
adfa, p. 1, 2016.

© Springer-Verlag Berlin Heidelberg 2016

Technique of Selecting Multiversion Software System

Structure with Minimum Simultaneous Module Version

Usage

Denis V. Gruzenkin
1
, Roman Yu. Tsarev

1
, and Alexander N. Pupkov

1

1Siberian Federal University, Krasnoyarsk, Russia

gruzenkin.denis@good-look.su, tsarev.sfu@mail.ru,

alex007p@yandex.ru

Abstract. Multiversion or N-version programming is well known as an effec-

tive approach, ensuring high level of software reliability. This approach is based

on two fundamental strategies for enhancing the reliability of a software system

– redundancy and diversity. Modules solving critical tasks are redundant and

implemented in the form of functionally equivalent versions. In this connection

versions can be developed by different programmer teams, in different lan-

guages, in different environment and can implement different methods and al-

gorithms for solution of identical tasks in order to provide versions diversity.

Complex software systems, as a rule, include a set of programs which can call

the same modules for solving their target tasks, or to be more precise, versions

of these modules. According to diversity concept call of different module ver-

sions allows to avoid identical failures. This article presents a technique of se-

lecting optimal multiversion software system to minimize simultaneous usage

of the same module versions.

Keywords: multiversion software, reliability, structure, interface

1 Introduction

At present, different methods of designing highly reliable software are known

[1,2,3,4]. One of the most perspective approaches is multiversion or N-version pro-

gramming (NVP), first presented by Avizienis and Chen [5]. It says that several pro-

gramming components (versions) duplicating each other are included in the system.

However, these versions are diverse, i.e. they implement different methods and algo-

rithms to solve the same problem, they can be developed by different programmer

teams, using different languages and different environment and so on [2], [6].

Multiversion implementation of program components provides system functioning

regardless of hidden faults of some versions. The key advantage of N-version pro-

gramming lies in the fact that system failure can occur only in case of considerable

amount of versions failures [7]. Versions confirm each other’s work which increases

adequacy of results received [8].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Siberian Federal University Digital Repository

https://core.ac.uk/display/81247165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:gruzenkin.denis@good-look.su,%20tsarev.sfu@mail.ru,%20alex007p@yandex.ru
mailto:gruzenkin.denis@good-look.su,%20tsarev.sfu@mail.ru,%20alex007p@yandex.ru

N-version programming means that failures in functionally equivalent versions oc-

cur in different points, and thanks to this faults can be identified and resisted [9].

Use of module principle at a design stage is connected with the process of optimi-

zation of structure and correlations of independent multiversion software system

components to achieve optimal parameters concerning development, debugging and

exploitation of the system (see, for example, Kulyagin et al. [10]).

The set of tasks when selecting optimal structure of multiversion software systems

includes the choice of optimal module set and data arrays, and system structure as a

whole, formalized as a functional block scheme considering given technical and eco-

nomical characteristics of system being developed.

Issues connected to optimization of the structure and components of multiversion

software systems are contemplated in various works where different methods of this

problem solution are presented. For example Kvasnica and Kvasnica in their work

[11] use pseudoparallel optimization to form the structure of fault-tolerant software

systems designed in line with the principle of the N-version programming approach.

They propose several optimization procedures according to the features of the ob-

served corresponding objective function.

Pham addresses the optimization issue for the cost of multiversion software sys-

tems and propose the solution for the minimum expected cost of multiversion soft-

ware systems subject to the desired reliability level [12]. He also solves the problems

of maximizing the reliability of the NVP subject to a constraint on expected system

cost.

Redundancy can improve reliability, but increases the cost of software design and

development. In [13] Rao et al. present a binary integer programming solution for

multiversion software redundancy optimization.

Bhaskar and Kumar deal with the issues connected with criticality of the fault in

multiversion program system and cost of its occurrence. Their work [14] suggests

models for optimal release time under different constraints.

In [15] Kapur et al. propose a testing efficiency model incorporating the effect of

imperfect fault debugging and error generation. Furthermore, they also formulate the

optimal software release time problem for a 3-version software system under fuzzy

environment and discuss a fuzzy optimization technique for solving the problem.

