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Quantum phase transitions in two-dimensional tilted optical lattices
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We discuss the quantum phase transition between the Mott-insulator state and the density-wave state of cold
Bose atoms in a two-dimensional (2D) square lattice as the lattice is adiabatically tilted along one of its primary
axes. It is shown that a small misalignment of the tilt drastically changes the result of the adiabatic passage and,
instead of the density-wave state, one obtains a disordered state. An intrinsic relation of the problem to Bloch
oscillations of hard-core bosons in a 2D lattice is illuminated.
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I. INTRODUCTION

Tilted one-dimensional (1D) optical lattices are the standard
setup for studying Bloch oscillations (BOs) of noninteracting
and interacting cold atoms [1–7], with important applications
to precision measurements of the gravitational force [6] and
interatomic interaction constant [7]. A different direction of re-
search is quantum phase transitions in tilted lattices [8,9]. (We
also mention relevant studies of the quench dynamics [10–15].)
These are rather specific phase transitions because, formally,
the system has no ground state. Nevertheless, by adiabatically
tilting the lattice one observes continuous evolution of the
Mott-insulator (MI) state of Bose atoms into the density-wave
(DW) state [9,14]. As it was explained in Ref. [8], by mapping
the system of Bose atoms into an effective system of inter-
acting spins, this “not-ground-state” transition corresponds
to the common ground-state phase transition from ferromag-
netic to antiferromagnetic ordering of the Heisenberg spin
chain.

More phases are expected if we consider Bose atoms in
two-dimensional (2D) lattices [16]. In fact, two-dimensional
systems offer a freedom in choosing the lattice geometry and
orientation of a static force F relative to primary axes of the
lattice. However, since we face not-ground-state transition, this
freedom may lead to additional effects that are absent in the
effective ground-state problem. In this work we discuss one of
them, namely, an effect caused by the lattice misalignment. In
more detail, we shall analyze formation of the density-wave
phase in a square lattice which is tilted in the y direction with
some uncertainty Fx � Fy (see Fig. 1). It will be shown that
this small misalignment completely changes the result of the
adiabatic passage and, instead of the ordered DW state, one
obtains a disordered state.

II. PHASE TRANSITION IN A LADDER

To illustrate the role of the weak component Fx we
first consider the square lattice which consists of two
rows, i.e., a two-leg ladder. Using the creation, â

†
l,m, and

annihilation, âl,m, bosonic operators and denoting by n̂l,m

the number operator, n̂l,m = â
†
l,mâl,m, the Hamiltonian of

interacting Bose atoms in the tilted ladder can be written in the

form

Ĥ (t) = −Jx

2

2∑
m=1

L∑
l=1

(
â
†
l+1,mâl,me−i Fx d

�
t + H.c.

)

− Jy

2

L∑
l=1

(â†
l,2âl,1 + H.c.) + U

2

∑
l,m

n̂l,m(n̂l,m − 1)

−Fyd
∑

l

(n̂l,2 − n̂l,1). (1)

In the Hamiltonian (1) the first term describes the hopping
of atoms along the ladder legs (the x direction) with the rate
�/Jx , the second term is the hopping between the ladder legs
(the y direction) with the rate �/Jy , the third one is the on-site
interaction energy with U being the microscopic interaction
constant, the fourth term is the energy mismatch between the
legs due to the tilt in the y direction, and the weak component
Fx is taken into account in the first term by using the gauge
transformation. (In what follows we set the lattice period d

and the Planck constant � to unity.) In numerical simulations
we use the periodic boundary conditions in the x direction,
which are known to facilitate convergence of results in the
thermodynamic limit L → ∞. We mention that the system (1)
can be realized experimentally by using a double-periodic
optical potential in the y direction which splits the 2D lattice
into an array of independent two-leg ladders [17].

Since we are interested in the case U � Jx,Jy , we can
truncate the Hilbert space to the resonant subspace spanned by
the Fock states

|n〉 =
[
n1,2 n2,2 . . . nL,2

n1,1 n2,1 . . . nL,1

]
, (2)

where occupation numbers nl,m may take value one or zero if
m = 1 and one or two if m = 2. Then the discussed phase
transition corresponds to evolution of the MI state, where
nl,m = 1, into the ordered doublon state, where nl,1 = 0 and
nl,2 = 2. This evolution is illustrated in Fig. 2 where Fx = 0
and we increase Fy linearly in time with the rate ν = 0.0005.
Different curves in the lower panel in Fig. 2 are probabilities
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FIG. 1. A sketch of the considered system. Strongly interacting
Bose atoms in a square optical lattice are subject to a static force
F which is slightly misaligned with the primary y axis. A simpler
problem corresponds to an array of independent two-leg ladders
which are obtained from the square lattice by setting the hopping
matrix elements for the dashed-line bonds to zero.

