
Methods and algorithms for a high-level synthesis
of the very-large-scale integration

OLEG NEPOMNYASHCHY 1, ALEXANDR LEGALOV 1, VALERY TYAPKIN 1,

IGOR RYZHENKO 1, VLADIMIR SHAYDUROV 1,2

1Siberian Federal University
660041, Krasnoyarsk, Prospect Svobodny, 79

RUSSIAN FEDERATION
2Institute of Computational Modeling of Siberian Branch of the Russian Academy of Sciences

660036, Krasnoyarsk, Akademgorodok, 50/44
RUSSIAN FEDERATION

2955005@gmail.com, legalov@mail.ru, tyapkin@mail.ru, rodgi.krs@gmail.com,
http://www.sfu-kras.ru, shaidurov04@mail.ru, http://icm.krasn.ru

Abstract: – We develop methods and algorithms for a high-level synthesis and a formal verification of the
architecture for very-large-scale integration (VLSI). The proposed approach is based on the functional-flow
paradigm of parallel computing and enables one to perform architecture-independent VLSI synthesis by the
construction of a computing model in the form of intermediate structures of control and data graphs. This
approach also provides an opportunity to verify a design at the formal description stage before the synthesis of
the register-gate representation. Algorithms and methods are developed for the construction and optimization of
an intermediate representation of a computing model, the verification, and going to the register-gate description
of VLSI. The stages of the high-level VLSI synthesis are formed in the context of the proposed technique. An
example of the synthesis of a typical module is considered for a digital signal processing. Results of the
practical modeling are presented for an example.

Key-Words: – Parallel computing, functional programming, high-level synthesis, formal verification.

1 Introduction
Due to constantly increasing complexity of the very-
large-scale integration (VLSI) architecture, high-
level synthesis (HLS) is the main area in development
of design techniques [1]. Modern routes of HLS are
based on the imperative paradigm and the related
programming languages. Since the parallel data-flow
processing is typical for digital VLSI, it is necessary
to involve it into synthesis. However, the use of
sequential imperative languages for the description of
VLSI considerably complicates recognizing parallel
structures in programs. Besides, with known
approaches, the register-gate representation of a
circuit obtained by HLS is hardware-dependent, i.e., it
is initially oriented to a specific chip or to the family
of chips of a specific manufacturer.

Nowadays, a number of procedures is available for
distinguishing parallel structures in imperative
programs [2]. Since the problem is not trivial,
heuristic methods are used to obtain a solution in each
case. In so doing, looking for optimal solution under
given restrictions is often inefficient for a complex

project. Once a project has been completed, it
turns out to be obsolete.

Modern VLSIs possess natural parallelism.
Hence, efficient solutions can be found with the
use of paradigms of functional programming
since functions can be carried out in parallel and
independently from each other. In its turn, the
functional-flow (FF) parallel approach enables
one to avoid searching and processing of parallel
structures since an FF parallel program implies
the initial description of a problem with maximal
parallelism.

The implementation of a functional approach
for development of digital circuits is presented
currently for languages Lava, Hume, F#(Kiwi),
and Erlang [4, 8 – 10].

Language Hume is developed for embedded
real-time systems and consists of two levels: the
expression layer and the coordination one. The
expression layer describes the work of compute
nodes (boxes); and the coordination one does the
interaction between the sites in terms of finite-
state machine. The execution of this language to
the field-programmable gate array (FPGA) and

WSEAS TRANSACTIONS on COMPUTERS
Oleg Nepomnyashchy, Alexandr Legalov,

Valery Tyapkin, Igor Ryzhenko, Vladimir Shaydurov

E-ISSN: 2224-2872 239 Volume 15, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Siberian Federal University Digital Repository

https://core.ac.uk/display/81247035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:2955005@gmail.com
mailto:legalov@mail.ru
mailto:tyapkin@mail.ru
mailto:rodgi.krs@gmail.com
http://www.sfu-kras.ru/
mailto:shaidurov04@mail.ru

the realization of its interpretation on the base of
software cores PowerPC and MicroBlaze are
considered in [10].