Probably, the greatest contribution to the solution of multiversion software optimi-

zation was made by Yamachi H., Yamamoto H. and Tsujimura Y. They formulate the

problem of multiversion software system optimal design as a bi-objective 0-1 nonlin-

ear integer programming problem optimization model, maximizing the system relia-

bility and minimizing the system cost [16,17,18,19]. They solve the optimization

problem using a multi-objective genetic algorithm employing the random-key repre-

sentation to provide effective genetic search ability and the elitism and Pareto-

insertion based on distance between Pareto solutions in the selection process

[16,17,18,19].

In their works [20,21] Yamachi et al. formulate NVP design problem as the multi-

objective optimization problem that seek Pareto solutions. In [20] they propose an

algorithm that employs the breadth-first search method to find the Pareto solutions

under practical computation time. Further they proposed employing the branch-and-

bound method to find the Pareto solutions [21].

Besides the above, we can note Levitin’s works, where he uses genetic algorithms

to form optimal structure of a fault-tolerant software systems built according to N-

version programming principle [22,23].

Main criteria of synthesis of information processing module systems (multiversion

software systems are undoubtedly such systems) alongside with reliability and cost at

the stage of technical design can be: minimal intermodule interface complexity, min-

imum time exchange between operative and external computer memory when solving

the task, minimal volume of unused data in exchange between operative and external

computed memory, and maximum informational performance of the module system

during solution of tasks. Values of these criteria, one way or another, depend upon

structure of a multiversion software system, and particularly upon simultaneous use of

versions of the same module by different multiversion software system programs.

This article considers the problem of maximization reliability with the limited cost

of the system, along with minimization of simultaneous usage of the modules versions

by different multiversion software system programs. It also offers a mathematical

formalization of this problem. The problem solution is offered via recursive scheme

of brute force (or exhaustive search), that allows to decrease the task solution time.

2 Problem’s Statement

Let us consider the problem of selecting optimal multiversion software system struc-

ture which has high level of reliability, satisfies the given price constraints and pro-

vides minimal simultaneous usage of module versions.

This task appears at the stage of technical design which forms the common re-

quirements to the software system, defines the system functions, procedures and data

processing programs, including processing of input data, and getting intermediate and

final results.

At module design, multiple versions which the module consists of are defined

along with reliability of each version. On the basis of this data the module reliability

can be calculated as follows [7,10]:

 ,,...,1 ,)1(1)(

1

niRXR
i

ij

m

j

X

ijiji  


 (1)

where n – number of modules;

mi – number of versions of module i;

Rij – reliability of version j of module i;

Xij – Boolean variable, equal to 1 if version j is used in module i, or 0 - otherwise.

According to N-version programming principle:

 .,...,1 ,2

1

niX
im

j

ij 


Multiversion software module structure is shown in Fig. 1.

Fig. 1. Structure of multiversion module

Processes of control or data processing, for which multiversion software is devel-

oped, often contain complex mathematical calculations and process big data. There-

fore, usually, complex software systems, instead of independent programs are needed.

Figure 2 Illustrates multiversion software system structure.

 Fig. 2. Structure of multiversion software system

In Fig. 2, M (i) is module i. The problem of maximization of the multiversion

software system reliability can be stated as follows:

 ,max)(

1 ij
k

X
ij

Si

i

K

k

k XRF 


,,...,1 imj = (2)

where K – number of programs;

Sk – quantity of modules, corresponding to program k, k = 1, ..., K;

Fk – frequency of program k usage, k = 1, ..., K.

When designing multiversion software system structure let us solve the problem of

minimum simultaneous usage of a separate module versions in different programs

(Fig. 3) i.e. minimize the number of a module versions which are used in different

programs.

For formalization of this task let us define additional variables:

Wik – Boolean variable equals to 1 if module i is used by program k and 0 other-

wise;

Ykj – Boolean variable equals 1 if version j of the module is used by program k and

0 otherwise:



























.0 if ,0

,1 if ,1

),(

1

1
n

i

ijik

n

i

ijik

ijikkj

XW

XW

XWY (3)

Fig. 3. The scheme of versions interaction in multiversion software system

Then the problem of selecting optimal multiversion software system structure with

minimum simultaneous usage of the same modules by the multiverstion system pro-

grams can be formulated as follows:

 ,min),(),(
,,

'

1

1

1 1'

'
' ijikik

i

XWW
ijik

m

j

K

k

K

kk

jkijikkj XWYXWY  




 

.,...,1 ni = (4)

This task can be solved using brute force by considering all variants of matrix X

and recalculating matrix Y according to (1).

The NVP design problem is constructing a multiversion software system with max-

imum system reliability and within a given budget and known as an NP-complete

problem [21].

