of three hydrologic units (i.e. surface 

sample, upper aquifer, and lower aquifer), and the average percent of samples in 

each category and the corresponding depth intervals are summarized in Table 3 

below. Surface samples comprised over half the data (54.8%). Approximately 

20.1% was sampled from the upper aquifer, and 25.1% from the lower aquifer.  

The well locations, agency, and relative depths are displayed in Figure 13. 

The bottom map displays the USGS data locations in blue with relative symbol 

sizes corresponding to each hydrologic unit. The top map displays the COGCC 

and ENCANA data points in orange and purple respectively. Two maps were 

used to better illustrate the locations of the COGCC and ENCANA data points 

which are imperceptible when plotted on the same map as the USGS data.  

Results from the t-test and Mann Whitney tests comparing agency to 

agency were unable to distinguish the sets apart with a confidence level of 5%, 

with the exception of chloride values between EnCana and COGCC, and sulfate 

values between USGS and COGCC data. EnCana and COGCC sample 

locations do not overlap geographically, therefore differences between the two 

are dismissible as ion concentrations are known to vary spatially (Figure 13). 

Although there are USGS points in close proximity to COGCC well locations, the 

points do not overlap in three-dimensional space; the sample depths are at least 

200m apart. Once again, these differences may be negligible or indiscernible 

considering the spatial variations expected in the basin. 
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Results from the t-test and Mann Whitney tests comparing decadal 

variation report several differences in certain ions with a confidence level of 5%. 

However, there are confounding factors that may influence this result. For 

example, data collected in the 2000s is confined a small region in the center of 

the basin at Piceance Creek where samples were collected from the upper and 

lower aquifer, and surface samples were collected narrowly at the southern 

margin. Of all the data collected in the 1980s, less than ten samples were 

collected from the upper and lower aquifer and data collected in the 1970s 

contains the most samples from below the surface (Figure 12). These differences 

may, once again, be negligible or indiscernible considering the spatial variations 

expected in the basin.  

Results for seasonal variations were unable to distinguish the sets apart 

with a confidence level of 5%, with the exception of temperature, pH, calcium and 

magnesium. These parameters were further evaluated by hydrologic unit, and 

significant differences in these parameters occurred only in surface samples. 

This result is expected as snowmelt contributions and variations in temperature 

and biologic activity between the seasons will influence the water chemistry. 

Between summer and winter months, calcium concentrations fluctuated an 

average of 15 mg/L, magnesium 25 mg/L, temperature 3˚C, and pH an average 

of 0.25.  

To account for potential variations that may results from the 

aforementioned factors, results in this study implemented additional methods to 

minimize data discrepancies, such as inexact interpolation (discussed later in this 
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chapter), and weighted mineral saturation indicies (discussed in Chapter 3). A 

summary of the results from the t-test and Mann Whitney tests is provided in 

Appendix A and a comprehensive summary of the data, including the number of 

samples per each constituent and the value range is provided in Table 4 along 

with the number of samples and mean value of each constituent in each 

hydrologic unit. 

Piper Diagram 

The piper diagram was created using the program GW Chart (Version 

1.28.0.0), published by the U.S. Geological Survey (USGS, 2000), and was 

divided into four main classifications and four sub-classifications based on ones 

used in a study by Bartos and Ogle (2002). The main classifications include the 

following: Calcium-magnesium-chloride-sulfate type; calcium-magnesium- 

bicarbonate-chloride type; sodium-potassium-bicarbonate-chloride type; and 

sodium-potassium-chloride-sulfate type waters.  

Piper diagram results for the three individual hydrologic units as well as all 

samples combined are displayed in Figure 14 - Figure 17. Surface samples are 

predominately (bi)carbonate waters, but overall do not have a particular dominant 

cation, although some tend towards being sodium dominated (Figure 14). 

Samples from the upper aquifer appear to have cations that range from mixed to 

nearly 100% sodium and the anions appear to have two distinct groups, one that 

is a continuum along the bicarbonate-sulfate line and the other along the 
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bicarbonate-chloride line. The water chemistry of the upper aquifer samples are 

categorized as Ca-Mg-Cl-SO4, Ca-Mg-HCO3-Cl, Na-K-HCO3-Cl, and Na+K type, 

with very few samples falling into the Na-K-Cl-SO4 type (Figure 15).  

Table 2. Summary of data sources that contribute to the Piceance Basin Data 

Repository and were used in this study. 

Agency Name Sites Date Range 

Colorado Oil and Gas Conservation 

Commission 

3 9/12/77 1/30/02 

EnCana Oil and Gas (USA) Inc. 13 8/18/05 8/26/08 

U.S. Geological Survey 251 5/24/66 12/7/00 

Table 3. Percent of samples per aquifer and corresponding depth interval. 

Aquifer 
Number of 

Samples 

Percent of Total 

Samples 
Depth Interval (m) 

Surface 
146 54.8 0 0 

Upper 
54 20.1 6.5 390 

Lower 
67 25.1 6.5 

230

0 
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Figure 12. Sample spatial distribution by decade with graduated symbols 
showing depth.  Samples collected in the 1970s are displayed in green on the 
figure, 1980s are red, and 2000s are displayed in purple.  
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Figure 13. Sample spatial distribution by agency with graduated symbols showing depth. 
USGS point locations and depths are displayed in green on the figure (bottom) and 
EnCana is represented with purple and COGCC is red (top). COGCC and EnCana were 
displayed on a separate map from the USGS due to the large number of samples in the 
latter data source. 



37 

T
a
b

le
 4

: 
P

a
ra

m
e
te

r 
a

n
d

 d
is

s
o
lv

e
d

 c
o
n

c
e

n
tr

a
ti
o

n
 v

a
lu

e
 s

u
m

m
a

ry
 b

y
 a

q
u

if
e

r 
in

 t
h
e

 m
a

in
 w

a
te

rs
h
e

d
 o

f 
th

e
 P

ic
e
a
n

c
e
 

C
re

e
k
 B

a
s
in

, 
C

o
lo

ra
d
o
. 

P
a
ra

m
e
te

rs
 

U
n
it
s
 

T
o
ta

l 
V

a
lu

e
 R

a
n

g
e

 
S

u
rf

a
c
e
 W

a
te

rs
 

u
p
p
e
r 

a
q
u

if
e
r 

lo
w

e
r 

a
q
u

if
e
r 

S
it
e
s
 

M
in

 
M

a
x
 

N
o
. 
S

it
e
s
 

M
e
a
n

 
N

o
. 
S

it
e
s
 

M
e
a
n

 
N

o
. 
S

it
e
s
 

M
e
a
n

 

T
e
m

p
e
ra

tu
re

 
˚
 C

 
2
5
0

 
6
 

3
2

 
1
4
9

 
1
0
.2

 
4
3

 
1
5
.6

 
5
8

 
1
8
.6

 

p
H

 
2
6
7

 
6
.1

 
9
.6

8
 

1
6
1

 
7
.6

 
4
6

 
7
.9

 
6
0

 
8
.2

 

S
p
e
c
if
ic

 

C
o
n
d

u
c
ti
v
it
y
 

u
S

/c
m

 

2
5
C

 
2
1
5

 
4
1
6

 
4
6
3
0

0
 

1
1
7

 
1
5
4
0

 
4
1

 
3
5
0
0

 
5
7

 
4
8
7
0

 

C
a
lc

iu
m

 *
 

m
g
/L

 
2
2
9

 
1
.1

 
1
9
0

 
1
2
2

 
8
1
.2

 
4
6

 
3
7
.8

 
6
1

 
1
9
.7

 

M
a
g
n

e
s
iu

m
 *

 
m

g
/L

 
2
3
0

 
0
.3

 
2
4
5

 
1
2
2

 
6
2
.9

 
4
7

 
5
1
.2

 
6
1

 
1
8
.4

 

S
o
d

iu
m

 *
 

m
g
/L

 
2
3
1

 
2
9

 
2
5
4
1

8
 

1
2
3

 
2
3
0

 
4
7

 
1
0
4
0

 
6
1

 
2
3
6
0

 

P
o
ta

s
s
iu

m
 *

 
m

g
/L

 
2
3
0

 
0
.3

 
7
2
9

 
1
2
3

 
1
.4

3
 

4
6

 
4
.2

3
 

6
1

 
1
8
.2

 

C
h
lo

ri
d
e

 *
 

m
g
/L

 
2
2
9

 
0
.5

 
1
1
8
7

4
 

1
2
3

 
3
2
.3

 
4
6

 
1
5
0

 
6
0

 
4
2
9

 

S
u
lf
a
te

 *
 ᶵ
 

m
g
/L

 
2
2
7

 
0
.3

1
 

1
7
4
1

 
1
2
3

 
2
9
0

 
4
6

 
2
5
8

 
5
8

 
1
5
6

 

A
lk

a
lin

it
y
* 

ᶵ 
m

g
/L

 

C
a
C

O
3

 
2
1
2

 
1
 

4
9
5
0

0
 

1
0
8

 
6
6
4

 
4
5

 
2
1
9
0

 
5
9

 
4
9
9
7

 

F
lu

o
ri

d
e
 *

 
m

g
/L

 
2
1
9

 
0
.0

5
 

6
4

 
1
1
4

 
0
.9

7
 

4
6

 
8
.5

 
5
9

 
1
8
.0

 

Ir
o
n
 *

 
u
g
/L

 
2
0
5

 
3
 

4
9
0
0

0
 

1
0
3

 
8
5
.2

 
4
6

 
1
6
6
0

 
5
6

 
2
3
6

 

N
o
te

s
: 

*
S

a
m

p
le

s
 f

ilt
e
re

d

ţ 
S

a
m

p
le

s
 u

n
fi
lt
e
re

d
 



38 

Samples from the lower aquifer are predominantly sodium (bi)carbonate 

type waters although some lack a dominant cation or anion and a few are sulfate 

type waters. The water chemistry of the lower aquifer is primarily categorized as 

Na-K-HCO3 and Na+K types, with few samples falling into the categories of Ca-

Mg-HCO3-Cl and Na-K-Cl-SO4 types (Figure 16).  

When plotted on the same ternary diagram (Figure 17), surface samples 

contain the majority of samples with no dominant cation while the upper and 

lower aquifer samples increasingly tend towards sodium dominant.  
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Statistical Analysis 

A comprehensive summary of the data, including the number of samples 

per each constituent and the value range is provided in Table 4 along with the 

number of samples and mean value of each constituent in each hydrologic unit. 

Results from the correlation and factor analyses are summarized below in 

Table 5 and Table 6. Values with strong to very strong correlation strengths 

(Table 1) are in bold, additionally, strengths that are considered very strong are 

highlighted light red. 

Table 5. Correlation table results for major ion concentrations and field parameter 
values, Piceance Creek Basin, Co. 

Depth Alk Ca Cl K Mg Na pH SO4 Temp 

Depth 
1.00 0.17 

-
0.68 

0.14 0.12 
-

0.56 
0.20 0.53 

-
0.39 

0.76 

Alkalinity 
1.00 

-
0.37 

0.85 0.75 
-

0.24 
0.99 0.24 

-
0.25 

0.23 

Calcium 
1.00 

-
0.30 

-
0.23 

0.76 
-

0.40 
-

0.69 
0.67 -0.75

Chloride 
1.00 0.69 

-
0.20 

0.89 0.20 
-

0.22 
0.18 

Potassium 
1.00 0.01 0.76 0.17 

-
0.04 

0.17 

Magnesium 
1.00 

-
0.25 

-
0.41 

0.91 -0.58

Sodium 
1.00 0.27 

-
0.26 

0.26 

pH 
1.00 

-
0.33 

0.57 

Sulfate 1.00 -0.43
Temperature 1.00 
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Table 6. Factor loading correlation results for major ion concentrations and field 
parameter values, Piceance Creek Basin, Co.  

(% variance explained) 
Factor1 
(48.68) 

Factor2 
(26.90) 

Factor3 
(10.10) 

Depth 0.05 0.80 -0.22

Alkalinity 0.98 0.12 -0.15

Calcium -0.22 -0.75 0.48

Chloride 0.86 0.09 -0.12

Potassium 0.78 0.13 0.11

Magnesium -0.06 -0.45 0.88

Sodium 0.98 0.15 -0.15

pH 0.15 0.67 -0.12

Sulfate -0.09 -0.27 0.90

Temperature 0.10 0.85 -0.22

Thurstone (1947) proposed five criteria for selecting the number of factors 

retained in FA to achieve a simple structure. The five criteria include: 1) Each 

variable should produce a zero loading on some factor; 2) Each factor should 

have at least as many zero loadings as there are factors; 3) Each pair of factors 

should have variables with significant loadings on one and zero loadings on the 

other; 4) Each pair of factors should have a large proportion of zero loadings on 

both factors; 5) Each pair of factors should have only a few complex variables, 

which are variables with notable loadings on two or more factors (Brown, 2009). 
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Based on these criteria, three factors were chosen for the FA and account for 

85.7 percent of the total variance in the data (Table 6).  

Factor 1 accounts for 48.7 percent of the data variance and includes a 

very strong positive correlation with alkalinity, sodium, chloride, and a strong 

positive correlation with potassium. Factor 2 accounts for 26.9 percent of the 

variance and contains a very strong positive correlation with depth and 

temperature, a strong positive correlation with pH, and a strong negative 

correlation with calcium. Factor 3 accounts for 10.1 percent of the variance and 

includes a very strong positive correlation with magnesium and sulfate.  

The factor loadings were used to calculate factor scores which estimate 

the contribution of each factor to each observation (APPENDIX B). The factor 

scores were plotted in ArcGIS within each hydrologic unit and are displayed 

below in Figure 18 -Figure 20. This allows for analysis of the geospatial location 

of correlated samples. 

Figure 18 displays the factor scores for Factor 1 by hydrologic unit. Higher 

values indicate more positive correlation between the sample points and the 

factor. Surface samples overall have high factor scores with the largest values 

near the discharge point of Piceance Creek and Yellow Creek. In the upper 

aquifer, values are greatest in the center basin and in areas along the western 

boundary. The lower aquifer values increase from southeast to northwest.  

Figure 19 displays the factor scores for Factor 2 by hydrologic unit. In 

general, factor scores increase with depth. Surface sample scores are greatest in 

the basin center to the north. Upper aquifer scores are greatest in the basin 
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center and factor scores are very high in the lower aquifer except in the 

northwestern region of the study area.  