The project Kiwi is initially supposed to support a
translation from the language F# into the languages
for hardware description. In this project, the support
of parallelism in the language is partial and oriented
to standard streams of the platform .NET. Aim of the
project was initially an attempt to combine the
development of hardware and software in one
platform and language. During translation into
description at the register transfer level (RTL),
streams are translated into parallel-working units.
However, in this approach, there is no built-in support
for parallelism in the language as well as in
imperative ones.

In the language Lava [8] on the basis of Haskell,
the main emphasis is on the level of topology and
arrangement of elements on the chip. Support for
parallelism in Lava is also realized like in the original
language Haskell.

The approach [9] with the language Erlang for
transfer of processes into the hardware description
language converts them into separate computing
modules that form a network-on-chip. An advantage
of Erlang consists in the built-in support for
parallelism in comparison with other functional
languages discussed above.

Nevertheless, most of the works in this field is not
widespread. Also known languages and methods have
such a common and significant drawback as the lack
of support for massive parallelism at level of language
and calculation model.

We propose a technique for the architecture-
independent VLSI synthesis [3] based on the FF
parallel paradigm. It allows one to perform the
efficient transformations of high-level representation
and to carry out the formal verification and
optimization of the VLSI architecture at initial stages
of synthesis. This results in efficient representation of
complex functional VLSIs at high abstraction levels,
testing with maximal covering, and development of
optimal solutions in the VLSI architecture on the gate
level.

2 Justification and description of the
method
In the general case, the high-level VLSI synthesis
involves the following stages:
1. translation of a high-level description into an

intermediate representation;
2. operation scheduling;
3. resource allocation;

4. synthesis of a data processing scheme;
5. synthesis of a control scheme.

In conventional HLS routes with an
imperative language in the initial description at
the translation stage, the data-flow graph (DFG)
and the control-flow graph (CFG) are
recognized; or an integrated version of the
control-data-flow graph (CDFG) is formed. The
scheduling stage consists in time distribution of
operations excluding a data availability conflict.
At the resource allocation stage, for each
operation the available hardware resources
(computing units) are allocated. At the final
stage, the control scheme is generated for
computing units relative to data availability.

Each of the stages 2 and 3 is an NP-complete
computational problem and is interrelated to
subsequent stages. Hence, with using an
imperative description language, the available
methods for the optimal solution of the problem
are computationally unfeasible or non-optimal.
Usually one or several parameters (for instance,
performance, propagation delay, power
consumption, or the area of chip) are given as
restrictions for synthesis and considered to be a
metric of optimality for the solution of a
synthesis problem. These parameters are
interrelated and often mutually exclusive which
also complicates the search of an optimal
solution. With this approach, the synthesis results
in several versions of a solution. Each of them is
related to imposed restrictions. Thus, the choice
of an optimal solution is rather nontrivial. The
problem of high-level VLSI synthesis with the
choice of optimal solution under given
restrictions is known in literature as the design
space exploration (DSE).

Contrary to conventional methods, the
proposed high-level synthesis technique is based
on the functional approach and enables one to
simplify the solution of such problems. In the
context of this technique, initial algorithms of the
operation of VLSI are represented in the
developed functional-flow programming
language. This allows one to form the
architecture-independent representation of a
single-chip system in the form of programs with
large-scale parallelism. With the functional-flow
approach, the compilation of such a program
results in an intermediate representation in the
form of DFG and CFG. With their help, a set of
versions of architecture designs for VLSI is
obtained with given parallelism degree. In Fig. 1
a block diagram of a high-level design route is

WSEAS TRANSACTIONS on COMPUTERS
Oleg Nepomnyashchy, Alexandr Legalov,

Valery Tyapkin, Igor Ryzhenko, Vladimir Shaydurov

E-ISSN: 2224-2872 240 Volume 15, 2016

shown for conventional and functional-flow synthesis
techniques.