Yamachi H. et al. claim in [21], that the NVP design problem can be formulated as

a problem for maximizing reliability under the constraint of budget limitations:

 ,

1 1

bcX

n

i

m

j

ijij

i


 

where cij – cost of version j of module i, j = 1, ..., mi, i = 1, ..., n;

b – budget available for system development.

Although, for such formulations, dynamic programming or genetic algorithms have

been used, an algorithm that employs the branch-and-bound method can be applied as

well [21].

In the example below the method of brute force has been used. This became possi-

ble due to limited number of programs, modules and versions of multiversion soft-

ware system.

3 Algorithmic Basis for Method of Choosing a Multiversion

Software System Structure

One of the approaches to defining an optimal structure of the designed multiversion

software system is brute force method – exhaustive search of all possible variants of

the modules versions usage in all programs of the system and selecting the best vari-

ant out of them.

The technique of choosing a multiversion software system structure includes the

following steps.

On the basis of information about all available versions of the modules, the starting

“basic” value of matrix X is set. Matrix X is created based on Boolean variables Xij,

equal to 1 in this case, if version j is available for use in module i, and zero if other-

wise.

Brute force method allows to consider all possible values variants of designed

multiversion software system structure. When doing so with all elements of Matrix X,

the elements which starting value was equal to 1 change their value to zero and back,

depending on the rate of duplicating the versions of a module in the structure of the

multiversion software system given. Matrix X’s elements which equal to zero origi-

nally, at brute force are not taken into consideration, and their values do not change.

At each stage of brute force method for a current variant of matrix X reliability of

the modules (1) and multiversion software system as a whole are calculated (2).

Besides reliability analysis, each step of brute force method for each variant of ma-

trix X involves calculation of matrix Y using the formula (3). After this, by using the

criterion (4) we minimize simultaneous usage of the same versions of the modules by

multiversion software system programs.

The problem of choosing a structure of multiversion software system can be con-

sidered as one of the following tasks:

 Maximization of reliability of a multiversion software system;

 Minimization of simultaneous usage of the modules version by multiversion

software system programs;

 Maximization of reliability of multiversion software system with set level of

modules versions usage by the programs;

 Minimization of simultaneous usage the modules versions with a set reliability of

multiversion software system by the programs.

Naturally, solution of any of the abovementioned tasks corresponds to, a definite

structure of multiversion software system which is formally introduced by means of

matrix X.

However at brute force method a situation can arise when matrix X dimension will

be big, and the amount of zeros in it will be drastically more than the amount of ones.

In this case, calculation can take much time. For taking into account all possible com-

bination of zeros and ones the recursion scheme is used, that is why a number of tran-

sitions grows exponentially with the increase of matrix X’s dimension.

To avoid unnecessary steps of the algorithm in recursion we suggest introducing

some additional arrays:

1. Flat Boolean array A, dimension of which equals to a number of modules. This

array takes into account the rate of version duplication. Element i of this array equals

to 1, if the amount of versions, used by the module is more than the rate of duplica-

tion, otherwise element i equals to zero. This allows to ignore the rows of matrix X

where the original number of versions in the module equals to the rate of duplication.

2. Two-dimensional array B with the dimension of matrix X. Elements of this array

are transition structures organized as follows: {number of row of matrix X, number of

column of matrix X}. Each element of this array contains indexes of a row and a col-

umn of the following “basic element” (i.e. one), i.e. points to the index of the element

to be transferred to at the next step. If X [i, j] – the last “basic element”, so the corre-

sponding indexes in the structure of the given array will be equal to -1. If during re-

cursion a transition to element X [-1, -1] is encountered, this means that the final vari-

ant of matrix X has been obtained and we can move to calculations of the system pa-

rameters.

Array B is set as follows: we shall define indexes of a row and column in matrix X

for each element B [i, j] by moving from element to element along columns and rows

until we find a “basic element”. If the encountered “basic element” is in a row with

index i and value of element i of array A equals to zero, then we move to the next row.

If at reaching the end of the array the “basic element” has not been found, then the

elements of array B which correspond to transition structures are set to -1.

The suggested approach efficiency is illustrated in Fig. 4 and 5. Figure 5 presents

an example of transitions along matrix X with the rate of duplicating equal to 2.

Fig. 4. Sequence of transitions at brute force method

Fig. 5. Transitions by elements with the rate of duplicating equal to 2

Thus the suggested above approach lessen the number of recursive transition and

decrease time needed for analysis of all possible variants of the multiversion software

system structure.