Factor 3 scores are displayed in Figure 20 by hydrologic unit. Surface 

sample factor scores increase from the drainage boundaries to the basin center 

and towards the north. Factor scores in the upper aquifer increase from the 

southeast to the northwest, and scores are lowest in the lower aquifer in which 

the score does not increase past zero.   
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Concentration Distribution Maps 

Constituent concentration distribution maps were created for major ions 

and field-measured parameters for each hydrologic unit. Linear universal kriging 

was selected as the interpolation method because it was the best method for this 

particular dataset and modeling objectives based on the Li and Heap (2008) 

evaluation method, and upon visual observation it was the method that most 

accurately represented the concentration variations in the system (Figure 21). 

Measured calcium concentrations in the lower aquifer range from 2.4 to 190 

mg/L. Ordinary kriging methods use a global mean for interpolation and ignore 

localized variations. This kriging method generally estimated a concentration 

range between 6.5 to about 50 mg/L. Trend surface analysis results in similar 

ranges from -4 to 40 mg/L, and quadratic universal kriging accentuated the 

concentration range between -187 and 278 mg/L. Linear universal kriging was 

closest to encompassing the true variations in calcium concentrations in this 

aquifer unit (-4 to 112 mg/L) and was used for creating concentration maps in this 

chapter. 

Field parameters 

Field-measured parameters include pH, temperature, and specific 

conductivity. Each parameter result contains three maps showing the 

interpolated distribution of dissolved constituent concentrations for water in the 

upper aquifer, lower aquifer and surface samples (Figure 22-Figure 24).  
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pH values in the basin (Figure 22) generally increase with depth and tend 

to be lower along the western margin. Specific conductivity values (Figure 23) 

are generally greatest in the north near the discharge points for the creeks in all 

hydrologic units with the highest values occurring in the lower aquifer. 

Temperature in the basin (Figure 24) increases with depth. 
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Major ions 

Three maps showing the interpolated distribution of major dissolved 

constituent concentrations in groundwater in the upper aquifer, lower aquifer and 

surface samples are presented in Figure 25-Figure 30. Calcium concentrations in 

the hydrologic units (Figure 25) overall decrease with depth. Higher 

concentrations are found on the surface and in the upper aquifer, and 

concentrations increase toward the west. Magnesium surface sample 

concentrations are greatest in the north and decrease towards the southeast 

(Figure 26). Magnesium concentrations in the upper aquifer increase towards the 

northwest, and values are lowest in the lower aquifer. Sodium concentrations 

(Figure 27) increase with depth. The greatest values for all hydrologic units are 

found in the northern region by the creeks discharge points and additionally in 

the basin center in the lower aquifer.  

Alkalinity in the three hydrologic units (Figure 28) are very similar to those 

of sodium. The largest concentrations in all units are found in the north. In the 

lower aquifer, high values extend to the basin center. The highest chloride 

concentrations are found in the north for all hydrologic units and values tend to 

increase with depth (Figure 29). Sulfate concentrations are greatest for surface 

samples and increase from the margins to the basin center and to the north 

(Figure 30). Upper aquifer sulfate concentrations increase from the southeast to 

the northwest, and values are consistently low in the lower aquifer with the 

exception of higher values along the west-southwestern margin and in the north. 
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Dominant Geochemistry Along Groundwater Flow Paths 

Figure 31-Figure 35 display the major ion evolution along different 

groundwater flow paths. Groundwater flow paths for surface samples (Figure 31) 

were based on the three largest creeks in the basin and their associated 

tributaries: Piceance Creek, Yellow Creek, and Dry Fork (Figure 1) and given 

flow path numbers 1, 2, and 3, respectfully (Figure 31). The quantity of surface 

samples is much greater than the number of subsurface samples, thus, data 

points were placed into sections along each flow path starting at headwaters and 

progressing downstream to the discharge point in the north. For example, points 

within the Piceance Creek drainage boundary were separated into four sections  

(1.1, 1.2, 1.3 and 1.4) and ion percentages were averaged for points in each 

section. Cation percentages are only displayed for the first flow path because the 

trend and values were similar for all surface flow paths. 

Groundwater flow paths for the upper and lower aquifer were chosen with 

consideration of previous literature on the hydrology of the Piceance Creek Basin 

(Thomas and McMahon, 2012; Kimball, 1984; Taylor, 1982; Robson and 

Saulnier, 1981; Weeks et al., 1974) and the distribution of specific conductivity 

(Figure 23). Robson and Saulnier (1981) published water level data for several 

wells in the basin and contoured the potentiometric surface of the upper and 

lower aquifers (Figure 7 - Figure 8). The potentiometric surface in both aquifers 

indicates general groundwater movement from recharge areas along the western 
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and southern margin to the north. Groundwater movement from recharge areas 

along the eastern margin is more to the northwest.  

The concentration distribution map for specific conductivity (Figure 23) 

shows the highest values in the northern region of the basin near the discharge 

points of Yellow Creek and Piceance Creek which indicates a flow path from the 

margins towards the basin center and to the north. This result agrees with the 

potentiometric map created by Robson and Saulnier.  

Combining these observations with the flow model created by Weeks et al. 

(1974), two groundwater flow paths were selected for the upper aquifer (Figure 

32 and Figure 33) and two for the lower aquifer (Figure 34 and Figure 35). 

Although the selected points may not be in an exact flow line, they do represent a 

general downgradient flow of water in the aquifers. 

The first data point along the flow path in Figure 35 contained data from 

two different depths: 135m and 355m below ground surface (bgs). The latter is 

referred to as 1b in the figure.  
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DISCUSSION 

Groundwater Flow Paths 

Based on specific conductivity values and some ion concentration 

distribution patterns (e.g., magnesium, sodium, alkalinity, chloride, and sulfate), 

the general groundwater flow in the system is in agreement with previously 

published research (Kimball, 1984; Robson and Saulnier, 1981; Weeks et al., 

1974). Water states that water enters the system as recharge water along the 

western, southern, and eastern margin, where conductivity and ion 

concatenations are generally at their lowest. Surface water drains into one of 

three creeks: Yellow Creek in the west, Dry Fork in the east, and Piceance Creek 

in the center. In the upper and lower aquifer, water flows from the margins toward 

the northern discharge regions of Piceance Creek and Yellow Creek. There are 

regions of upward water migration from the lower aquifer to the upper aquifer 

along the lower tributaries and main stem of Piceance Creek due to pressure 

gradients from the bowl-shaped structure of the basin. Along Piceance Creek 

and toward the northern discharge points, lower aquifer water is migrating 

upward through the leaky aquitard and possibly along fault pathways, and mixing 

with upper aquifer water before discharging through the groundwater-fed 

Piceance Creek. Elevated specific conductivity values between 2,000 -  5,000 

μS/cm are found towards the basin center and demonstrates the convergence of 

upper and lower aquifer waters, with much higher concentrations, exiting the 

subsurface into the creek.  
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Major Geochemistry Overview 

Surface samples are the most distinct of the three hydrologic units due to 

the mixed dominant cations. Surface recharge water is high in calcium and 

bicarbonate but increases in sulfate and sodium along flow paths. Therefore, the 

anions on the piper diagram grade between bicarbonate and sulfate (Figure 14). 

There still are some samples with characteristics more closely aligned with the 

upper and lower aquifer waters (e.g., sample points that plot as Na-K-Cl-SO4 

type waters on surface sample piper diagram; Figure 14) which can be explained 

by upper and lower aquifer water exiting the subsurface through preferential flow 

paths and mixing with each other and surface waters. 

Almost all samples in the lower aquifer are categorized as Na-K-HCO3-Cl 

to Na-HCO3 type, but there are a few samples dominated by calcium and 

magnesium and others with sulfate as the main anion (Figure 16). The deviations 

from nearly 100 percent sodium-bicarbonate type can be explained by the 

elevation variation of the lower aquifer and presumed flow paths. Since the 

system is bowl-shaped, groundwater sample elevations vary from relatively 

shallow (6.5 m below ground surface (bgs)) to 2300m bgs (Table 3). Samples 

nearer the surface and recharge zone will be influenced by the recharge waters 

to a greater degree than deeper samples, resulting in higher calcium and sulfate 

concentrations.  

The upper aquifer is influenced by upwelling lower aquifer water and 

shallow subsurface groundwater movement. The piper diagram in Figure 15 
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demonstrates these influences with two distinct transitions in anion composition 

in the bottom right pyramid; one is a continuum of points along the bicarbonate-

sulfate line and the second is a separate continuum along the bicarbonate-

chloride line. The latter represents the upward flow of groundwater from the lower 

aquifer and the mixing with upper aquifer water prior to exiting the system. The 

bicarbonate-sulfate line in the anion trilinear diagram is similar to the same 

transition displayed in surface sample and is likely shallow subsurface 

groundwater flow that has lower residence times and therefore has not evolved 

much further from recharge water.  

The mixed water types in the hydrologic units are primarily due to 

permeation of lower aquifer water through the Mahogany Zone aquitard and/or 

preferential fault conduits. However, some of the variance may be due to the 

boundary between the Green River Formation and the Uinta Formation not being 

exact; stratigraphic units interfinger. Additionally, dolomitic oil shales of the Green 

River Formation are present above the Mahogany Zone, thus is it not 

unreasonable to have some water samples with signatures that mimic the Green 

River Formation water chemistry.  

Major Ion Evolution 

Chebotarev (1955) observed that water tends to evolve chemically 

towards the composition of seawater. He argued that this evolution generally 

follows changes in the dominant anion: 𝐻𝐶𝑂3
− → 𝐻𝐶𝑂3

− + 𝑆𝑂4
2− → 𝑆𝑂4

2− + 𝐻𝐶𝑂3
− →
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𝑆𝑂4
2− + 𝐶𝑙− → 𝐶𝑙− + 𝑆𝑂4

2− → 𝐶𝑙−, where age and distance increase along the flow

path. For sedimentary basins, Chebotarev identified three zones that generalize 

this evolution: 1) the Upper Zone – which is characterized by active flushing of 

groundwater with bicarbonate as the dominant anion; 2) an Intermediate Zone – 

characterized by longer residence times. This zone has higher total dissolved 

solids and sulfate is the dominant anion; and 3) the Lower Zone – wherein 

groundwaters have had the longest residence times with little recirculation. This 

zone is very high in total dissolved solids with the occurrence of more saline 

minerals. Chloride is the dominate anion in this zone. 

Freeze and Cherry (1979) emphasize that this evolution sequence is a 

generalization that needs to be viewed in terms of the regional geology and is 

ultimately controlled by mineral availability and solubility. In the Piceance Basin, 

the surface samples and the upper aquifer samples follow similar anion trends, 

from bicarbonate, to bicarbonate and sulfate, followed by a reversal back to 

bicarbonate (Figure 31-Figure 33):  𝐻𝐶𝑂3
− →  𝐻𝐶𝑂3

− + 𝑆𝑂4
2− → 𝐻𝐶𝑂3

−. The lower

aquifer (Figure 34 and Figure 35) anion trend starts with bicarbonate and sulfate 

and progresses to nearly 100 percent bicarbonate (𝐻𝐶𝑂3
− + 𝑆𝑂4

2− → 𝐻𝐶𝑂3
−). The

anion water chemistry in the basin does not evolve past bicarbonate and sulfate 

dominant water with the exception of a few discrete samples. There are many 

processes contributing to the spatial variations observed in the basin including 

mineral composition of the stratified sedimentary units, groundwater flow paths 

and mixing zones, and sulfur redox and occurrence. 
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Groundwater flow paths and preferential fault pathways 

The last point on the ion percent graphs for surface sample flow paths 1 

and 3 (Figure 31) and upper aquifer flow paths 1 and 2 (Figure 32 and Figure 

33), is located after the intersection of Piceance Creek and the Alkali Flats fault. 

At this point the water chemistry transitions from bicarbonate and sulfate 

dominant anions to nearly 100 percent bicarbonate with no significant sulfate 

percentage. At this region, the sodium-bicarbonate dominant lower aquifer water 

is flowing upward to the surface and increases the concentration of bicarbonate, 

resulting in a decrease in percent sulfate. This is supported by the ion 

concentration distribution maps for sodium and alkalinity (Figure 27 and Figure 

28). The concentration maps for the two constituents are incredibly similar to 

each other and the highest concentrations for surface samples and samples in 

the upper aquifer are located near the norther discharge point and along the 

main stem of Piceance Creek. In the upper aquifer, there are some high 

concentrations in the basin center which is likely from mixing zones created by 

upward migration of lower aquifer waters. 

Anions in the lower aquifer begin as bicarbonate and sulfate dominant 

waters and transition to nearly 100 percent bicarbonate. At the surface along the 

basin boundary, water begins as predominately bicarbonate and as it flows 

downward through the upper aquifer and into the lower aquifer, the residence 

time and age of the groundwater increases and begins to increase in sulfate 
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concentration. However, as the water continues to move through the lower 

aquifer, mineral abundance and redox conditions take on a greater influence. 

Stratified sedimentary basin, mineral abundance and solubility 

The dominance of sodium-bicarbonate waters is common in stratified 

sedimentary basins. Freeze and Cherry (1979) argue that these dominant ions 

can be explained by the combined processes of cation exchange and calcite or 

dolomite dissolution. First, cation exchange between calcium and sodium takes 

place via the following reaction: 

𝐶𝑎2+ +  2𝑁𝑎(𝑎𝑑) ↔ 2𝑁𝑎+ +  𝐶𝑎(𝑎𝑑), (2.1)

where (ad) denotes cations adsorbed to clays. For every one mole calcium 

adsorbed, two moles of sodium are released into the water column. Evidence of 

cation exchange is seen on the ion evolution flow path graph for surface samples 

(Figure 14). The graph for cations shows an incremental increase in sodium as 

calcium and magnesium decreases. This process actively removes calcium from 

the water, causing the water to be understatured with respect to calcite or 

dolomite, thereby enabling calcite or dolomite dissolution to continue. These two 

processes can continue until the water is no longer undersaturated with respect 

to the carbonate minerals, or the exchangeable sodium is exhausted.  