The DFG/CFG recognition for the conventional
approach is similar to the compilation into an
intermediate representation for the functional-flow

approach. However, formats of DFG and CFG
representations are different. Moreover,
compilation from one into another representation
is admissible, for example, for compatibility of
hardware tools used at this stage.

Representation of a project in
a high-level imperative language

Development of original codes for the
VLSI operation in functional flow

language of parallel programming

Generation of DFG and CFG

Synthesis of data flow and control flow
graphs according to the program code

Generation of parallel structures
and parallel processing

algorithms

Formal verification and optimization of
program code

The investigation of solutions
of DSE

Generation of solutions of the DSE
problem for systems with maximal

parallelism

Scheduling, resource allocation,
and synthesis of control signals

Synthesis RTL representation
of VLSI

Verification and optimization
of original code

Data typification and optimization of
graph representations

Fig. 1. High-level synthesis routes for the conventional and functional-flow approaches

With the conventional approach, DFG is obtained
in the form of the couple G = (V, E) where V is the
set of vertices that have input and output data ports;
and E is the set of arcs that connect these ports.
Semantics of the graph functioning is reduced to the
data processing from input ports and transmission to
output ones with the signal of data availability. When
constructing DFG by the imperative description, the
transformation is performed into the single
assignment form. Vertices of the graph can involve
any operations and functions that are independent of
conditions.

CFG involves control dependences between
base blocks. The dependences express the
conditions for a base block to operate. Here base
block is meant that it is unconditionally
performed completely from start to finish. The
vertices of CFG involve conditions whose
computing generates the condition for a vertex of
DFG to come into action.

According to the developed route of the high-
level VLSI synthesis on the base of the FF
approach, the following design stages can be
recognized.

WSEAS TRANSACTIONS on COMPUTERS
Oleg Nepomnyashchy, Alexandr Legalov,

Valery Tyapkin, Igor Ryzhenko, Vladimir Shaydurov

E-ISSN: 2224-2872 241 Volume 15, 2016

– The development of algorithms for the VLSI
operation in the FF programming language. At this
stage, the high-level architecture-independent
representation of original algorithms is performed in
the FF programming language.

– The formal verification and optimization of
program code. According to the design task, the
debugging of algorithms for the VLSI operation is
performed without binding to a target platform.

– The synthesis of the intermediate VLSI
representation in the form of DFG and CFG. First the
synthesis and optimization of DFG are performed.
Then the generation of the intermediate representation
of argument and constant types is executed according
to the developed program code with given
restrictions. At the same time, the synthesis and
optimization of CFG are performed.

– The data typification and the optimization of
graph representations. The data typification is
performed according to the type specifications
generated at the previous level. The optimization of
DFG and CFG is performed.

– The intermediate DFG/CFG synthesis. This
stage is performed provided that it is necessary to go
to the related stage of the conventional HLS or to
make concurrent loops for the conventional and FF
parallel synthesis.

– The solution of the DSE problem. These
solutions are generated for systems with maximal
parallelism. This provides the maximal covering of
the space of solutions under given restrictions and the
automatic search of an optimal solution.

– The scheduling, the resource allocation, and the
synthesis of control signals.

– The synthesis of the register-gate representation
of VLSI.

Consider the main stages of the developed route.
As an example, we take the multiplication of complex
numbers being a popular operation for digital signal-
processing systems.

The development of algorithms for the VLSI
operation in the FF programming language
Below we present the listing for the function in the
developed FF language.

// multiplication of complex numbers
ComplexNumsMult << funcdef params
{
num1 << params:1; //the first complex number
num2 << params:2; //the second complex number
a << num1:1; // real part
b << num1:2; // imaginary part
c << num2:1; // real part
d << num2:2; // imaginary part

return << (((a, c):*, (b, d):*): –, ((a, d):*, (b,
c):*):+);

}

The formal verification and optimization
of program code
The use of the FF programming language
provides parallelism on the operation level. The
absence of other parallelism levels enables one to
simplify the verification process because the
analysis of additional resource conflicts is not
required here like that in conventional
architectures.