4 Results and Discussion

Let us consider an example of selection an optimal structure for multiversion software

system. The general structure of multiversion software system is given in Fig. 6. Here

all versions available for each module are presented, the solid lines define the mod-

ules used in different programs of multiversion software system. In table 1 values of

reliability indices of the modules versions and frequency of usage by the programs are

listed.

Fig. 6. Redundant structure of multiversion software system

Table 1. Input Data

Program Module Version Version Reliability Frequency of Program Usage

P (1) M (1) V 1.1 0.950 0.6

V 1.2 0.920

V 1.3 0.925

M (3) V 3.1 0.960

V 3.2 0.860

V 3.3 0.930

M (4) V 4.1 0.930

V 4.2 0.950

V 4.3 0.900

M (5) V 5.1 0.960

V 5.2 0.910

V 5.3 0.950

P (2) M (1) V 1.1 0.950 0.69

V 1.2 0.920

V 1.3 0.925

M (2) V 2.1 0.900

V 2.2 0.930

V 2.3 0.950

M (3) V 3.1 0.960

V 3.2 0.860

V 3.3 0.930

M (5) V 5.1 0.960

V 5.2 0.910

V 5.3 0.950

P (3) M (2) V 2.1 0.900 0.5

V 2.2 0.930

V 2.3 0.950

M (5) V 5.1 0.960

V 5.2 0.910

V 5.3 0.950

On the grounds of input data two tasks have been solved: maximization of

multiversion software system reliability and minimization of simultaneous use of the

same modules versions by multiversion software system programs.

Implementation of the above technique gave the following results: when solving

the first task reliability of multiversion software system being designed constituted

0.99897; at the same time a number of simultaneous usage of the same versions of the

modules in different programs is equal to 18.

When solving the second task reliability of multiversion software system being de-

signed was 0.98837, while only six versions of the modules were used in different

multiversion software system programs.

It is obvious that the given values of reliability and simultaneous usage of the ver-

sions by multiversion software system programs are threshold values for this exam-

ple. With any other problem statement these values can not be excelled.

It should be noted that the size of the task allowed to implement the suggested

technique based on a recursive scheme of brute force method. In case of big size of

the task genetic algorithms or dynamic programming can be applied.

Moreover, we can consider the task of selecting an optimal structure of

multiversion software system as a bi-objective one. This way the important things

turn out to be the problem of balance between reliability and minimal level of the

module versions usage by different multiversion software system programs. In this

work such task was not considered, however solution of this task can become a sub-

ject for further research.

5 Conclusion

N-version programming allows reaching a maximum reliability of a software system.

However, designing a redundant software system is not a trivial problem, demanding

solving the set of tasks and considering different constraints.

This article represents the problem of choosing multiversion software system struc-

ture, which is defined with the usage of different versions of the same modules by

system programs, is represented. The need for solving this problem is conditioned

with the diversity principle realization to avoid potentially identical faults in different

module versions.

The article also provides a technique allowing to solve the problem of selecting an

optimal multiversion software system structure successfully considering requirements

to its reliability, cost and structure constraints, structure complexity and simultaneous

usage of module versions by multiversion system programs.

To solve the task of choosing multiversion software system structure involving

minimal simultaneous use of the module versions the authors offered a modification

of recursive scheme of exhaustive search, allowing to decrease the number of steps

during search of the variants considered.

References

1. Carzaniga, A., Mattavelli, A., Pezze, M.: Measuring Software Redundancy. In: 37th IEEE

International Conference on Software Engineering (ICSE), pp.156-166, IEEE/ACM (2015)

2. Popov, P., Stankovic, V., Strigini, L.: An Empirical Study of the Effectiveness of “Forc-

ing” Diversity Based on a Large Population of Diverse Programs. In 23rd IEEE Interna-

tional Symposium on Software Reliability Engineering (ISSRE), pp.41-50 (2012)

3. Salewski, F., Kowalewski, S.: Achieving highly reliable embedded software: An empirical

evaluation of different approaches. In 26th International Conference on Computer Safety,

Reliability, and Security, SAFECOMP, pp. 270-275, Nuremberg (2007)

4. Son, H.S., Koo, S.R.: Software Reliability Improvement Techniques. Springer Series in

Reliability Engineering, 23, 105-120 (2009)

5. Avizienis, A., Chen, L.: On the implementation of N-version programming for software

fault-tolerance during program execution. In Proc. IEEE Comput Soc Int Comput Software

& Appl Conf, COMPSAC, pp. 149-155 (1977).