The dissolution of saline minerals in the saline zone also contributes to the 

sodium-bicarbonate dominant water type. The saline zone is comprised of halite 

and nahcolite. The dissolution of nahcolite contributes to the dominant water 
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chemistry in the lower aquifer which effects the rest of the basin. However, this 

zone is impermeable, thus, only the top of the unit in contact with flow paths will 

be subjected to dissolution. Water enriched in sodium and bicarbonate from the 

lower aquifer flows up through mixing zones and increases the concentrations in 

other hydrologic units.  

Chloride concentrations are surprisingly low considering the presence of 

halite in the saline zone. Only nine samples have chloride anion percentages 

greater than 10, with the largest being 36 percent, and the average dissolved 

chloride concentration in the basin is only 102 mg/L. However, if the nahcolite 

insulates the halite from active groundwater flow paths, the unit may not readily 

dissolve. Chloride concentrations are greatest in the northern region by the 

discharge point of the Piceance Creek Basin (Figure 29). This may be due to the 

Alkali Flats fault which is known to penetrate down to the saline zone. This fault 

may allow water to actively circulate through a limited region of the halite deposit, 

increasing chloride values in this region of the basin. The northern region of the 

basin is the discharge point for the creeks and the longest flow paths in the 

system; chloride concentrations are expected to be greatest in this region 

regardless of the fault. However, in all three hydrologic zones, sample points at 

the fault have much greater concentrations than points also in discharge regions 

but away from the fault. Chloride concentrations at the fault range from 1600 

mg/L at the surface to 2400 in the lower aquifer and the concentrations at 

discharge points away from the fault range from 31 to 310 mg/L. This indicates 
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the Alkali Flats fault is an influential conduit for upward flow of lower aquifer 

waters that may be in contact with the saline zone. 

Stratified sedimentary chemical processes and mineral abundance alone 

cannot account for the variation observed in the basin. For example, there are 

regions that are not dominated by sodium-bicarbonate waters.  

Sulfur Occurrence 

Anion evolution variations can be partially explained by the redox behavior 

of sulfur. Overall, sulfate concentrations decrease with depth (Figure 30). This is 

expected as sulfate is the oxidized sulfur species (sulfate(VI)), so likely it will be 

most abundant near the surface where dissolved oxygen concentrations are 

greater. Sulfide(-II), the stable reduced species of sulfur, is also found in the 

basin, most abundantly in the organic-rich Green River Formation. Sulfide 

concentrations were not reported in the database used for this study, but Kimball 

(1984) reported six samples from the Uinta and Green River Formation with 

hydrogen sulfide concentrations ranging from 0.5 to 1.7 mg/L. The oxidation of 

sulfides, such as pyrite, can contribute to the increased concentration of sulfate 

found at the surface and in the upper aquifer. The oxidation of pyrite is as 

follows: 

𝐹𝑒𝑆2(𝑠) +  
15

4
𝑂2 +

7

2
𝐻2𝑂 → 𝐹𝑒(𝑂𝐻)3(𝑠) + 4𝐻+ + 2𝑆𝑂4

2−, (2.2) 

where pyrite is oxidized to an iron-hydroxide solid phase, two sulfates, and four 

free hydrogen ions. However, there is a limit to the oxidizing ability of 
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groundwater. If groundwater is near saturation with respect to O2 (e.g. contained 

10 mg/L or 3.124E-4 moles/L O2,), then it could oxidize 8.33E-5 moles/L of iron in 

pyrite, resulting in less than 20 mg/L sulfate. At the surface, sulfate 

concentrations over 1,000 mg/L are present, indicating that pyrite oxidation alone 

cannot account for the sulfate source in the system. However, this calculation 

assumes a closed system for oxygen, which may be more accurate for the upper 

aquifer (located below the water table) then for surface samples. Oxidation in the 

vadose zone has the potential to generate more sulfate, but will likely not be 

enough to account for sulfate concentrations as high as 1,000 mg/L.  Other 

processes must be contributing.  

Gypsum dissolution may contribute to the sulfate concentrations in the 

basin. Previous research by Robson and Saulnier (1981) that focused on the 

primary drainage basin of Piceance Creek did not report the presence of gypsum 

in the basin (Robson and Saulnier, 1981). However, calcium and sulfate do have 

similar concentration distributions (Figure 25, Figure 30) and have a strong 

positive correlation value of 0.67 (Table 5) which favors a relationship between 

the two. If gypsum was present in the system, the resulting concentrations of 

sulfate would be extremely high given gypsum’s solubility, likely resulting in 

sulfate-type waters. Freeze and Cherry (1979) argue that when carbonate and 

sulfate minerals are both abundant, the water evolves to an intermediate stage 

quickly (dominated by sulfate anions) and does not evolve further. Our results 

show only a handful of samples in which sulfate is dominant, mostly the water will 
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evolve to bicarbonate + sulfate. Thus, gypsum is not likely a major source of 

sulfate in the system. 

Dissolution of sulfate-bearing carbonates in the basin may be an 

additional contributor of sulfate to the system. Previous studies have found 

sulfate in saline calcites, present as structurally substituted sulfate ions within the 

carbonate lattice; the sulfate ion is not a sulfate mineral inclusion, but rather a 

part of the carbonate crystal (Kampschulte and Strauss, 2004; Pingitore et al., 

1995). The quantity of sulfate in the carbonates can range from tens of ppm in 

inorganic precipitates to thousands of ppm in biogenic carbonates (Kampschulte 

and Strauss, 2004). Carbonate formation in the basin occurred under brackish to 

hypersaline conditions, and dolomite, in particular, is thought to be of biogenic 

origin (Desborough, 1978). It is therefore viable that structurally substituted 

sulfate ions are present in the Piceance Basin’s carbonate minerals and 

dissolution sources sulfate to the system. 

Previous research in the basin has determined a reduced environment in 

the Uinta and Green River Formation of the basin (Hansen et al., 2010; Thomas 

and McMahon, 2009; Kimball, 1984; Robson et al., 1981). Therefore, sulfate 

concentrations decrease with depth due to the reduction of sulfate. Sulfate 

reduction is key to the major dominant anion patterns in the basin. Bicarbonate 

and sulfate dominated anions are mainly present in the surface and the upper 

aquifer. In the lower aquifer, the presence of sulfate is almost non-existent except 

along the basin boundaries, but since the system is bowl-shaped, those points 

have a higher elevation and are closer to the infiltration of recharge water. The 
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depth dependence of sulfate is well demonstrated in the ion percent graph along 

lower aquifer flow path 2 (Figure 35). The first sample point on this graph had two 

sample results taken at very different depths. The first sample (point 1) was 

taken 134 m bgs and the second sample (point 1b) was taken 355 m bgs. The 

shallower sample has chemistries closer to the surface samples and upper 

aquifer samples; there is not a dominate cation, rather a close mix of calcium, 

magnesium and sodium, and the anions are bicarbonate and sulfate. The deeper 

sample does not include the bicarbonate and sulfate zone, but rather goes 

straight to bicarbonate waters. Between 134 m and 355 m, sulfate was removed 

from the system by biochemical reduction, likely from sulfate-reducing bacteria 

which has been shown in previous studies to facilitate dolomite formation under 

anoxic conditions (Deng et al., 2010; Van Lith et al., 2003). The reduction of 

sulfate and oxidation of organic material can result in increased bicarbonate 

concentrations. For example: 

2𝐶𝐻2𝑂 +  𝑆𝑂4
2− → 𝐻𝐶𝑂3

− + 𝐻𝑆− + 𝐶𝑂2 + 𝐻2𝑂. (2.3)

This process reduces the sulfate (lowering the concentration percent) and 

increases the concentration of bicarbonate.  

Discussion Summary 

Recharge water enters the Piceance Basin along the western, southern, 

and eastern margin and flows to the north where Piceance Creek and Yellow 

Creek meet the east to west flowing White River. Recharge waters are 
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characterized by having mixed cation and bicarbonate and sulfate anions and 

flows either as surface runoff, or infiltrates down to the upper and lower aquifers. 

Groundwater movement in the basin flows downward toward the northern 

discharge points of Piceance and Yellow Creek. Pressure gradients force the 

lower aquifer water to move upward in the center and towards the north and exit 

the subsurface through the groundwater-fed creeks. This upward flow causes 

mixing zones in the upper aquifer and surface samples. The lower aquifer waters 

are primarily sodium-bicarbonate type and the upper aquifer represents a mix of 

water types between the two other hydrologic units.  

Many processes contribute to the geochemical distribution of ions in the 

basin. Stratified sedimentary units in the presence of nahcolite and other 

carbonates aid in continuing a bicarbonate dominant water type in the lower 

aquifer. Cation exchange actively removes calcium and releases sodium to the 

system. Sulfate-bearing carbonate dissolution increases sulfate concentrations in 

the upper aquifer and at the surface and sulfate reduction in the lower aquifer 

removes sulfate concentrations and increases bicarbonate. Groundwater flow 

paths in the north cause lower aquifer water to flow upward through the upper 

aquifer and to the surface. This path brings groundwater high in sodium and 

bicarbonate to these hydrologic zones and dominates the water chemistry in this 

region. 
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CHAPTER 3 - MINERALOGICAL CONTROLS ON WATER CHEMISTRY 

INTRODUCTION 

Cole and Picard (1978) related mineralogic variations, specifically quartz, 

albite, K-feldspar, analcime, calcite, dolomite, ankerite, dawsonite, nahcolite, and 

halite, to a depositional model in the Green River Formation (Figure 4). The most 

prominent spatial patterns are those between the carbonate minerals and 

evaporites; dolomite was found to be the dominant carbonate mineral and occurs 

in abundance in all regions except the basin margins. Calcite is abundant along 

the margin but is far less abundant, even rare, in the basin center. Ankerite is 

absent along the margin and abundant in the basin center. Similarly, nahcolite 

and halite are absent from the basin margin to the proximal open lacustrine 

region and are abundant in only very narrow regions in the basin center. Poole 

(2014) analyzed core samples in the basin and found results in agreement with 

Cole and Picard. In the saline zone of the Green River Formation, Poole found 

abundant dawsonite, nahcolite, halite, and buddingtonite ((NH4)AlSi3O8·O.5H2O). 

Poole reported higher quantities of analcime along the margins, and dolomite 

and ferroan dolomite abundant throughout. Poole characterized the upper part of 

the Green River Formation by increased feldspar, analcime, ferroan dolomite and 

calcite, along with decreased saline minerals (Poole, 2014).  

In the Uinta Formation, the dominant clastic mineralogy includes quartz 

and feldspar, while marlstones contain calcite, illite, and analcime (Day et al., 
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2010). However, the spatial distribution of these minerals has not been as 

thoroughly established. 

Groundwater moves slowly in the basin; Kimball (1984) used corrected 

carbon-14 dating to estimate the age of groundwaters that ranged from 750 

years for water near recharge zones to more than 20,000 years for water further 

down the hydrologic gradient. During this transit, the groundwater is in contact 

with the formation sediments for considerable periods of time. Given this ample 

time, groundwater solutions should be in equilibrium with minerals present in the 

system. Therefore, it is expected that SI values should reflect the mineral spatial 

distribution outlined by Poole (2014) and Cole and Picard (1978), for Green River 

Formation, and the predominant Uinta Formation mineralogy identified by Day et 

al. (2010).  

Specific objectives of this study are 1) to describe the distribution of water 

chemistries in the Piceance Basin in terms of major mineral equilibrium, 2) 

compare mineral saturation indicies results to the expected mineralogic trends 

determined by Cole and Picard (1978), Poole (2014), and Day et al., (2010).  

METHODS 

PHREEQC 

PHREEQC Interactive is a software program developed by the U.S. 

Geological Survey (Parkhurst and Appelo, 2013) that performs a large number of 
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aqueous geochemical calculations, including speciation, batch-reactions, one-

dimensional transport, and inverse geochemical calculations. For this study, 

PHREEQC was used to calculate the saturation indicies for all possible mineral 

combinations for each given sample using the Lawrence Livermore National 

Laboratory database. 

Each sample in the study area was processed in PHREEQC as a 

separate solution and not as a batch because system parameters such as 

temperature and pH cannot be changed in a batch sample analysis. The default 

conditions were accepted for redox (pe = 4), solution density (1.0 g/cm3) and 

water mass (1 kg). Elemental (basis species) concentrations were entered as 

milligrams per liters unless otherwise defined. After the program processed the 

sample solutions, the ionic strengths, charge balance errors, and saturation 

indicies and formula for possible minerals were extracted and saved as a text file. 

Using Microsoft Access, the PHREEQC data was related to location data to 

include Cartesian coordinates, depth bgs, and hydrologic unit.  

Redox species 

Reduction potential measurements (pe or Eh) were not included in the 

dataset, at least for data within the study area that contained sample depths. Two 

data points contained dissolved oxygen values, but both were surface samples. 

Additionally, the availability of reliable redox pairs was few to none; only two 

samples contained nitrate/nitrite concentrations, one sample contained 
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sulfate/sulfide values and all were located at the surface. Most often, redox 

elements were reported as totals. Therefore, the program default pe value of 4 

was used to compute speciation of redox elements with the exception of iron. 

Iron redox was treated differently due to the importance of iron carbonate 

(e.g. ankerite) in the basin (Figure 4). Previous research has concluded a 

reduced environment in the Green River Formation (expectedly, given the high 

organic carbon contents), and evidence of such in the Uinta Formation (Hansen 

et al., 2010; Thomas and McMahon, 2009; Kimball, 1984; Robson et al., 1981). 

Iron samples with depths equal to zero meters bgs were input in PHREEQC with 

default conditions (total iron subject to speciation with a pe value of 4). Iron 

concentrations in samples with depths greater than zero meters bgs, were input 

as Fe2+, the reduced form of iron. 