The set of axioms for base functions of the
language enables one to use them further for the
analysis of correctness of FF programs. To this
end, axioms are successively applied to base
operators and then the “convolution” is formed
by the described rules.

The formal verification means a proof of
program correctness. It consists in establishing
correspondence between a program and its
specification. The main advantage of the formal
verification is in possibility to prove the absence
of errors in a program; whereas the testing just
enables one to find errors. Moreover, the formal
verification suggests the analytical studies of
properties of a program on the basis of its code.
The purpose of verification is achieved by a
rigorous mathematical proof of the
correspondence between a program and its
specification.

Contrary to imperative languages used in the
conventional approach, the FF programming
language involves some specific structures that
allow one to develop efficiently architecture-
independent applications. These structures
involve:

– parallel lists that allows one to store data
and function sets whose interpretation is
performed in the parallel way;

– delayed lists for the storage of code
fragments which start to run once the expansion
operation is applied to a list.

Moreover, these lists can be transferred as an
argument of a function.

In this case, the data typification is not used at
high hierarchy levels of the VLSI description.
The availability of specific structures of the
language and the absence of data typification
provide complete architecture independence of a
design.

However, when going to the register-gate
level at subsequent stages of the synthesis, the
strict typification is required. To this end, at the

WSEAS TRANSACTIONS on COMPUTERS
Oleg Nepomnyashchy, Alexandr Legalov,

Valery Tyapkin, Igor Ryzhenko, Vladimir Shaydurov

E-ISSN: 2224-2872 242 Volume 15, 2016

compilation stage the corresponding structures are
involved in the language; among them digital (integer
and float) types with specification of word size with
an arbitrary bit number and specification of
dimension and type of an argument of a function. This
is necessary since the absence of typification at low
stages of the high-level synthesis gives no way of the
calculation of constant expressions at the stage of
optimization because a word size can depend on the
target architecture. In addition, the VLSI architecture
requires the explicit specification of a word size up to
bit width. Hence, expressions involving the constant
calculations admit optimization. For example, for the
expression (3, 4, 5, 6):((1, 2): +) <=> 5 that involves
only constants, the number 1 + 2 = 3 of the element of
the list is calculated and the third element (the
constant 5) is derived.

Along with the specification of the argument type
for scalar quantities, at the compilation stage the
dimension of lists is specified. This provides the
possibility to transform parallel lists and to transform
recursions into loops at the next compilation stage.

When compiling, those structures of the FF
language are transformed which were not transformed
immediately in VLSI elements and nodes. Such a
transformation provides the further synthesis in the
FF language as well as the use of elements of
conventional HLS routes. Thus, it becomes possible
to use available algorithms for the solution of the
DSE problem as well as to develop hybrid (FF and
conventional) ones. The solution of the problem is
reduced to the development of an efficient algorithm
for going from a system with large-scale parallelism
to VLSI architecture for a target platform or a chip.

In the compilation process, some structures of the
language (for instance, delayed and parallel lists) may
not be transformed immediately into nodes and
elements of a chip while other ones are subject to
some restrictions. For example, the synthesized
program may not involve delayed lists as well as
parallel lists and lists of data whose size is unknown
before execution. In addition, with the VLSI platform
the implementation of recursive functions is
complicated or impossible. In this context, when
compiling functions for the developed VLSI platform,
the following transformations are performed.

a). According to the axioms of the language, the
delayed lists are transformed in parallel ones.

For example, for the delayed list of arguments
consisting of three elements x, y, and z for functions f
and g, the transformation operation is performed. In
the language mnemonics this has the following form:

{x, y, z} : {f, g} <=> [x, y, z] : [f, g].