6. Durmuş, M.S., Eriş, O., Yildirim, U., Söylemez, M.T.: A new bitwise voting strategy for

safety-critical systems with binary decisions. Turkish Journal of Electrical Engineering and

Computer Sciences, 23 (5), pp. 1507-1521 (2015)

7. Kapur, P.K., Pham, H., Gupta, A., Jha, P.C.: Software Reliability Assessment with OR

Applications. Springer-Verlag London Limited (2011)

8. Latif-Shabgahi, G., Bass, J.M., Bennett, S.: A taxonomy for software voting algorithms

used in safety-critical systems. IEEE Transactions on Reliability, 53, 319–328. (2004)

9. Sommerville, I.: Software engineering; Pearson; 9 edition, Addison-Wesley (2011)

10. Kulyagin, V.A., Tsarev, R.Yu., Prokopenko, A.V., Nikiforov, A.Yu., Kovalev, I.V.: N-

version design of fault-tolerant control software for communications satellite system. In

International Siberian Conference on Control and Communications (SIBCON), pp.1-5

(2015)

11. Kvasnica, P., Kvasnica, I.: Parallel modelling of fault-tolerant software systems. Interna-

tional Review on Computers and Software, 7 (2), pp. 621-625. (2012)

12. Pham, H.: On the optimal design of N-version software systems subject to constraints. The

Journal of Systems and Software, 27 (1), pp. 55-61. (1994)

13. Rao, N.M., Goura, V.M.K.P., Roy, D.S., Mohanta, D.K.: A binary integer programming

solution for optimal reliability of computer relaying software incorporating redundancy. In

Proc. IEEE Recent Advances in Intelligent Computational Systems, RAICS, pp. 524-527

(2011)

14. Bhaskar, T., Kumar, U.D.: A cost model for N-version programming with imperfect de-

bugging. Journal of the Operational Research Society, 57 (8), pp. 986-994. (2006)

15. Kapur, P.K., Gupta, A., Jha, P.C.: Reliability growth modeling and optimal release policy

under fuzzy environment of an N-version programming system incorporating the effect of

fault removal efficiency. International Journal of Automation and Computing, 4 (4), pp.

369-379. (2007)

16. Yamachi, H., Tsujimura, Y., Yamamoto, H.: Pareto distance-based MOGA for solving Bi-

objective N-version program design problem. Advances in Soft Computing, (AISC), pp.

412-422. (2005)

17. Yamachi, H., Yamamoto, H., Tsujimura, Y.: Multiobjective evolutionary optimal design

of N-version software system. Advances in Safety and Reliability – Proc. of the European

Safety and Reliability Conference, ESREL, 2, pp. 2053-2060. (2005)

18. Yamachi, H., Tsujimura, Y., Yamamoto, H.: Evaluating the effectiveness of applying ge-

netic algorithms for NVP system design. Journal of Japan Industrial Management Associa-

tion, 57 (2), pp. 112-119. (2006)

19. Yamachi, H., Tsujimura, Y., Kambayashi, Y., Yamamoto, H.: Multi-objective genetic al-

gorithm for solving N-version program design problem. Reliability Engineering and Sys-

tem Safety, 91 (9), pp. 1083-1094. (2006)

20. Yamachi, H., Yamamoto, H., Tsujimura, Y., Kambayashi, Y.: Searching Pareto solutions

of bi-objective NVP system design problem with breadth first search method. In Proc. 5th

IEEE/ACIS Int. Conf. on Comput. and Info. Sci., ICIS, pp. 252-258. (2006)

21. Yamachi, H., Yamamoto, H., Tsujimura, Y., Kambayashi, Y.: An algorithm employing the

branch-and-bound method to search for Pareto solutions of Bi-objective NVP system de-

sign problems. Journal of Japan Industrial Management Association, 58 (1), pp. 44-53.

(2007)

22. Levitin, G.: Optimal structure of fault-tolerant software systems. Reliability Engineering

and System Safety, 89 (3), pp. 286-295. (2005)

23. Levitin, G., Ben-Haim, H.: Genetic algorithm in optimization of fault-tolerant software.

Advances in Safety and Reliability - Proceedings of the European Safety and Reliability

Conference, ESREL, 2, pp. 1259-1265. (2005)