Charge balance errors 

Aqueous solutions are electrically neutral by nature. Analytical errors and 

unanalyzed constituents in a chemical analysis are the common causes that 

account for discrepancies between sum of cations and anions. Charge balance 

errors (CBE) are used to measure the quality of the water analysis. PHREEQC is 

programmed to calculate the CBE percent for each solution, by the following 

equation: 

𝐶𝐵𝐸 =  
∑𝑐𝑎𝑡𝑖𝑜𝑛𝑠− |∑𝑎𝑛𝑖𝑜𝑛𝑠|

∑𝑐𝑎𝑡𝑖𝑜𝑛𝑠+ |∑𝑎𝑛𝑖𝑜𝑛𝑠|
 𝑥 100. (3.1) 

Samples with charge balance errors (CBE) outside of ±30% were removed. 
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Ankerite Solubility Product 

Ankerite, Ca(Fe2+
, Mg, Mn)(CO3)2, is a major carbonate mineral in the 

Green River Formation (Figure 4; Cole and Picard, 1978). Ankerite 

thermodynamic data was not part of the databases incorporated in PHREEQC. In 

a study by Pham et al., (2011; 2012), the ankerite solubility product (Kss) was 

estimated by assuming a 60/40 pure phase ankerite-dolomite mix along with a 

theoretical value for the Gibbs free energy of formation for pure phase ankerite 

from Woods and Garrels (1992). They estimated the Kss for ankerite to be 10-

19.51. In other reports, researchers have assumed the Kss to be near that of 

dolomite and have used that value as an estimate (Chai and Navrotsky, 1996). In 

this study, a separate estimate of the Kss for ankerite was developed.  

The Lippman total solubility model, which is widely accepted for carbonate 

minerals, was used to calculate the saturation indicies for ankerite in this study 

(Glynn and Reardon, 1990). The Lippman total solubility model is a 

stoichiometric saturation model in which there is an equilibrium between a 

solution and a solid solution of a fixed composition (Appelo and Postma, 2010). 

The general formula and stoichiometric range for natural ankerite is defined by 

Chai and Navrotsky (1996) and Davidson et al. (1993) as: 

 Ca(FexMg1-x)(CO3)2, 0 ≤ x ≤ 0.7. (3.2) 

By formal definitions, the stoichiometric range proposed above includes ferroan 

dolomite; ankerite is formally defined as having more moles of iron than 

magnesium (Fe > Mg) (www.mindat.org). However, ankerite minerals with an iron 
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mole fraction greater than 0.7 have never been found in nature (Goldsmith et al., 

1962; Chia and Navrotsky, 1996; Davidson et al., 1993). For simplification, 

ferroan dolomites will here be referred to as ankerite.  

Two methods were employed to estimate the solubility product for 

ankerite. The first method calculated the ion activity products for each sample at 

different iron mole fractions to determine the best stoichiometry and estimated 

Kss for the data. The second method assumed the iron mole fraction is not 

constant throughout the basin and used a linear regression model to determine 

these parameters separately for each hydrologic unit and cluster. Both methods 

are described in more detail in the subsections to follow. 

Ion Activity Product Method 

Cole and Picard (1978) found abundant ankerite in the basin center of the 

Green River Formation. Assuming that groundwaters in that part of the basin are 

in equilibrium with ankerite, then the ion activity product (IAP) of those samples 

can be used to estimate the equilibrium solubility product of ankerite assuming a 

fixed iron mole fraction.  

The equilibrium solubility product is temperature dependent. Thus, the 

measured temperature of a solution may be a potential source of error as 

temperature can change in transit from origin to surface. However, the 

geothermal gradient in the basin is low (temperature ranges from 6 to 31˚C) and 

so impacts to the mineral equilibrium calculation are negligible. 
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 Ankerite IAP values were computed from ion activities in Matlab for all 

samples located in the lower aquifer with a charge balance error within ±5 

percent to ensure usage of the best quality samples (APPENDIX C). IAPs were 

computed with an x range of 0 to 0.7 by increments of 0.1, along with histograms, 

normplots, and basic statistics, to include standard deviation, mean, mode, and 

medium. 

In the case of a constant iron mole fraction, the IAPs should converge on 

a particular value of x. Convergence was defined as having a high IAP value 

frequency and low standard deviation for the set. Such convergence was not 

observed. Therefore, a constant mole fraction of iron was assumed at 0.5 as it 

has been assumed in previous literature (Scott et al., 2014; Giere and Stille, 

2004; Wenk et al., 1991).  

When data are normally distributed, the mean value can be used as the 

best sample representative, however, the IAP data was non-normal. Therefore, 

the corresponding IAP values were transformed to a normal distribution by a 

Box-Cox transformation. Box-Cox transformations convert non-normally 

distributed data to a set of data that has approximately normal distribution by 

power transformations where λ represents the raised power that best transforms 

the data. When λ ≠ 0, the data can be transformed via the following equation: 

𝑑𝑎𝑡𝑎(𝜆) =  
𝑑𝑎𝑡𝑎𝜆−1

𝜆
 (Box and Cox, 1964). (3.3) 

Of the transformed data, the mean was selected and then returned to a regular 

data value by reversing the equation above, 



89 

𝑑𝑎𝑡𝑎 = ((𝑑𝑎𝑡𝑎(𝜆) ∗  𝜆) + 1)
1

𝜆⁄ , (3.4)

where data(λ) is the mean data point found after the Box-Cox transformation to 

normal distribution, and data is the mean data point converted back to the regular 

data range.  

Linear Regression Model 

An alternative method to determine the solubility product for ankerite was 

implemented under the idea that regions with different mole fractions of iron exist 

in the system. Higher concentrations of Fe(II) may be present in the deeper 

regions of the basin, leading to ankerite with higher fractions of iron. To explore 

this possibility, the equation for ankerite was changed to log form: 

𝐿𝑜𝑔(𝐾𝑠𝑠) = 𝑙𝑜𝑔{𝐶𝑎+} + Xlog{𝐹𝑒2+} + (1 − 𝑋) log{𝑀𝑔2+} + 2{𝐶𝑂3
−}, (3.5) 

where {} denotes activities and X denotes the mole fraction of iron. By algebraic 

manipulation, the formula can be written in slope-intercept form: 

𝐿𝑜𝑔{𝐶𝑎2+} + 𝐿𝑜𝑔{𝑀𝑔2+} + 2𝐿𝑜𝑔{𝐶𝑂3
−} = 𝑋(𝐿𝑜𝑔 (

{𝑀𝑔2+}
{𝐹𝑒2+}

⁄ ) +  𝐿𝑜𝑔𝐾𝑠𝑠. (3.6) 

Samples were plotted using Matlab and Excel and the slope and y-

intercept were calculated. From Equation 3.6, the slope represents the mole 

fraction of iron that best fits the data and the y-intercept represents the solubility 

product. Samples were first evaluated by hydrologic unit, however, results did not 

fit a linear trend and were associated with very high standard errors. A cluster 

analysis was then conducted to determine the number of clusters and possible 

causes for the grouping. A Ward’s minimum variance method was used to cluster 
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data in groups in which the variance within each group was minimized. Prior to 

analysis, ion and field parameter concentrations were normalized by means of 

standard normalization. Each cluster group was evaluated by linear regression 

for estimates of the solubility product and iron mole fraction. 

Mineral Weighting Scheme 

Intrinsic errors are present in the SI calculation and includes both the 

accuracy of reported solubility products and the chemical analyses. These 

uncertainties are sufficiently compensated by considering a range of saturation 

values near zero to be within the equilibrium zone for a mineral. It is very 

common to consider SI values between ±0.3 to be in equilibrium for simple 

minerals, such as evaporites (Deutsch and Siegel, 1997). However, this range is 

too narrow for more complex minerals and minerals that contain elements for 

which analytical uncertainties are likely relatively high (including H+ derived from 

pH measurements).   

A mineral weighting scheme devised by Palmer (2015) was implemented 

to calculate a weight for each mineral based on measurement accuracy and 

mineral complexity. The weighting scheme is an error propagation equation with 

the following formula:   

𝑤𝑘~ 1 [∑ 𝑣𝑖𝑘(
𝑆𝑐𝑖

𝐶𝑖
)2]𝑛𝑐

𝑖=1

1/2
⁄ , (3.7) 

where wk is the weighting factor for the kth mineral, vik is the stoichiometric 

coefficient of the ith component in the kth mineral, and (
𝑆𝑐𝑖

𝐶𝑖
⁄ )  is the coefficient
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of variation of the ith basis species. A table of the different coefficients of 

variations for ions are displayed in APPENDIX D (Palmer, 2015).  

The weighted saturation index (WSI) was calculated by taking the inverse 

of the weighting factor (1/wk). Equilibrium was considered to be ±3xWSI. A 

mineral was considered over/undersaturated within ±10xWSI and highly 

over/undersaturated for WSI values above and below that threshold (APPENDIX 

D). When the weighted equilibrium range was less than ±0.3, ±0.3 was used as 

the minimum range and ±1.0 was used as the threshold for over/undersaturated. 

Mineral Saturation Maps and Cross Sections 

The results from the PHREEQC SI calculations were input to Microsoft 

Access and georeferenced. The referenced results were exported to ArcGIS and 

the SI values for major minerals were interpolated by hydrologic unit. Previously, 

universal kriging method was used to interpolate between measured valued for 

major ion concentrations and field parameters. However, the mineral weighting 

scheme differs by grouping data points and centering values around zero for 

equilibrium, as opposed to a linear increase in values. Thus, a different 

interpolation technique was used to best fit the data. An Inverse Difference 

Weighted (IDW) interpolation scheme was used to produce the maps in this 

section. IDW is an exact interpolator and determines cell values using a linear-

weighted combination set of sample points and assigning a weighting factor to 

each point based on distance from the cell. Therefore, points close to the cell 

have more influence on the cell value then points further away (Childs, 2004). 
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Cross sections were created for major minerals for two transects: One 

transect going north-south across the basin, and the other going east-west. 

Points were selected in ArcGIS by location; points within 0.3 decimal degrees 

(dd) of the transect were selected and exported to Excel. In some cases, point

density in areas were sparse. In this case, the nearest point outside of 0.3 dd 

was selected for completeness. In Excel, the SI values and longitude or latitude 

was plotted for different minerals by hydrologic unit. The creek location and faults 

were added to the graphs for a more comprehensive look at the system. 

RESULTS 

Ankerite Solubility Product 

Ion Activity Product Method 

Histogram of different stoichiometric values for x in the ankerite IAP 

equation are displayed below in Figure 36. A summary of preliminary statistics for 

different values of x are located in Table 7. The histograms and standard 

deviations were very similar for the different values of x; convergence was not 

observed. A value of x = 0.5 was used as the stoichiometry of the equation as 

assumed in previous studies (Scott et al., 2014; Giere and Stille, 2004; Wenk et 

al., 1991). 

At x = 0.5, the transformed IAPs of the solution resulted in a log(IAP) value 

of -17.97.  
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Table 7. Ankerite IAP summary table based on different stoichiometric 
coefficients 

X value Standard 

dev. 

Mean Mode Median Log(IAP) 

0.00 0.734 -15.72 -15.95 -15.90 -15.78

0.10 0.685 -16.15 -16.46 -16.33 -16.21

0.20 0.659 -16.57 -16.96 -16.80 -16.65

0.30 0.656 -17.00 -17.47 -17.23 -17.09

0.40 0.677 -17.43 -17.97 -17.60 -17.53

0.50 0.721 -17.85 -18.48 -17.97 -17.97

0.60 0.783 -18.28 -18.98 -18.32 -18.39

0.70 0.860 -18.71 -19.49 -18.79 -18.82

Linear Regression Method 

The linear regression method was calculated for each hydrologic unit and 

cluster. Hydrologic units resorted in poor linear fits with high errors. Analysis by 

cluster produced better results. A Ward’s cluster analysis was performed and 

truncated to include five clusters. Group 1, 2, and 4 represent a mix of upper and 

lower aquifer samples and Group 3 and 5 are primarily surface samples.  

Group 1 is defined by having high sodium and alkalinity concentrations (on 

average around 95 percent of the total anion/cations content), high calcium to 

magnesium ratio (average 1.8), and low sulfate concentrations. Group 2 also has 

high sodium and alkalinity concentrations (on average between 90 and 98 
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percent of the total anion/cations), lower calcium to magnesium ratio (average 

1.2) and low sulfate. Group 4 has an average depth less than the previously 

defined groups and is defined by less sodium and alkalinity (making up 

approximately 65 to 75 percent of total ions), a calcium to magnesium ratio of 

approximately 1.0, and an increase in sulfate (on average 30 percent of total 

anions). Group 3 samples are high in calcium, alkalinity, and contain 

approximately 30 percent sulfate anions. This group is located narrowly along the 

southern boundary and comprised of almost entirely surface samples. This group 

represents the recharge water in the basin. Group 5, also comprised mostly of 

surface samples, differs from Group 3 by containing less calcium and more 

sodium, less alkalinity, and more sulfate. These samples are located towards the 

center and northern region of the basin and represents the evolution of the 

groundwater as it flows from recharge regions to its discharge location in the 

north. Since Group 3 and Group 5 are primarily surface samples, these clusters 

were not used in further analysis due to concerns with respect to the loss of CO2 

and the oxidation of ferrous iron. In addition, previous studies have not reported 

the presence of ankerite at the surface of the basin. A summary of results for the 

three remaining cluster groups are in Table 8 below.  

Group 1 samples are generally located along the lower reaches of 

Piceance Creek tributaries (in the zone of upward groundwater movement 

between the lower and upper aquifer), along the southern margin at shallow 

depths (zone of downward groundwater movement), and are absent from the 
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northern discharge region. Some well locations, particularly the locations along 

the southern boundary, are in regions with no known ankerite deposits. 

Table 8.  Ankerite solubility product summary per cluster group by linear 
regression method. 

Group Log(Kss) Std error Fe mole 
fraction 

Std error Description 

1 -19.72 ± 1.167 1.45 ± 0.465 Mostly lower aquifer 

2 -16.25 ± 0.337 0.48 ± 0.132 Mostly lower aquifer 

3 -16.51 ± 0.439 0.34 ± 0.154 Mostly upper aquifer 

This combined with possible effects of groundwater mixing, resulted in 

Group 1 having an unrealistic iron mole fraction and the greatest standard error 

of any other group. The results from this group were disregarded. Group 2 and 4 

have close results with log(Kss) values of -16.25 ±0.337 and -16.51 ±0.439 

respectfully. The calculated mole fractions for these two clusters are 0.48 ±0.132 

and 0.34 ±0.154. These solubility product values are similar to that of disordered 

dolomite (-16.54) and slightly greater than the reported value of -17.09 for 

dolomite (Visual MINTEQ database). Group 2 contains mostly lower aquifer 

samples with upper and surface samples located in the far north near the 

discharge point of Piceance Creek. This group represents a lower aquifer flow 

path that flows to the north and then exists through the upper aquifer and 

surface. Group 4 is comprised mostly of upper aquifer samples located away 
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from the margins in the basin center, and lower aquifer samples located closer to 

the southern and western margin. Graphs of the two groups in which slope and 

y-intercept (i.e. iron mole fraction and Kss) where calculated are displayed in

Figure 37. 