In this case the dimension of the delayed lists can

be always determined at given stage. Hence, the

dimension of the obtained parallel lists is
determined as well.

b). The parallel list interpretation is
performed. For example, for the parallel list of
arguments x, y, and z for functions f and g, the
interpretation results in the language mnemonics
looks as follows:

[x, y, z] : [f, g] <=> [x:f, y:f, z:f, x:g, y:g, z:g]

[a, [b, c], d] <=> [a, b, c, d]
[x, y, z] : () <=> ([x, y, z]) <=> (x, y, z).

These transformations are admissible provided
that the dimension of parallel lists is determined;

c). Tail recursion is replaced by a loop [7].
The above transformations of a program are

used for its optimization. Interpretation of
parallel lists simplifies the functioning of
operators since the optimization results in
elimination of the parallel lists whose processing
requires a calculation of the number of incoming
signals. Moreover, if restrictions are imposed
with the architecture of the target chip, these
transformations can be used more efficiently. In
particular, the parallel lists can be completely
eliminated which simplifies operators.

Practical implementation of algorithms is
presented in [2] for opening some versions of
parallel lists.

Synthesis of the intermediate VLSI
representation in the form of DFG and
CFG

The DFG generated at the FF program
compilation stage is the VLSI description in the
FF language represented in the form of
intermediate format. The difference in the
concept of the main and intermediate format
representation for an original program is in the
description of links. In program code the
description is carried out “top-down” whereas in
the intermediate “graph” representation it is
performed in the reverse order from a function to
arguments. In Fig. 2 the data flow graph is
shown for the program for multiplication of
complex numbers.

In Fig. 2 the following symbols are used:
: means a vertex of an interpretation operation;
(----) denotes a vertex of a data list;

 denotes a constant;
 denotes an argument of a function.

Once the DFG is generated, the typification is
performed, i.e., all types of arguments and
constants are defined. For the above example, the
dimension of all arguments (complex numbers)

WSEAS TRANSACTIONS on COMPUTERS
Oleg Nepomnyashchy, Alexandr Legalov,

Valery Tyapkin, Igor Ryzhenko, Vladimir Shaydurov

E-ISSN: 2224-2872 243 Volume 15, 2016

is the same and is defined as integer of certain length.
After the typification stage the argument consisting of
two lists of integers of dimension 2 is put at vertex 0.
For this argument, input ports (denoted by a, b, c, and
d) are generated. Then the interpretation operations at
the vertices from 1 to 6 are calculated since the values
of functions and data for these vertices are known at
the synthesis stage.

As a result, the graph is reduced and the
vertices from 3 to 6 involve the corresponding
values of the parts of a complex number in the
form of direct links with the ports of an input
argument. In Fig. 3 the data flow graph is
presented after the typification stage for the
given example.

Fig. 2. The DFG for the program for the calculation of the product of complex numbers

WSEAS TRANSACTIONS on COMPUTERS
Oleg Nepomnyashchy, Alexandr Legalov,

Valery Tyapkin, Igor Ryzhenko, Vladimir Shaydurov

E-ISSN: 2224-2872 244 Volume 15, 2016

Fig. 3. The DFG of the program after optimization

CFG synthesis

At the next stage, the studies of the space of the
DSE solutions are performed with the use of the
transformed graph and given resource restrictions.
Fig. 4 shows that 4 parallel multiplications and 2

parallel additions / subtractions remain in the
graph. Assume that the resource restrictions are
given as 2 multiplications / additions /
subtractions per step.

Fig. 4. The CFG after optimization

WSEAS TRANSACTIONS on COMPUTERS
Oleg Nepomnyashchy, Alexandr Legalov,

Valery Tyapkin, Igor Ryzhenko, Vladimir Shaydurov

E-ISSN: 2224-2872 245 Volume 15, 2016

Then the data processing scheme is generated to be
three-step, namely, 2 multiplications at each of the
first and second steps and addition / subtraction at
the third step. For the output vertex 20, an output
port involving 2 elements is synthesized.