Pn(t) to find n doublons in the ladder at a given time. The
solid line in the upper panel is the total number of doublons
normalized to the lattice size:

Nd (t) = 1

L

L∑
n=0

nPn(t). (3)
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FIG. 2. Probabilities Pn(t) to find n doublons in the system, lower
panel, and total number of doublons Eq. (3), upper panel. The field
component Fy is increased linearly in time, where the depicted time
interval corresponds to 0.8 � Fy � 1.2. The energy and time units
are given by the value of the interaction constant U which we set to
unity. The other parameters are Fx = 0, L = 8, and Jx = Jy = 0.02.
The dashed line in the upper panel corresponds to the case Jx = 0.
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FIG. 3. The same as in Fig. 2 but Fx = 0.01.

It is seen in Fig. 2 that we obtain the DW state at the
end of the adiabatic passage. We note that if we set Jx to
zero the problem will reduce to two bosons in an asym-
metric double-well potential. Qualitatively this toy system
reproduces the discussed phase transition (see the dashed
line in the upper panel), where the main difference is
that for Jx �= 0 the transition region is wider. Let us also
mention that the result for Nd (t) depicted in the upper panel
is converged in the thermodynamic sense, i.e., the further
increase of the ladder size L does not affect the shape of the
curves.

Dynamics of the system (1) changes drastically if Fx �= 0
(see Fig. 3). Now the final state is a random state from the
microcanonical distribution, where probabilities Pn are given
by relative dimensions of the corresponding subspaces of the
Hilbert space:

Pn = Nn

N , N =
L∑

n=0

Nn, Nn ≈ 1

L

(
L!

n!(L − n)!

)2

. (4)

(The prefactor 1/L in the last equation is due to periodic
boundary conditions which restrict the system dynamics
to zero-quasi-momentum subspace.) For L = 8 the total
dimension of the zero-quasi-momentum Hilbert space N =
1620 and Nn = 1,8,100,392,618,392,100,8,1, respectively.
This gives P4 ≈ 0.38, P3 = P5 ≈ 0.24, P2 = P6 ≈ 0.06, P1 =
P7 ≈ 0.005, and P0 = P8 ≈ 0, which are in perfect agreement
with the numerical result shown in the lower panel in Fig. 3.
As it will be explained below, the physics behind this result
is self-thermalization of the system due to BOs of the
quasiparticles (doublons and holes) in the x direction. These
quasiparticles are dynamically created when we tilt the ladder
in the y direction. Since quasiparticles behave as hard-core
(HC) bosons, one gets useful insight into the problem by
studying BOs of HC bosons in a ladder.
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III. BLOCH OSCILLATIONS OF HC BOSONS

Bloch dynamics of HC bosons in a ladder is governed by
the time-dependent Hamiltonian

Ĥ (t) = −Jx

2

2∑
m=1

L∑
l=1

(b̂†l+1,mb̂l,me−iF t + H.c.)

− Jy

2

L∑
l=1

(b̂†l,2b̂l,1 + H.c.), (5)

where b̂
†
l,m and b̂l,m are the hard-core creation and annihilation

bosonic operators, (b̂†l,m)2 = 0, and F ≡ Fx is a static field
parallel to the ladder legs. Referring to the original system (1)
the model (2) mimics the case of fixed Fy = U where the
double-well potential becomes symmetric. We shall restrict
ourselves by the filling factor 1/2 because in this case the
Hilbert space of the system (5) and the system (1) are isometric.
In fact, let

|n〉 =
[
n1,2 n2,2 . . . nL,2

n1,1 n2,1 . . . nL,1

]
, nl,m = 0,1 (6)

be the complete set of Fock states of HC bosons at half filling.
Then the resonant subset of Fock states of the system (1) is
obtained by adding unity to every element in the upper row,
leaving the lower row unchanged. The isometric Hilbert spaces
imply the same skeleton of the Hamiltonian matrix, although
the values of nonzero matrix elements may differ by factor√

2 due to bosonic enhancement of tunneling in the original
problem.

It is well known that HC bosons in a 1D lattice can be
mapped into the system of noninteracting fermions. This is,
however, not the case for HC bosons in a ladder. Here any
attempt of mapping leads to effective interactions and, thus, we
are faced with BOs of interacting particles. Previous studies of
Bloch dynamics of interacting atoms revealed two qualitatively
different regimes of BOs [3–5,7]. These are the quasiperiodic
BOs, which take place for a strong field F , and decaying
BOs, which is the case for a weak field. In the latter case the
system gets thermalized, i.e., every Fock state becomes equally
occupied [5]. We found remarkable similarities between BOs
of HC bosons in a ladder and BOs of weakly (U ∼ J )
interacting bosons in a 1D lattice. In particular, depending
on the field strength, BOs of HC bosons in the ladder either
irreversibly decay or show a quasiperiodic dynamics (see
Fig. 4). In the former case the irreversible decay indicates
self-thermalization of the system. Using the above-mentioned
similarity with the original problem this explains the result (4).