Upon further investigation of the cluster groups, it was observed that the 

average IAPs for Groups 2 and 4 were commonly near equilibrium with respect 

to siderite and magnesite, but not disordered dolomite, while Groups 1, 3 and 5 

were generally near equilibrated with disordered dolomite, magnesite, siderite 

(for Group 1), and calcite and aragonite (for Group 3). As Groups 1, 3, and 5 are 

near equilibrium with respect to disordered dolomite, they are less likely to be in 

equilibrium with ankerite. Groups 2 and 4 are oversaturated with respect to 

disordered dolomite and fit the linear regression formula with reasonable 

standard errors. Thus, it is likely that these two groups are near equilibrium with 

ankerite. A table summarizing the average IAPs for each group with respect to 

different carbonate minerals is provided in Table 9 below. Bolded values indicate 

the average IAPs are within one standard deviation of the reported solubility 

product (in parenthesis next to the mineral name). 

Both methods of estimating the ankerite solubility product provide 

reasonable values. The second method’s calculated iron mole fraction from 

Group 2 is approximately 0.5 which is a value used in previous research (Scott et 

al., 2014; Giere and Stille, 2004; Wenk et al., 1991) and used in the first method 

of analysis. However, mineralogic research on the basin has recorded ankerite in 

the Green River Formation with no mention of the mineral in the Uinta Formation 
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or on the surface. Group 2 and Group 4 contain various upper aquifer samples, 

and even some surface samples. These are outside of stratigraphic controls, 

thus, estimating the Kss based on sample IAPs with good CBEs (±5 percent) only 

from the lower aquifer seems to be a reasonable choice. However, to make a 

more informed valuation, both solubility products were added to the PHREEQC 

database (-17.97 and -16.25) and used in further analysis for comparison. 

Table 9. Summary of average IAPs by cluster group with respect to common 
carbonate minerals. 

 Group Siderite (-10.24) Dolomite (-17.09) Dis-Dolomite (-16.54) 

Log(IAP) Stdev Log(IAP) Stdev Log(IAP) Stdev 

1 -10.528 ± 0.407 -16.127 ± 0.837 -16.127 ± 0.837

2 -9.769 ± 0.616 -15.099 ± 0.614 -15.099 ± 0.614

3 -12.016 ± 0.277 -16.553 ± 0.575 -16.553 ± 0.575

4 -10.369 ± 0.814 -15.582 ± 0.783 -15.582 ± 0.783

5 -11.935 ± 0.486 -16.061 ± 0.552 -16.061 ± 0.552

Group Magnesite (-7.46) Calcite (-8.48) Aragonite (-8.30) 

Log(IAP) Stdev Log(IAP) Stdev Log(IAP) Stdev 

1 -8.040 ± 0.513 -8.085 ± 0.352 -8.085 ± 0.352

2 -7.362 ± 0.451 -7.738 ± 0.249 -7.738 ± 0.249

3 -8.327 ± 0.305 -8.226 ± 0.275 -8.226 ± 0.275

4 -7.636 ± 0.444 -7.946 ± 0.365 -7.946 ± 0.365

5 -7.928 ± 0.337 -8.132 ± 0.238 -8.132 ± 0.238
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Figure 37. Linear regression results for estimating the solubility product for 
ankerite. The regression was performed on two clusters. The top graph 
corresponds to Group 2 and the lower, Group 4. 

Mineral Saturation Indicies Maps 

Mineral saturation indicies maps were created for major minerals outlined 

by Cole and Picard (1978). Maps are displayed below in Figure 38 - Figure 48 

and are separated by mineral class and sometimes group. 
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Carbonates 

Carbonate SI distribution results contain three maps showing the 

interpolated saturation indicies in the upper aquifer, lower aquifer and surface 

samples (Figure 38 - Figure 43). Maps are presented for calcite, dolomite, 

disordered-dolomite, ankerite, and dawsonite. Two ankerite mineral saturation 

distribution maps (Figure 41 and Figure 42) were created using one of the two 

methods for estimating the solubility product for ankerite. As evident from the 

figures, method one (Figure 41) resulted in the majority of samples in equilibrium 

to oversaturated with respect to ankerite, and the second method (Figure 42) 

resulted in the majority of samples undersaturated with few regions in the upper 

and lower aquifer in equilibrium. The points in which equilibrium is reached 

coincides strictly with the samples associated with that particular cluster. Based 

on known mineralogy in the basin (Cole and Picard, 1978; Poole, 2014), the first 

method best represents known spatial distributions of ankerite. A log(Kss) value 

of -17.97 best fits the data for this study and was used in further analysis to 

follow.  

Although not displayed in figures, nahcolite and halite SI values were 

highly undersaturated in all hydrologic units. Water is closest to being in 

equilibrium with nahcolite in the lower aquifer, near the Alkali Flats fault. In this 

region, the largest SI value was calculated at -0.46.   

Upon evaluation of results, regions of high oversaturation were observed 

for all carbonate minerals, especially around Piceance Creek in the basin center. 



101 

High oversaturation is not expected as carbonates are buffers that adapt quickly 

to restore equilibrium conditions. Error associated with the field pH measurement 

was thought to contribute to this finding. Due to the difference in CO2 partial 

pressure between the aquifer water and the surface, the hydrogen concentration 

will fluctuate to equilibrate with atmospheric CO2 when a sample is drawn from 

depth and brought to the surface. This results in overestimated pH values. In an 

attempt to correct for this occurrence, pH values were calculated in PHREEQC 

along with the associated SI values assuming equilibrium with calcite. Calcite 

was chosen because it is a simple carbonate mineral and is recorded in literature 

as being present in the Uinta and Green River Formation (Poole, 2014; Day et 

al., 2010; Cole and Picard, 1978). For most of the samples, this method resulted 

in decreased pHs, decreased SI values, and little to no change in charge balance 

errors. Carbonate mineral saturation values were generally in equilibrium to 

undersaturated. The regions of undersaturation conflicted with regions of known 

mineral presence, and for quite a few samples, the method increased pH values 

to implausible values (up to 13.66). For these reasons, the estimated pH values 

were not used further in this study. A table demonstrating the estimated verse 

reported pH values and CBEs is included in Appendix E.  
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Sulfates 

All sulfates (gypsum, anhydrite, jarosite, and tiemmanite) are highly 

undersaturated (as much as 70 times less than the WSI) in all three hydrologic 

units.  

Silicates 

Analcime SI distribution maps for the three hydrologic units are displayed 

in (Figure 44). Albite and K-feldspar SI distribution maps (Figure 45 and Figure 

46) show that albite SI values are generally oversaturated to highly oversaturated

in each hydrologic unit. A few regions are in equilibrium or understatured. K-

feldspar SI values are generally highly oversaturated, but SI values decrease to 

just oversaturated in the lower aquifer.   

Quartz SI distribution results contains three maps showing the interpolated 

saturation indicies in the upper aquifer, lower aquifer and surface samples 

(Figure 47). In general, quartz is oversaturated everywhere in the basin, except 

for a few small regions in the lower aquifer where quartz is in equilibrium or 

undersaturated. Chalcedony SI distribution results (Figure 48) show the water as 

oversaturated on the surface and much of the upper aquifer. The mineral is 

generally in equilibrium with groundwater in the lower aquifer although it is 

oversaturated along the southern margin and undersaturated in the north.  
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Mineral Saturation Cross Section 

Mineral SI values along two transects are displayed for calcite, disordered 

dolomite, and ankerite in Figure 49, and albite, K-feldspar, and analcime in 

Figure 50. Different symbology is used to distinguish surface, upper aquifer, and 

lower aquifer samples (red square, green triangle, and blue diamond, 

respectfully). 
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Figure 49. Cross sections for calcite, dolomite, and ankerite for each aquifer unit: 
surface (red square points), upper aquifer (green triangle points) and lower 
aquifer (blue diamonds). Two tracks for each mineral are displayed, one going 
west-east across the basin and the other south-north. Gray lines were included to 
mark zones of equilibrium and over/undersaturation. 
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Figure 50. Cross sections for albite, K-feldspar, and analcime for each aquifer 
unit: surface (red square points), upper aquifer (green triangle points) and lower 
aquifer (blue diamonds). Two tracks for each mineral are displayed, one going 
west-east across the basin and the other south-north. Gray lines were included to 
mark zones of equilibrium and over/undersaturation. 
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DISCUSSION 

Carbonate SI Trends 

As groundwater flows from south to north, the SI values for calcite, 

disordered-dolomite, and ankerite generally increase to oversaturation in all 

aquifers. Across the basin (east to west) the pattern of saturation is more 

complex and varies by aquifer. SI values in surface samples generally increase 

toward the basin center at Piceance Creek and then decrease away from the 

creek (Figure 49, Transect B). In the lower aquifer, samples are generally in 

equilibrium (or slightly oversaturated) and then SI values increase quite 

drastically at the intersection with Piceance Creek, often to high oversaturation. 

Oversaturation of carbonates is unusual as carbonates are buffers and respond 

quickly to system changes to maintain equilibrium. Oversaturation in the basin is 

likely due to mineralogic sequences, presence of organic matter, and 

groundwater flow paths. 

Oversaturation is influenced by the mineralogic sequence that 

groundwater encounters during transit. In systems where groundwater first 

equilibrates with calcite and then encounters dolomite, dolomite will continue to 

dissolve and magnesium concentrations will increase until the water reaches 

equilibrium. The increase in calcium and carbonate will result in calcite 

oversaturation (Freeze and Cherry, 1979). This process is observed in the 

surface samples for calcite and disordered-dolomite following a flow path from 

southwest to north (Figure 38 and Figure 40). Calcite is in equilibrium along the 
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western boundary and tends towards oversaturated. The water is initially 

undersaturated with respect to dolomite but reaches equilibrium after flowing a 

short distance (Figure 40). Thus, the water appears to equilibrate with calcite 

prior to equilibrating with dolomite.  

The effects of natural organic matter are another way to account for the 

oversaturation of carbonate minerals in the basin. Organic complexation can 

inhibit calcium carbonate precipitation (Flaathen et al., 2011; Lin and Singer, 

2005; Chave and Suess, 1970). Organic material in the Piceance Basin is 

sourced from the organic oil shales in the Green River Formation and the richest, 

most extensive layer of oil shale is the Mahogany Zone aquitard.  

Also, the high concentrations of organics in the Green River Formation 

can result in overestimated carbonate activities. Carbonate activities are 

calculated solely from the alkalinity and pH measurements, however, organic 

matter can produce considerable amounts of organic acids which are being 

grouped into the same calculation. Other acids, such as boric and phosphoric, 

may also contribute, leading to high oversaturation of carbonate minerals in the 

basin. 

In consideration of the effect of organic matter on carbonate activities, 

groundwater flow paths can influence the spatial regions in which effects are 

most prominent. The regions with the highest SI values for carbonates coincides 

with regions of upward groundwater flow from the lower aquifer. The lower 

aquifer is in contact with organic material and groundwater must permeate 

through the organic rich Mahogany Zone to discharge (if not pass through via 
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fault pathways). The concentration of organic carbon in the groundwater may 

increase along the flow path and result in highly oversaturated water with respect 

to carbonate minerals via precipitation inhibitors and/or increased organic acids 

in the water sample.  

Cole and Picard (1978) and Poole (2014) concluded that dolomite was the 

dominant carbonate mineral in the Green River Formation. Poole (2014) found 

that calcite and ferroan dolomite increase in the upper zone of the Green River 

Formation. Cole and Picard (1978) noted that calcite is rare in the basin center 

and ankerite increases towards the center but is absent along the margins. For 

the calcite equilibrium reaction: 

𝐶𝑎𝐶𝑂3(𝑠)  ↔ 𝐶𝑎(𝑎𝑞) + 𝐶𝑂3 (𝑎𝑞), (3.8) 

when the water is oversaturated, the reaction proceeds to the left and 

precipitation occurs. When the water is undersaturated, the reaction proceeds to 

the right and dissolution follows. Thus, for groundwater in equilibrium and 

oversaturated with respect to a mineral, it is likely that mineral is present. Based 

on SI results from the lower aquifer, this study found calcite, dolomite, and 

ankerite minerals to be present throughout the Green River Formation. The 

ankerite stoichiometry used to estimate the solubility product is on the boarder of 

a ferroan dolomite and is in equilibrium in more samples than any other 

carbonate mineral. This may indicate that the dominant carbonate mineral in the 

basin based on the water chemistry is a ferroan dolomite (or, loosely “ankerite”) 

rather than pure dolomite. In the upper aquifer, the saturation results indicate that 
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dawsonite is present in the eastern portion of the basin and the other carbonate 

minerals are either absent or rare. On the surface, calcite is the dominant 

carbonate along the basin margin, but overall, ankerite is the dominant carbonate 

mineral. 

Nahcolite and halite where found to be highly undersaturated in all aquifer 

units of the basin, with the exception of nahcolite being just undersaturated in the 

lower aquifer in the northern region. Considering the presence of the saline zone 

and the sodium bicarbonate dominant water chemistry, it may seem peculiar that 

water isn't closer to equilibrium or in equilibrium with this mineral. This is likely 

due to the impermeable nature of the saline zone. Flow lines do not move 

through this low conductivity zone, leaving the exposed surface area the only 

region available for dissolution reactions. 

Ankerite, dawsonite, and nahcolite are of particular interest as mineral 

traps for CO2 sequestration. Mineral trapping has been considered the safest 

mechanism for long-term storage of CO2 in underground reservoirs (Pham et al., 

2012; Pham et al., 2011) and these minerals have been modeled as optimal 

candidates (Pham et al., 2012; Pham et al., 2011; Flaathan et al., 2011). Ideal 

groundwater environments for this mechanism are saturated to oversaturated 

with respect to these minerals. Carbon dioxide is injected into the subsurface and 

as the groundwater reacts to establish equilibrium, the CO2 is incorporated into 

the secondary formation of the mineral. Dolomite has been considered as a 

potential mineral trap, however, the high energy of activation for dolomite growth 

limits the ability for secondary formation to high temperature environments 
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(Pham et al., 2011). This helps to explain the high oversaturation of ordered 

dolomite observed in this study. Ankerite and dawsonite are found to be 

saturated to oversaturated in the groundwater in all hydrologic units, and may be 

potential contenders for future CO2 sequestration research. Although nahcolite 

was undersaturated in the sampled groundwater, the deposit is well documented 

and poses as another possible mineral trap.  