Synthesis of the control scheme is implemented
on the basis of CFG. When generating it, the same
vertices are eliminated as those from DFG at the
optimization stage. CFG for the example is used
for the control scheme synthesis (Fig. 4).

We use the following symbols:
: means a vertex of an automaton of an
interpretation operation;
(----) is a vertex of an automaton of a data list;

 is a constant ready signal;
 is an input port, a data-ready signal.

The vertices 3, 4 and 5, 6 are input ports for
data-ready signals. The vertices 9, 7, 15, 13, 11,
17, and 19 are control vertices of the data lists. For
these vertices, automata are synthesized in the
form of a counter that outputs a ready signal with
coming input signals equal to the dimension of a
list. Here the size of these automata equals 2. For
the vertices 8, 10, 14, 16, 12, and 18 of the
interpretation operation, the Boolean “AND”
scheme is synthesized. The vertices 3, 4, 5, and 6
are couplers of input data-ready signals. The
vertices marked by 1 denote constant ready signal
corresponding to a function of interpretation
operator. Thus, at the synthesis stage, the “AND”
scheme is transformed in a ready signal.

Control scheme synthesis
With the FF synthesis, the vertices of CFG
correspond finite automata that take and process
data-ready signals. Contrary to the conventional
approach where some conditions are calculated at a

vertex of CFG, here this vertex works with data-
ready signals rather than with data and conditions
calculated from them. According to [3], in the
original control flow graph automata of the
following types can be recognized:
– automaton of a constant;
– automaton of a data list;
– automaton of a parallel list;
– automaton of the interpretation operator;
– automaton of return of the result of a function.

At the optimization stage, the automaton of a
constant is replaced by a constant data-ready
signal. The automaton of result return is an output
port for data-ready signal output. With totally
opening parallel lists at the optimization stage, the
automaton of parallel lists is not required.

The automata of a data list and the
interpretation operator are implemented in the form
of finite automata. The automaton of a data list
generates the ready signal provided that the
number of data-ready signals at its input equals the
number of elements of the list. If the dimension of
a list is known at the compilation stage, the
automaton is implemented in the form of a counter
that releases the ready signal as the overflow signal
comes. Another version of the implementation of
this automaton is the scheme of the Boolean
“AND” and the next register.

At the optimization stage, parallel lists are
converted into single operations. Hence, the
automaton of the interpretation operator always has
one data-ready signal and one function-ready
signal at its input. Such an automaton is the
Boolean “AND” scheme which combines input
data- and function-ready signals.

The synthesized control scheme for the example
is shown in Fig. 5.

Fig. 5. Synthesized control scheme

The numbers on the scheme (Fig. 5) denote the

relations between elements of the scheme and
vertices of the optimized CFG. Ready signals for

the data processing scheme are outputted from the
corresponding vertices (3 – 6, 8, 10, 14, 16, 12, and
18). The output ready signal is generated in

WSEAS TRANSACTIONS on COMPUTERS
Oleg Nepomnyashchy, Alexandr Legalov,

Valery Tyapkin, Igor Ryzhenko, Vladimir Shaydurov

E-ISSN: 2224-2872 246 Volume 15, 2016

register 20 and the input ready signals are recorded
in registers 3 – 6.

3 Conclusion
Nowadays one of the main problems in the
development of modern VLSI technologies is the
gap between the number of logic elements on a
single base plate and the number of elements that
can be actually designed and verified during an
economically expedient period. Despite
considerable progress in the conventional VLSI
design and in promising directions of the high-
level architecture design, there remains a number
of problems to be solved in development of
systems with parallel data processing and
configurable architecture. At the present time,
efficient techniques for the development of the
VLSI architecture design are available only with
binding to a target platform as well as methods and
tools for the design support and formal high-level
verification of the VLSI architecture design. With
rare exception, programming languages (that are
used in the present state-of-art for one-chip parallel
data processing systems) are intended either for
circuit description or for conventional
programming.