IV. INFINITE 2D LATTICES

The above analysis of the ladder system suggests the
following picture of phase transition in the 2D lattice. When
we tilt the lattice in the y direction to Fy ≈ U we produce
particle-hole excitations of the MI state. These quasiparticles
can move in the x direction and, if Fx �= 0, this motion causes
self-thermalization of the system within the characteristic time
TB = 2π/Fx . To avoid this self-thermalization, the evolution
time must be smaller than the Bloch period TB . On the
other hand, to ensure adiabatic passage between the MI and
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FIG. 4. Bloch oscillations of HC bosons in a two-leg ladder at half
filling. The mean momentum per particle is shown as a function of
time. Parameters are Jx = Jy = 0.02, L = N = 8, F = 0.01, upper
panel, and F = 0.2, lower panel. The initial wave function is given
by the ground state of the system for F = 0. The dashed line in the
upper panel denotes BOs of spinless fermions at half filling.

DW states, this time should be as large as possible. These
contradicting conditions introduce severe restriction on the
lattice misalignment.

We mimic phase transition in an infinite lattice by
considering finite lattices up to 4 × 4 sites and imposing
periodic boundary conditions in both the x and y directions.
Then the static force F = νt appears as oscillating phases
exp(−iβνt2/2) and exp(−i

√
1 − β2νt2/2) (here β = Fx/Fy)

in the hopping terms of the Bose-Hubbard Hamiltonian and we
used the Runge-Kutta method of the fourth order to solve the
resulting nonstationary Schrödinger equation. We also truncate
the Hilbert space to the doublon subspace [19]. To characterize
the final state of the system we introduce the order parameters

Dx(t) = N−1〈ψ(t)|
∑
l,m

n̂l+1,mn̂l,m|ψ(t)〉, (7)

Dy(t) = N−1〈ψ(t)|
∑
l,m

n̂l,m+1n̂l,m|ψ(t)〉, (8)

where N is the number of atoms coinciding with the number
of sites. It is easy to prove that the MI state corresponds to
Dx = Dy = 1 while the DW state has Dx = 2 and Dy = 0.
For Fx = 0 (i.e., the precise alignment) and the rate ν = 0.001
dynamics of the order parameters (7) and (8) is depicted in
the upper panel in Fig. 5. First of all we notice that the
final state deviates from the ideal DW state even for Fx = 0.
This is a consequence of the high-order resonant tunneling
which happens at F = U/j where j is an integer number
(see the recent works [14,15] and references therein). For the
considered rate ν = 10−3 only the second-order process is
important. It creates a small number of doublons and holes in
the next-nearest rows of the lattice as F is increased above
U/2. For the subsequent first-order process at F = U these
objects play the role of defects which prohibit particle-hole
excitations of the MI state in their vicinity. For this reason
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FIG. 5. Order parameters Dx(t), solid lines, and Dy(t), dashed
lines, for Fx/Fy = 0, upper panel, and Fx/Fy = 0.01/

√
1 − 0.012,

lower panel. The static field is increased linearly in time with the rate
ν = 10−3, and the lattice size is 3 × 4.

the total number of doublons never reaches the maximally
possible number N/2 and the order parameters deviate from
their extreme values.

Small deviation of the final state from the DW state due
to the high-order resonant tunneling is a minor effect in
comparison with the effect of the lattice alignment. The lower
panel in Fig. 5 shows the result of numerical simulations for
β = Fx/Fy ≈ 0.01. It is seen that the final state practically has
no correlations. At the same time, the total number of doublons
remains pretty high (results are not shown). Thus we end up
with a disordered state of doublons.

V. CONCLUSION

We analyzed response of the Mott-insulator state of cold
atoms in a square 2D optical lattice to a static field F which
is adiabatically increased from zero to a value above the
interaction energy U . If the field F is precisely aligned with

the y axis of the lattice the Mott-insulator state was shown
to evolve in the density-wave state where every second row
is empty and the remaining rows are filled with doublons
(two atoms in one site). This result can be viewed as two-
dimensional generalization of the quantum phase transition
observed in tilted 1D optical lattices [9,14]. The new effect was
found if the static field is slightly misaligned with respect to the
y axis. In this case the final state of the system is a disordered
state of doublons and holes with vanishing correlations. The
physics behind this effect proved to be self-thermalization
of the system due to Bloch oscillations of the quasiparticles
(doublons and holes) in the x direction.

In the present work we restricted ourselves by considering
the field orientation close to the primary y axis of the square 2D
lattice. Obviously, all reported results hold true in the situation
where F is close the x axis. The case of other orientations,
for example, Fx/Fy ≈ 1, is more involved and is expected to
strongly depend on the lattice geometry. In fact, the simple
square lattice is a rare exclusion where single-particle wave
functions, known as the Wannier-Stark states, are localized for
any orientations of the static field except those coinciding with
primary axes. In a generic 2D lattice the quantum particle is
delocalized in the direction orthogonal F for every “rational”
orientation of the static field which is given by arbitrary
superposition of the translation vectors [18]. Thus one may
expect a similar result: we shall observe transition to an ordered
state if the vector F points from one lattice site to a nearby
lattice site exactly and self-thermalization of the system if F
slightly deviates from this direction. The detailed analysis of
the outlined problem will be presented elsewhere.
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