Silicate SI Trends 

The cross sections for albite, K-spar, and analcime (Figure 50) are very 

similar to each other. The trend across the basin (east-west) is similar for each 

aquifer unit; SI values tend to decrease towards the basin center, where the 

lower aquifer samples rapidly increase to oversaturation, and the surface 

samples and upper aquifer samples tend to continue to decrease in the basin 

center. Almost all values for albite and K-spar are oversaturated while analcime 

has the greatest number of samples in equilibrium (most prevalent in surface 

samples). Analcime is a secondary mineral formed from the weathering of 

volcaniclastics. As volcaniclastics sediments are common in the Uinta Formation, 

waters in these upper units should be closest to equilibrium with analcime. Along 

the south-north transect (A-A’), a trend is difficult to discern. However, it should 

be noted that samples in the lower aquifer are most influenced by the intersection 

of the Piceance Creek, and demonstrate a rapid increase in SI values. North of 

the creek, lower aquifer sample analcime SI values decrease. Surface samples 
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and upper aquifer samples along this transect do not appear to be affected by 

the faults or creek interaction.  

Quartz has a very high energy of activation and tends to be oversaturated 

in natural waters. In all hydrologic units, quartz is generally oversaturated (Figure 

47) with the exception of the lower aquifer. Some points in the lower aquifer are

in equilibrium with quartz and in the north, a sample point is undersaturated with 

respect to this mineral. Quartz and other silica dioxides’ solubility are very 

dependent on temperature (solubility increases with temperature) and pH (once 

at 8, the solubility increases rapidly with small increases in pH). Based on the 

determined flow paths, it appears equilibrium for quartz was reached along the 

longest flow path and had the time, temperature, and pH to reach equilibrium in 

the north. In the lower aquifer, pH values are generally over 8 and temperatures 

greater than 16˚C. Groundwater is in equilibrium with chalcedony for most 

samples in the lower aquifer and some in the upper aquifer, making chalcedony 

is the dominant silica-oxide phase in the system, except at the deep zone in the 

north where quartz is the controlling phase. 

Cole and Picard (1978) found albite, K-feldspar, and analcime are rare to 

abundant in the Green River Formation and Poole (2014) found these minerals 

increase near the upper zone of the Green River Formation. The results from this 

study agree, with very few samples being undersaturated and an overall increase 

in saturation for K-spar in the upper aquifer. With the consideration of silica 

phases other than quartz, the results agree with Poole’s and Cole and Picard’s 

findings of common to abundant quartz. In the Uinta Formation, Day et al. (2010) 
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mentioned the presence of quartz, feldspar, calcite and analcime. Results from 

this study concur with this finding; groundwater is generally in equilibrium to 

oversaturated with respect to feldspar, calcite, and analcime minerals.
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CHAPTER 4 – CONCLUSION 

Conclusions and Conceptual Model 

Groundwater chemistry in the Piceance Creek Basin ranges from calcium-

magnesium-sulfate to sodium-bicarbonate type water. Shallow surface water in 

recharge zones are characterized by mixed cations and bicarbonate and sulfate 

anions. The lower aquifer waters are primarily sodium-bicarbonate type and the 

upper aquifer represents a mix of water types between the two. Many processes 

contribute to the geochemical distribution of ions in the basin, i.e. groundwater 

flow paths and mixing zones, stratified sedimentary units and mineral 

abundance, cation exchange, and sulfur redox. However, some processes are 

more influential. Surface water and upper aquifer groundwater starts as 

bicarbonate dominant and evolves to bicarbonate and sulfate dominant. The 

source of sulfate is speculative, but may be partly due to the dissolution of 

sulfate-bearing carbonates. Lower aquifer waters are principally controlled by 

nahcolite dissolution from the underlying saline zone. Processes such as sulfate 

reduction and cation exchange contribute to the overall sodium-bicarbonate 

water type, but the mineral abundance and solubility of nahcolite is most 

influential.  

These processes explain the depth dependence of dominant anion 

occurrence in the basin as well as observations from the margin to the basin 

center, but in the northern regions, at the discharge point of Piceance Creek, 
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upwelling of lower aquifer waters are the most influential factor for water 

composition. Upward movement of lower aquifer water via permeation through 

the Mahogany Zone aquitard or through preferential fault pathways, such as 

Alkali Flats fault, carries the highest concentrations of sodium and bicarbonate in 

the basin to the upper aquifer and surface. These high concentrations dominate 

the water composition in the upper aquifer and surface. An illustration of these 

mechanisms and their geospatial significance can be found in Figure 51. 

Minerals in the basin vary significantly geospatially. The spatial trends 

observed in the mineral SI distribution maps and the cross sections for the lower 

aquifer are overall in agreement with the observations presented by Poole (2014) 

and Cole and Picard (1978) except for the hypersaline minerals, nahcolite and 

halite. Although these mineral deposits are present in the basin center, the water 

chemistry is highly undersaturated with the largest SI values being -0.47 and     

-2.82, respectfully. However, this discrepancy is likely due to the lack of

permeability of the saline layer and sample depths. 

Saturation indicies results for carbonate minerals in the lower aquifer show 

ankerite as the dominant carbonate mineral. Cole and Picard (1978) concluded it 

to be dolomite, but as the mole fraction of iron used to estimate the ankerite 

solubility product in this study is near that of a ferroan dolomite, it may very well 

be in agreement. Other carbonates in the basin tend to be oversaturated. This is 

likely due to a combination of kinetics, mineral equilibrium sequences, and 

presence of organic matter.  
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The sequence of minerals equilibrated in the groundwater can play an 

important role that is observed in surface samples. Previous studies have 

demonstrated that organic complexation can inhibit calcium carbonate 

precipitation. This may be the case in the lower aquifer and possibly in the lower 

zones of the upper aquifer leading to oversaturated waters. Organic matter can 

also affect the carbonate activity calculation which does not differentiate between 

carbonate alkalinities and organic acids. This can result in overestimated 

carbonate values and oversaturated waters. High oversaturation of carbonate 

minerals is common in the basin center. This may be influenced by groundwater 

permeating through the organic-rich Mahogany Zone and increasing the effects 

of organic matter on the water saturation. A conceptual diagram displaying 

general trends in carbonate saturation is shown in Figure 52. Sampling bias and 

field measurements of pH are also likely contributors to oversaturated carbonate 

sample results and should be explored further in future work. 

Albite, K-feldspar, and analcime are generally in equilibrium to 

oversaturated in the basin, which concurs with conclusions from Poole (2014), 

Day et al. (2010), and Cole and Picard (1978) that these minerals are present in 

varying quantities throughout the basin. Quartz is oversaturated in all hydrologic 

units except for some regions in the lower aquifer. At these points, the 

temperature, pH, and residence time of the water are great enough to achieve 

equilibrium. Other silica dioxide phases reached equilibrium in a greater number 

of samples. Chalcedony was found to be in equilibrium in regions where the 

temperature was above 16˚C and pH >8. 
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Future Work 

There are still many data and unexplored observations that should be 

addressed in future work. Future work on the project should consider 1) trace 

element data. Trace element data was largely overlooked in this project and 

should be further investigated in terms of ion concentration distribution trends, 

but also its influence on mineral saturation. Particularly arsenic, mercury, 

selenium, boron, and chromium should be investigated as these elements are 

regulated and known to have adverse health effects on humans and animals 

above certain concentrations. Bromine should also be considered as chloride-

bromide ratios are useful in reconstructing the origin and movement of 

groundwater; 2) field sampling to eliminate data gaps. Additional groundwater 

sampling should be conducted to increase the coverage of data points in the 

upper and lower aquifer and missing parameters, such as redox potential (pe), 

accurate pH measurements using flow-cells, and isotope data. Redox potential 

measurements are key to evaluating redox environments, reactions, and for 

accurate speciation of redox elements. Accurate pH measurements are essential 

to SI calculations for carbonate minerals and carbon-14 isotopes could help 

refine flow paths by age/residence times.
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APPENDIX A:  DATABASE SUPPLEMENTAL TABLES 

Summary of the data contributors to the Piceance Basin Data Repository 

Agency Name Sites Date Range 

Antero Resources 159 7/12/2005 7/16/2009 

Colorado Department of Agriculture 43 3/31/1998 10/26/2000 

City of Grand Junction 3 6/22/1988 10/28/2008 

Wright Water Engineeres, Inc., CO 15 4/26/2002 7/17/2002 

Colorado Oil and Gas Conservation 

Commission 

1,048 4/2/1956 10/14/2008 

EnCana Oil and Gas (USA) Inc. 496 5/4/2001 4/13/2009 

Mine Consultant 24 8/10/1995 12/6/2006 

Occidental Petroleum Company 22 6/17/2009 4/30/2009 

Town of Palisade (via Western Water and 

Land) 

17 5/21/2007 10/22/2008 

U.S. Forest Service 1 9/27/2006 6/27/2007 

U.S. Geological Survey 1,456 7/16/1946 4/27/2009 

U.S. National Park Service 1 4/18/2001 11/5/2001 

William Production RMT Company 12 4/26/2002 7/17/2002 
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Results for statistical hypothesis tests comparing ion concentrations collected 

by different agencies. 

USGS/ENCANA USGS/COGCC ENCANA/COGCC 

Test H Test H Test H 

Temp TTEST 0 

pH MW 0 MW 0 MW 0 

Calcium MW 0 

Magnesium MW 0 

Sodium TTEST 0 

Potassium MW 0 

Chloride MW 0 TTEST 0 MW 1 

Sulfate TTEST 0 MW 1 MW 0 

H values calculated with an alpha value = 0.5 

Results for statistical hypothesis tests comparing ion concentrations collected 

during different decades. 

70s/80s 70s/00s 80s/00s 
Test H Test H Test H 

Temp MW 1 MW 0 MW 0 
pH MW 0 MW 0 MW 0 
Calcium MW 1 MW 0 MW 1 
Magnesium TTEST 1 MW 0 MW 0 
Sodium MW 0 MW 0 MW 0 
Potassium MW 0 MW 0 MW 0 
Chloride TTEST 0 MW 1 MW 1 
Sulfate TTEST 1 MW 0 MW 0 
Alkalinity MW 0 MW 1 MW 1 
H values calculated with an alpha value = 0.5 
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Results for statistical hypothesis tests comparing ion concentrations collected 

during different season. 

Summer/Winter 
Test H 

Temp TTEST 1 
pH TTEST 1 
Calcium TTEST 1 
Magnesium TTEST 1 
Sodium TTEST 0 
Potassium TTEST 0 
Chloride TTEST 0 
Iron TTEST 0 
Sulfate TTEST 0 
Alkalinity TTEST 0 

H values calculated with an alpha value = 0.5 
Summer was defined as samples collected between May and September. 
Winter was defined as samples collected between November and March. 

Results for statistical hypothesis tests comparing ion concentrations collected 

during different seasons and by aquifer. 

Surface Upper Aquifer Lower Aquifer 
Summer/Winter Summer/Winter Summer/Winter 

Test H Test H Test H 

Temp MW 1 MW 0 MW 0 
pH MW 1 MW 0 MW 0 
Calcium MW 1 MW 0 MW 0 
Magnesium MW 1 MW 0 MW 0 

H values calculated with an alpha value = 0.5  
Summer was defined as samples collected between May and September. 
Winter was defined as samples collected between November and March. 
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APPENDIX B: DETAILS OF STATSTICAL METHODS 

All statistical analysis was performed in Matlab Version R2011a 

% Megan Masterson 

% PCA & Factor Analysis of AOI major ion data. Outliers 

were removed prior to this analysis and mineral 

concentrations converted to z-scores. 

clc; clear all; close all; 

% Load data 

load 'elementTable_MajorTrace_NoSpecCond_wAl.mat'; 

%% Remove unused columns for analysis 

original = major 

major = major(:, (4:end)); 

trace = trace(:, (4:end)); 

%Change to common units of mg/L 

for i = 14:size(trace,2) 

trace(:,i) = trace(:,i)*0.001; 

end 

figure (1) 

boxplot(major, 'orientation', 'horizontal', 'labels', 

{'Depth', 'Alk' 'Ca'... 