Contrary to available methods and techniques
for the high-level synthesis at the entire system
level, the proposed technique for the architecture-
independent synthesis enables one to work in terms
of the principles of the system organization of
computational process with the implementation of
the obtained model on a target chip rather than in
terms of available hardware or blocks for a one-
chip system.

The use of the FF model of calculations,
parallelism support at operation level, and the
parallel flow model at all stages of the high-level
VLSI design provide a qualitatively new level in
the one-chip system design.

The presented results of the principles of going
from the description in the FF language to the RLT
description means that the main problems of the
high-level VLSI synthesis may be solved on the
base of FF approach.

The work was financially supported by the
Russian Ministry of Education (Contract No.
14.578.21.0021 – RFMEFI57814X0021).

References:
[1] S.M. Logesh and D.S. Ram, A Survey of

High-Level Synthesis Techniques for Area,
Delay and Power Optimization,

International Journal of Computer
Applications, Vol. 32, No. 10, 2011.

[2] A. Mycroft and R. Sharp, Hardware/software
co-design using functional languages,
Proceedings of Conference “Tools and
Algorithms for Construction and Analysis of
Systems”, 2001, pp. 236–251.

[3] O.V. Nepomnyashchy, A.I. Legalov, and
N.J. Sirotinina, High-Level Design Flows for
VLSI Circuit, Journal of Siberian Federal
University. Engineering & Technologies,
Vol. 7, No. 6, 2014, pp. 674–684.

[4] J. O’Donnell, Generating Netlists from
Executable Circuit Specifications in a Pure
Functional Language, Proceedings of
Workshops in Computing, 1993, pp. 178–
194.

[5] A.I. Legalov, O.V. Nepomnyashchy, I.V.
Matkovsky, and M.S. Kropacheva, Tail
Recursion Transformation in Functional
Dataflow Parallel Programs, Automatic
Control and Computer Sciences, Vol. 47,
No. 7, 2013, pp. 366–372.

[6] R. Namballa, N. Ranganathan, and A.
Ejnioui, Control and data flow graph
extraction for high-level synthesis,
Proceedings on VLSI of IEEE Computer
society, Vol. 1, 2004, pp. 187–192.

[7] D.D. Gajski, M. Meredith, A. Takach, and P.
Coussy, An Introduction to High-Level
Synthesis, IEEE Design & Test of
Computers, Vol. 26, Issue 4, 2009, pp. 8–17.

[8] P. Bjesse, K. Claessen, M. Sheeran, and S.
Singh, Lava: Hardware design in Haskell,
Proceedings of International Conference on
Functional Programming, 1998, pp. 174–
184.

[9] P. Ferreira, C. Ferreira, and C. Alves, Erlang
inspired Hardware, Proceedings of
International Conference on Field
Programmable Logic and Applications,
2010, Vol.1, pp. 244–246.

[10] A. Al Zain, W. Vanderbauwhede, and G.
Michaelson, Hume to FPGA, Proceedings of
10th International Symposium on Trends in
Functional Programming, 2010.

[11] J. Grundy, T. Melham, and J. O’Leary. A
reflective functional language for hardware
design and theorem proving. Journal of
Functional Programming, Vol. 16, No. 2,
2006, pp. 157–196,

[12] V. Skylarov and I. Skilarova, FPGA-based
implementation and comparison of recursive
and iterative algorithms, Proceedings of
International Conference on Field
Programmable Logic and Applications,
2005, pp. 235–240.

WSEAS TRANSACTIONS on COMPUTERS
Oleg Nepomnyashchy, Alexandr Legalov,

Valery Tyapkin, Igor Ryzhenko, Vladimir Shaydurov

E-ISSN: 2224-2872 247 Volume 15, 2016

	OLEG NEPOMNYASHCHY 1, ALEXANDR LEGALOV 1, VALERY TYAPKIN 1,
	IGOR RYZHENKO 1, VLADIMIR SHAYDUROV 1,2