'Cl', 'K', 'Mg', 'Na', 'pH', 'Sulfate', 'Temp'}) 

%% - PCA - %% 

% standardize data 

major_std = std(major); 

major_sr = major./repmat(major_std, size(major,1), 1); 

[COEFF,SCORE, latent, t2] = princomp(major_sr); 

% COEFF - known as "loadings" The largest coefficients in 

the first column are associated with the position of the 

variables.  For example, (1,1) = X while (4,1) = Depth 

%SCORE - contains the coordinates of the original data in 

the new coordinate system.  A plot of the first two columns 
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of scores shows the major data projected onto the first two 

principal components: 

figure (2) 

plot(SCORE(:,1), SCORE(:,2), '+') 

xlabel ('1st Principal Component') 

ylabel ('2nd Principal Component') 

% LATENT - AKA "variances" - a vector containing the 

variance explained by the corresponding PC.  Each column of 

scores as a sample variance equal to the corresponding 

element of variances.  You can easily calculate the percent 

of the total variability explained by each PC 

cumlat = cumsum(latent)./sum(latent); 

percent_explained = 100*latent/sum(latent); 

percent_explained 

figure (3) 

pareto(percent_explained) 

xlabel('Prinicipal Component') 

ylabel('Variance Explained (%)') 

title ('Major Data') 

%% - Factor Analaysis - %% 

[Loadings, specificVar, T, stats, F]=factoran(major, 3); 

Loadings; 

specificVar; 

% - Factor Rotation - % 

[LoadingsPM, specVarPM, TPM, statsPM, FPM] = 

factoran(major, 3, 'rotate', 'varimax'); 

FPM;  %Factor Scores 

%% Correlation table 

majorcorr = corr(major);
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Factor Scores from Factor Analysis 

SiteID Factor1 Factor 
2 

Factor 
3 

SiteID Factor1 Factor 
2 

Factor 
3 

200253 -0.321 -1.544 -1.043 200749 -0.2841 -1.3253 -0.7378

200285 -0.201 -1.456 -0.353 200753 -0.1665 -0.5128 0.5711

200286 -0.224 -1.102 -0.196 200756 -0.2872 -1.1861 -0.6137

200295 -0.201 -0.843 0.255 200758 -0.1932 -0.5866 0.3755

200321 -0.417 -1.479 -1.524 200763 -0.3002 -0.9601 -0.6254

200336 -0.374 -1.569 -1.293 200769 -0.1989 -0.5687 0.4084

200358 -0.433 -1.361 -1.532 200781 -0.2419 -0.6307 0.0864

200360 -0.449 -1.030 -1.459 200784 -0.2766 -0.6807 0.2884

200369 -0.389 -1.586 -1.415 200786 -0.2184 -0.4905 0.3663

200374 -0.421 -1.403 -1.384 200787 -0.2114 -0.7620 0.2184

200378 -0.151 -1.028 0.237 200790 -0.1653 -0.9206 0.2011

200392 -0.126 -0.931 0.521 200792 -0.1776 -0.8450 0.1726

200399 -0.065 -0.812 0.860 200795 -0.1410 -1.0229 0.2613

200400 -0.065 -0.812 0.860 200806 -0.1547 1.2823 -0.8790

200417 0.085 -0.527 1.710 200808 -0.3431 -1.1615 -0.9614

200420 -0.049 -0.717 1.107 200817 -0.2829 -0.7980 -0.6364

200425 -0.475 1.364 0.167 200818 -0.2829 -0.7980 -0.6364

200436 -0.299 -1.188 -0.622 200820 -0.2924 -0.9866 -0.6895

200437 -0.201 -0.830 0.157 200825 -0.2916 -1.0092 -0.7003

200444 -0.301 1.173 0.746 200826 -0.3084 -1.0985 -0.7023

200445 0.653 1.158 -0.728 200832 -0.4046 -0.8324 -0.9970

200446 1.444 1.110 -0.792 200836 -0.5013 0.2439 -1.0219

200451 -0.338 -1.033 -0.779 200841 -0.3165 -1.0159 -0.7772

200452 -0.583 1.436 -0.779 200851 -0.3562 -0.7648 -0.7516

200453 -0.557 1.434 -0.816 200856 -0.4274 0.4112 -0.3059

200460 0.018 -0.387 1.725 200863 -0.4888 2.3122 -0.3465
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Factor Scores from Factor Analysis 

SiteID Factor1 Factor 
2 

Factor 
3 

SiteID Factor1 Factor 
2 

Factor 
3 

200465 -0.210 -0.985 0.055 200935 -0.3486 -0.7595 -0.5697

200464 -0.256 -0.896 -0.173 200872 -0.3726 -0.8175 -0.7819

200466 -0.115 -0.013 0.395 200989 -0.4559 -0.9728 -1.3458

200473 -0.150 -1.002 0.208 350101 -0.6594 2.7744 -0.0748

200475 -0.563 2.304 0.051 350601 -0.2343 0.0527 0.3081

200476 -0.429 1.356 -0.835 350602 -0.2324 0.1099 0.2841

200480 -0.187 -0.841 0.260 350603 -0.4332 0.7527 -0.0364

200482 -0.261 -0.509 0.156 350701 -0.2115 0.9807 -0.6244

200484 -0.137 -0.949 0.431 350702 -0.0727 -0.2748 1.2018

200488 -0.243 0.022 0.503 350703 -0.4814 0.7981 -0.4149

200489 -0.527 1.237 -0.451 350704 -0.4969 1.0834 -0.2620

200492 0.283 0.606 3.315 351201 -0.0489 0.8039 -1.0981

200493 0.283 0.606 3.315 351202 0.4100 1.1790 -0.8337

200498 -0.284 -1.061 -0.388 351203 -0.3841 0.9769 0.1233

200500 -0.491 1.647 -0.033 351204 1.9584 1.6654 -0.4423

200501 -0.510 1.835 0.021 351301 -0.4750 1.1793 -0.6767

200502 -0.463 1.555 -0.784 351302 -0.4837 0.9598 -0.6873

200503 0.225 0.268 3.302 351303 -0.4902 1.0785 -0.7177

200504 -0.298 0.767 0.536 351601 -0.1773 2.1543 -0.2818

200511 -0.115 -0.828 0.622 351602 -0.3494 1.5171 -0.7011

200516 -0.352 -1.140 -0.921 351603 -0.4154 1.3777 -0.8010

200518 -0.040 -0.663 1.085 351701 -0.2997 1.7295 -0.5310

200521 -0.086 -0.834 0.779 351702 -0.2210 0.5556 -1.1498

200527 -0.002 -0.724 1.296 351703 -0.1822 1.3957 -0.7875

200529 -0.001 0.656 -1.070 351901 -0.5266 1.2523 -0.4523

200530 -0.196 1.019 -0.967 351902 -0.5386 1.1109 -0.2976

200532 -0.083 -0.981 0.683 351903 -0.5845 1.3359 -0.8436
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Factor Scores from Factor Analysis 

SiteID Factor1 Factor 
2 

Factor 
3 

SiteID Factor1 Factor 
2 

Factor 
3 

200535 -0.031 -0.633 1.141 352901 0.3367 1.5996 -0.6447

200553 -0.064 -1.074 0.766 353001 -0.4876 0.3641 -1.2793

200552 0.340 0.437 4.161 352902 0.2953 2.1979 -0.3749

200562 -0.011 -0.954 1.107 353002 -0.4385 0.4284 -1.2698

200566 0.125 -0.444 2.272 353003 -0.4774 1.0509 -0.9797

200567 -0.397 0.837 -1.027 353101 2.2041 -0.1673 -0.9568

200568 -0.273 -0.513 -1.186 353102 5.9129 -0.3438 -0.6218

200571 -0.273 -0.513 -1.186 353103 6.3152 0.1902 -0.2871

200573 -0.024 -0.437 1.337 355301 0.0896 2.4447 0.4201 

200574 -0.451 -1.500 -1.732 355302 0.1051 1.4836 -0.1997

200580 -0.305 0.692 0.300 355303 -0.3141 1.4905 0.6069

200583 1.998 -0.008 -1.163 355304 -0.1023 0.8942 1.7533

200584 -0.333 -1.295 -0.994 355401 1.1029 1.2583 -0.3780

200585 -0.332 -1.028 -0.915 355402 1.2917 0.8555 -0.7212

200589 -0.340 -1.126 -0.867 355403 -0.4027 0.5454 -0.0943

200590 -0.319 -1.057 -0.730 355404 -0.3929 0.4844 -0.0246

200593 -0.372 -1.191 -1.137 355501 0.1842 2.4106 0.0311 

200594 -0.327 -0.922 -0.597 355502 0.3865 2.0384 -0.1039

200599 -0.020 -0.779 1.179 355503 -0.1266 1.2165 0.2889

200601 -0.219 -1.255 -0.336 355504 -0.2778 0.9619 0.9202

200606 -0.204 -1.185 -0.190 355505 -0.3110 1.1680 0.8719

200609 -0.216 -1.004 -0.131 356101 -0.0668 -0.2007 1.2925

200610 -0.209 -1.100 -0.120 356102 -0.0722 -0.3698 1.1618

200612 -0.319 1.332 0.820 356201 -0.0125 0.0662 1.9016

200613 -0.643 3.455 0.450 356202 -0.0278 -0.3885 1.4226

200614 2.462 -0.215 -0.282 356301 0.0240 -0.0486 1.4754

200621 7.969 -1.069 -0.577 356302 -0.2897 -0.6895 -0.3344
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Factor Scores from Factor Analysis 

SiteID Factor1 Factor 
2 

Factor 
3 

SiteID Factor1 Factor 
2 

Factor 
3 

200629 -0.232 -0.232 0.456 356401 -0.3334 -0.5456 -0.2894

200630 -0.199 -0.930 0.069 356501 -0.2245 -0.2432 0.4999

200641 -0.154 -0.785 0.407 356702 2.0498 -0.6944 -1.4623

200640 0.147 -0.136 1.581 356701 0.8810 0.3806 -1.1692

200650 -0.225 -1.037 -0.460 356801 -0.2211 0.0772 -0.2155

200651 -0.149 -0.775 0.437 356802 -0.1969 0.2155 0.1277

200654 -0.150 -0.594 0.545 356901 -0.2050 -0.1862 0.0790

200656 -0.143 -0.435 0.697 356902 -0.2372 0.0535 0.2457

200658 -0.142 -0.691 0.514 357101 -0.2548 0.4613 0.4137

200669 -0.332 -1.323 -0.955 357201 -0.5537 0.1606 -1.2036

200674 -0.256 -0.350 -0.694 357401 -0.3406 2.3435 -0.3169

200677 -0.182 -0.614 -0.875 357501 0.0813 -0.3025 1.7383

200687 0.738 1.904 -0.386 357901 -0.3330 -0.8762 -0.7211

200690 -0.355 1.210 -0.386 358001 3.9549 0.1724 -0.4497

200692 -0.293 -1.295 -0.752 358301 0.7860 0.1473 0.4480 

200702 -0.155 1.014 1.709 358401 0.0690 0.0533 1.5358 

200708 -0.127 -0.941 0.515 358601 -0.1620 -0.1130 0.5782

200725 -0.332 -1.346 -1.015 359201 0.2671 0.3671 1.1869 

200731 0.059 -0.665 1.680 359301 -0.4453 -0.0294 -0.3753

200734 -0.099 -0.252 1.206 359401 0.1667 1.0413 3.6759 

200746 -0.274 -0.801 -0.439 359501 0.2176 0.4210 3.4841 
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APPENDIX C: ANKERITE IAP CALCULATION 

Ankerite IAP calculation performed in Matlab Version R2011a 

clc; 

clear all; 

load 'Ank_IAP_Jan2016_wksp.mat' 

%% Remove High CBE values outside of +-30 

CBError = 5; 

Depth = Depth(CBE <=CBError & CBE >=-CBError); 

Fe = Fe(CBE <=CBError & CBE >= -CBError); 

Ca = Ca(CBE <=CBError & CBE >= -CBError); 

Mg = Mg(CBE <=CBError & CBE >= -CBError); 

CO3 = CO3(CBE <=CBError & CBE >= -CBError); 

Aquifer = Aquifer(CBE <=CBError & CBE >= -CBError); 

%% Only GRF samples 

Aq = 300;  %300 is for GR aquifer, 200 is Uinta, 100 is 

surface 

Depth = Depth(Aquifer >= Aq); 

Fe = Fe(Aquifer >= Aq); 

Ca = Ca(Aquifer >= Aq); 

Mg = Mg(Aquifer >= Aq); 

CO3 = CO3(Aquifer >= Aq); 

%% Establish trials.  X is a stoichometric coefficent for 

Ankerite 

x = [0:0.1:0.7]; 

%% calulate the IAP value for each trail of x 

for i = 1:length(x)  %8 col 

for j = 1:length(Fe)    %38 row 

iapx(j,i) = (Ca(j) * (Mg(j)^(1-x(i)))* 

(Fe(j)^x(i))*(CO3(j)^2)); 

end 

end 

iapx = log10(iapx); 
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%% calculate the frequency of each trail for plotting 

num = 15; 

bins = linspace(min(min(iapx)), max(max(iapx)), num); 

freq = zeros(size(bins,2)-1,size(iapx,2));   % 50 x 8 

for i = 1:length(bins)-1 % 49 

for j = 1:size(iapx,1)  % 731 

for k = 1:size(iapx,2)  %8 

if iapx(j,k)>= bins(i) & iapx(j,k) < bins(i+1); 

freq(i,k) = freq(i,k)+1; 

end 

end 

end 

end 

%% plot it up 

bplot = bins(1:length(bins)-1); 

figure (1) 

clf 

plot(bplot, freq(:,1), 'k-') 

hold on; 

plot(bplot, freq(:,2),  'b-') 

plot(bplot, freq(:,3),  'g-') 

plot(bplot, freq(:,4),  'c-') 

plot(bplot, freq(:,5),  'y-') 

plot(bplot, freq(:,6),  'r-') 

plot(bplot, freq(:,7),  'm-') 

plot(bplot, freq(:,8),  'k-o') 

xlabel({'log(IAP) Ankerite';... 

'CaMg_{1-x}Fe_{x}CO_{3} + 2H = Ca + (1-x)Mg + (x)Fe + 

2HCO_{3}' }) 

ylabel('Frequency') 

histn = 8; 

figure (2) 

subplot(4,2,1) 

histfit(iapx(:,1),histn) 

xlabel ('x = 0') 

ylabel ('frequency') 

subplot(4,2,2) 

histfit(iapx(:,2),histn) 

xlabel ('x = 0.1') 
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ylabel ('frequency') 

subplot(4,2,3) 

histfit(iapx(:,3),histn) 

xlabel ('x = 0.2') 

ylabel ('frequency') 

subplot(4,2,4) 

histfit(iapx(:,4),histn) 

xlabel ('x = 0.3') 

ylabel ('frequency') 

subplot(4,2,5) 

histfit(iapx(:,5),histn) 

xlabel ('x = 0.4') 

ylabel ('frequency') 

subplot(4,2,6) 

histfit(iapx(:,6),histn) 

xlabel ('x = 0.5') 

ylabel ('frequency') 

subplot(4,2,7) 

histfit(iapx(:,7),histn) 

xlabel ('x = 0.6') 

ylabel ('frequency') 

subplot(4,2,8) 

histfit(iapx(:,8),histn) 

xlabel ('x = 0.7') 

ylabel ('frequency') 

figure (3) 

boxplot(iapx) 

ylabel({'log(IAP) Ankerite'; 'CaMg_{1-x}Fe_{x}CO_{3} + 2H = 

Ca + (1-x)Mg + (x)Fe + 2HCO_{3}'}) 

xlabel ('x index') 

figure (4) 

histfit(iapx(:,6), histn) 

xlabel({'log(IAP) Ankerite'; 

'CaMg_{0.5}Fe_{0.5}(CO_{3})_{2} = 1.00Ca + (0.50)Mg + 

(0.50)Fe + 2.00CO_{3}'}) 

ylabel('frequency') 

%% Stats 

stats = zeros(k, 5); 

for i = 1:length(stats) %8 rows 

for j = 1:5     %5 cols 

if j == 1 

stats(i,j) = x(i); 
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else if j == 2 

stats(i, j) = std(iapx(:,i)); 

else if j == 3 

stats(i, j) = mean(iapx(:,i)); 

else if j == 4 

stats(i, j) = mode(iapx(:,i)); 

else if j == 5 

stats(i, j) = median(iapx(:,i)); 

end 

end 

end 

end 

end 

end 

end 

%% Boxcox Transformation 

nonneg = 10.^(iapx(:,6)); 

[transdat, lambda] = boxcox(nonneg); 

meantrans = mean(transdat); % mean value of the boxcox 

translated data 

meandata = (meantrans*lambda + 1)^(1/lambda);   

% return mean to regular data value 

meandata = log10(meandata);  % return to a log value 

figure (5) 

histfit(transdat, histn) 

xlabel({'log(IAP) Ankerite'; 

'CaMg_{0.5}Fe_{0.5}(CO_{3})_{2} = 1.00Ca + (0.50)Mg + 

(0.50)Fe + 2.00CO_{3}'}) 

ylabel('frequency') 

% at stoichiometry of 0.5 IAP = -17.9653 
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APPENDIX D: MINERAL EQUILIBRIUM WEIGHTING SCHEME 

Coefficients of Variation used to calculate mineral weight 

Basis Species Coefficient of Variation 

H2O 0.00 
Al+++ 0.15 
Ba++ 0.05 
Ca++ 0.05 

Cl- 0.05 
Fe++ 0.05 

Fe+++ 0.05 
H+ 0.23 

HCO3- 0.10 
K+ 0.05 

Mg++ 0.05 
Na+ 0.05 

O2(aq) 0.10 
SO42- 0.05 

SiO2(aq) 0.05 

Mineral weight and weighted saturation index 

Mineral Formula Weight WSI 3 x 

WSI 

10 x 

WSI 

Albite NaAlSi3O8 4.66 0.21 0.64 2.15 

Analcime Na.96Al.96Si2.04O6:H2O 4.77 0.21 0.63 2.09 

Ankerite CaMg0.5Fe0.5(CO3)2 6.36 0.16 0.47 1.57 

Barite BaSO4 32.56 0.03 0.09 0.31 

Calcite CaCO3 9.00 0.11 0.33 1.11 

Dawsonite NaAlCO3(OH)2 5.23 0.19 0.57 1.91 

Dolomite CaMg(CO3)2 6.36 0.16 0.47 1.57 

Gypsum CaSO4:2H2O 32.56 0.03 0.09 0.31 

K-Feldspar KAlSi3O8 4.66 0.21 0.64 2.15 

Nahcolite NaHCO3 20.59 0.05 0.15 0.49 

Quartz SiO2 46.05 0.02 0.07 0.22 

Halite NaCl 32.56 0.03 0.09 0.31 



150 

APPENDIX E: pH CORRECTED MINERAL SAUTRATION RESULTS 

Corrected pH assuming calcite equilibrium 

SiteId Aquifer Calculated 
pH 

Measured 
pH 

Calculated 
CBE 

Measured 
CBE 

200554 Lower 13.43 8.41 -89.82 -91.45

200446 Lower 7.58 8.00 -11.87 -11.87

351302 Upper 8.07 8.40 -11.31 -11.34

358902 Upper 7.28 8.00 -4.63 -4.62

200560 Surface 7.05 8.06 -4.37 -4.41

200564 Lower 13.60 7.93 -4 -4.93

351701 Lower 7.40 8.40 -3.69 -3.71

200559 Upper 12.01 7.81 -3.34 -3.26

352902 Lower 7.67 8.20 -2.97 -2.98

356801 Upper 7.35 9.20 -2.83 -3.03

200540 Lower 12.34 8.02 -2.79 -2.84

200476 Upper 7.67 7.90 -2.72 -2.72

200399 Surface 7.10 7.80 -2.71 -2.72

200400 Surface 7.10 7.80 -2.71 -2.72

200536 Upper 12.37 8.86 -2.68 -2.74

359401 Upper 7.22 8.20 -2.67 -2.85

200584 Surface 7.23 7.30 -2.66 -2.66

200285 Surface 7.14 7.10 -2.64 -2.64

200601 Surface 7.17 7.20 -2.56 -2.56

200795 Surface 7.10 7.30 -2.42 -2.42

200590 Surface 7.24 7.70 -2.42 -2.43

357101 Upper 7.56 7.60 -2.41 -2.41

200790 Surface 7.10 7.50 -2.38 -2.38

200589 Surface 7.29 7.60 -2.34 -2.35

200621 Surface 7.20 8.20 -2.28 -2.28

200498 Surface 7.29 7.50 -2.28 -2.28

200758 Surface 7.24 7.80 -2.27 -2.28

200841 Surface 7.26 7.40 -2.24 -2.24

200464 Surface 7.20 7.40 -2.23 -2.23

356201 Upper 7.05 7.90 -2.22 -2.23

358401 Upper 6.92 7.50 -2.19 -2.19

200532 Surface 7.06 7.40 -2.18 -2.18

353101 Lower 7.43 7.80 -2.17 -2.17

200593 Surface 7.32 7.50 -2.07 -2.07

200465 Surface 7.28 7.60 -2.03 -2.03
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Corrected pH assuming calcite equilibrium 

SiteId Aquifer Calculated 
pH 

Measured 
pH 

Calculated 
CBE 

Measured 
CBE 

200527 Surface 7.03 7.20 -2.01 -2.01

200460 Surface 7.15 7.50 -1.99 -2

200392 Surface 7.14 7.30 -1.94 -1.94

200690 Upper 7.41 8.10 -1.93 -1.94

357401 Lower 7.37 8.20 -1.88 -1.89

200505 Lower 7.79 9.00 -1.87 -1.89

356701 Upper 7.90 8.40 -1.83 -1.83

200749 Surface 7.19 7.50 -1.78 -1.78

200609 Surface 7.15 7.60 -1.77 -1.78

200480 Surface 12.25 7.30 -1.75 -1.53

200378 Surface 7.12 7.40 -1.71 -1.72

350703 Lower 7.99 7.90 -1.68 -1.68

200437 Surface 7.22 7.30 -1.68 -1.68

200692 Surface 7.28 7.20 -1.68 -1.68

356501 Upper 7.19 8.10 -1.63 -1.67

200781 Surface 7.28 7.70 -1.6 -1.61

200565 Lower 13.66 7.89 -1.59 -2.01

200436 Surface 7.24 7.10 -1.57 -1.57

200482 Surface 7.28 7.30 -1.55 -1.55

357501 Upper 6.91 7.10 -1.53 -1.53

350101 Lower 8.23 8.50 -1.5 -1.51

200452 Upper 8.56 8.70 -1.49 -1.49

200613 Lower 8.04 8.90 -1.48 -1.49

200489 Lower 7.85 8.10 -1.48 -1.48

200504 Upper 7.45 7.80 -1.42 -1.42

200806 Lower 7.92 8.10 -1.39 -1.39

200784 Surface 7.16 7.70 -1.39 -1.4

200580 Upper 7.48 7.90 -1.3 -1.3

200599 Surface 7.11 7.60 -1.29 -1.29

200725 Surface 7.24 7.30 -1.24 -1.24

355505 Lower 7.53 8.20 -1.23 -1.25

200708 Surface 7.17 7.30 -1.22 -1.22

200640 Surface 7.09 7.50 -1.18 -1.18

200473 Surface 12.32 7.30 -1.17 -1.04

200551 Surface 6.84 7.67 -1.15 -1.16

351301 Lower 7.83 8.20 -1.06 -1.06

200253 Surface 12.31 7.30 -1.05 -0.92

200500 Lower 8.22 8.20 -1.01 -1.01
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Corrected pH assuming calcite equilibrium 

SiteId Aquifer Calculated 
pH 

Measured 
pH 

Calculated 
CBE 

Measured 
CBE 

358201 Lower 7.14 7.90 -0.96 -0.97

200818 Surface 7.19 7.80 -0.96 -0.96

200731 Surface 6.98 7.90 -0.96 -0.97

200825 Surface 12.34 7.30 -0.94 -0.85

200588 Surface 6.83 7.77 -0.93 -0.94

200817 Surface 7.19 7.80 -0.91 -0.92

200568 Surface 7.03 7.40 -0.9 -0.9

200571 Surface 7.03 7.40 -0.9 -0.9

351601 Lower 7.45 8.40 -0.89 -0.89

200587 Upper 12.07 7.81 -0.85 -0.82

200529 Upper 7.72 7.70 -0.85 -0.85

200792 Surface 7.16 7.70 -0.84 -0.85

200535 Surface 12.30 7.30 -0.81 -0.72

200286 Surface 7.19 7.40 -0.74 -0.74

200501 Lower 8.27 8.50 -0.73 -0.74

352001 Lower 7.68 8.20 -0.71 -0.71

200445 Lower 7.30 8.50 -0.7 -0.7

200585 Surface 7.14 7.00 -0.66 -0.66

351901 Lower 7.55 8.20 -0.65 -0.65

200573 Surface 7.10 7.70 -0.62 -0.62

200453 Lower 7.83 8.20 -0.59 -0.59

200567 Upper 7.97 7.90 -0.55 -0.55

200734 Surface 7.07 7.50 -0.55 -0.55

357201 Upper 7.96 8.10 -0.51 -0.51

350601 Lower 7.08 7.50 -0.5 -0.61

355401 Lower 7.31 8.30 -0.49 -0.49

200360 Surface 7.49 7.50 -0.45 -0.45

200503 Surface 7.04 7.80 -0.44 -0.44

200511 Surface 7.11 7.40 -0.39 -0.39

200563 Upper 13.26 7.83 -0.34 -0.39

200756 Surface 7.23 7.50 -0.33 -0.33

200820 Surface 7.21 7.40 -0.32 -0.32

200444 Lower 7.47 8.60 -0.14 -0.14

200574 Surface 7.47 7.20 -0.14 -0.14

200321 Surface 7.42 7.10 -0.13 -0.13

200518 Surface 7.09 7.40 -0.1 -0.1

200763 Surface 7.25 7.40 0.02 0.02

350701 Lower 7.67 7.70 0.03 0.02
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Corrected pH assuming calcite equilibrium 

SiteId Aquifer Calculated 
pH 

Measured 
pH 

Calculated 
CBE 

Measured 
CBE 

355301 Lower 7.28 8.10 0.07 0.07 

200989 Surface 7.59 7.80 0.12 0.12 

200562 Surface 12.30 7.30 0.13 0.11 

200836 Upper 7.78 8.30 0.18 0.18 

200832 Surface 7.44 7.80 0.19 0.19 

353003 Lower 7.56 7.70 0.21 0.21 

200417 Surface 7.01 7.70 0.21 0.21 

200420 Surface 7.16 7.40 0.21 0.21 

200566 Surface 7.01 7.20 0.23 0.24 

200581 Upper 7.37 8.30 0.27 0.26 

353001 Upper 7.81 7.80 0.27 0.27 

200569 Surface 6.93 7.30 0.28 0.28 

200863 Lower 7.66 8.20 0.32 0.32 

200521 Surface 7.06 7.40 0.32 0.32 

200808 Surface 7.30 7.50 0.32 0.32 

200872 Surface 7.36 7.70 0.33 0.34 

359201 Upper 7.37 7.70 0.34 0.27 

200669 Surface 7.33 7.50 0.38 0.38 

200492 Surface 7.29 7.60 0.52 0.52 

200530 Upper 7.86 7.90 0.53 0.53 

200630 Surface 7.19 7.60 0.53 0.53 

200935 Surface 7.30 8.40 0.57 0.58 

358301 Lower 7.39 8.40 0.58 0.59 

200358 Surface 7.45 7.50 0.62 0.61 

200451 Surface 7.30 7.60 0.66 0.66 

200295 Surface 7.26 7.40 0.7 0.7 

358601 Upper 7.04 7.70 0.72 0.61 

200475 Lower 7.92 8.10 0.76 0.76 

200687 Lower 7.40 7.70 0.84 0.84 

200488 Upper 7.50 8.70 0.94 0.97 

200583 Upper 7.95 8.50 0.95 0.95 

200553 Surface 7.10 7.20 0.99 0.99 

200369 Surface 7.26 7.20 1.17 1.17 

356101 Upper 7.10 7.00 1.18 1.18 

357901 Upper 7.21 7.60 1.18 1.17 

200466 Surface 7.34 7.70 1.19 1.19 

200484 Surface 7.17 7.40 1.2 1.2 

200851 Surface 7.30 7.60 1.27 1.27 
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Corrected pH assuming calcite equilibrium 

SiteId Aquifer Calculated 
pH 

Measured 
pH 

Calculated 
CBE 

Measured 
CBE 

200606 Surface 7.17 7.20 1.31 1.31 

200826 Surface 7.29 7.50 1.39 1.39 

200552 Surface 7.11 7.80 1.41 1.42 

200610 Surface 12.26 7.30 1.57 1.4 

200425 Lower 7.71 7.70 1.67 1.67 

200653 Surface 7.09 7.97 2.03 2.05 

200650 Surface 7.19 7.50 2.03 2.03 

200856 Lower 7.24 8.20 2.15 2.18 

200786 Surface 7.33 7.90 2.36 2.37 

200612 Upper 7.55 8.90 2.52 2.62 

351202 Lower 7.68 8.70 2.58 2.57 

200746 Surface 7.20 7.60 2.71 2.71 

350702 Upper 7.09 7.30 2.89 2.69 

200614 Surface 7.00 7.90 2.95 2.95 

200336 Surface 7.22 7.10 3.04 3.04 

200702 Upper 7.12 8.80 3.26 3.43 

356301 Upper 7.09 8.10 3.42 3.45 

356901 Upper 7.30 8.30 3.43 3.42 

200516 Surface 7.36 7.60 3.5 3.51 

200533 Upper 6.64 6.77 3.64 3.64 

356401 Upper 7.39 7.90 3.99 2.58 

200374 Surface 7.40 7.20 7.4 7.4 

200558 Lower 7.49 7.78 9.55 9.54 

359501 Upper 11.95 7.70 10.13 8.75 

359301 Upper 8.21 7.80 17.57 17.52 
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