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Carbon dioxide (CO2) is one of the main gases which cause the greenhouse effect. As a 

way to attenuate this damage, CO2 could be used as a building block for copolymerization 

reactions; precisely as C1 feedstock (monomer of the reaction) and as the pressurizing 

gas in these copolymerization reactions. The required monomer which is involved in the 

reactions is propylene oxide (PO) which possesses a high reactivity, enabling the CO2 

bonding. Through the mechanism of ring opening polymerization (ROP), the 

incorporation of CO2 in the polymer chain can be possible. During this research, two 

different heterogeneous catalysts were used for the copolymerization reactions. Zinc 

glutarate (ZnGA) and double metal cyanide (DMC) were selected as plausible catalysts 

to perform the reactions.  

The goal of this doctoral thesis is to study these heterogeneous catalysts in 

copolymerization reactions between PO and CO2 to understand how the catalyst and the 

process can be improved for a possible future industrial application.  

To characterize the catalysts, several techniques were used such as Fourier transform 

infrared spectroscopy (FTIR and FTIR with pyridine), inductively coupled plasma optical 

emission spectroscopy (ICP), light scattering (with air and distilled water), nitrogen 

physisorption, scanning electron microscopy and energy–dispersive X-ray spectroscopy 

(SEM-EDX), thermogravimetric analysis-mass spectrometry (TGA-MS), X-ray 

photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRPD). 

The goal of these copolymerization reactions was to obtain a liquid CO2/propylene oxide 

copolymer, understanding the formation of carbonate bonds (polypropylene carbonate, 

PPC) and trying to minimize the cyclic propylene carbonate production (by-product, PC). 
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Fourier transformed infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) 

and size exclusion chromatography (SEC) techniques were used to analyse the 

copolymers obtained from these reactions.  

The first catalyst used for the study was zinc glutarate (ZnGA), as it is shown in Chapter 

1. An exhaustive characterization of this heterogeneous catalyst was carried out with a 

complete study of its behaviour in copolymerization reactions.  

This catalyst was synthesized by mixing zinc oxide, glutaric acid and toluene. ZnGA 

proved to be a catalyst without any porosity and without Brønsted and/or Lewis acid sites. 

The active area was the outer surface area of the catalyst, where the Zn2+ active sites exist. 

In this catalyst, the average amount of Zn2+ amount was around 353 mg Zn / g catalyst. 

The sample was very disperse on particle sizes, showing also a rectangular plate shape 

morphology with an average size of 321.6 nm. 

Several different reaction conditions were screened for the formation of the copolymers 

from propylene oxide (PO), carbon dioxide (CO2) and polypropylene glycol (as initiator, 

PPG of 425 g/mol). The study included changes in the amount of ZnGA (0.3, 0.6, 1.0, 1.5 

g), reaction temperature (60, 80 ºC), reaction pressure (6, 25 barg), final expected 

molecular weight of the copolymer (725, 3000 g/mol) and the reaction time (20, 40 h). 

Finally, it was possible to conclude that the best conditions corresponded to 1.5 g of 

catalyst, 25 barg, 80 ºC, 40 h and 3000 Da of initial PO estimation. TON (Turnover 

number) and TOF (Turnover frequency) values are really low which demonstrated the 

low activity of this catalyst.  
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A completely different behavior was observed when a double metal cyanide catalyst 

(DMC) was used.  

In Chapters 2 and 3 several DMC catalysts were synthesized and characterized in order 

to determine which one is the most active. Chapter 2 showed the effect of varying the 

initial amounts of zinc chloride (ZnCl2) on the catalytic activity, in order to determine the 

influence of the catalyst preparation method.  

Five different DMC catalysts were synthesized from zinc chloride (ZnCl2), potassium 

hexacyanocobaltate (III) (K3[Co(CN)6]2), tert-butanol (tBuOH, as complexing agent 

(CA)) and polyethylene glycol 1000 (PEG 1000, as co-complexing agent (co-CA)). The 

Zn/Co ratio was changed during the synthesis, having one reagent always in excess to 

reveal its impact on the catalytic activity, crystallinity and other properties. The presence 

of K+ caused a dramatic decrease on the catalyst activity, while an increase of Zn2+ 

produced more agglomerations of spherical particles in the catalyst (DMC E). 

Only two of the catalysts prepared were successfully activated (D and E catalysts, 

according the nomenclature used in this thesis). Their morphologies were lamellar with 

spherical particle agglomerations.  

After the copolymerization reactions, all the copolymers were analysed revealing that the 

most active catalyst was DMC E. With DMC E it was possible to achieve a high catalytic 

activity (2.5 kg polymer / g catalyst) with an increased CO2 incorporation (6.7 %) and a 

lower production of the cyclic propylene carbonate, PC (0.3 %). 

The implementation of mechanical stirrer instead of the initial magnetic one, decreased 

the polydispersity index (PDI) values from 5.97 and 13.09 to values around 1 to 1.1.  



                                                                                                                                                            Abstract 

 

 
28 

 
 

The results showed that it is possible to obtain shorter dispersed copolymer chains in the 

bulk reaction medium.  

Chapter 3 was focused on the catalyst activation stage previous to the copolymerization 

reaction process. This catalyst was named as DMC A and it was exactly the same as the 

DMC E discussed in Chapter 2. This catalyst had only 0.0002 mol/ g cat of K+ while the 

amount of Zn was 0.0036 mol/ g catalyst. 12 experiments were carried out for this DMC 

catalyst activation study, modifying the amount of catalyst using 10, 20, 40 and 80 mg of 

DMC and 4, 8 and 18 g of propylene oxide in total. 

This kind of catalyst is not a selective one and, after the reaction, high concentrations of 

the by-product were obtained. As the amount of DMC was increased, the PC amount also 

increased with the same CO2 incorporation in the final copolymer. Using only 20 mg of 

catalyst per batch, the reaction produced more polypropylene carbonate (PPC) and cyclic 

propylene carbonate (PC) with the highest values of TON and TOF and the lowest PDI 

value. These results were confirmed by the FTIR spectrum for 20 mg of DMC A catalyst. 

Apart from these chapters, the current PhD thesis has also an appendix. The appendix 

shows the solubility of CO2 in different polycarbonates. Several experiments at different 

temperatures, trying to charge the same initial pressure, were conducted to determine how 

the solubility is influenced by temperature and pressure. 
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Koldioxid (CO2) är en av de viktigaste gaserna som orsakar växthuseffekten. Ett sätt att minska 

denna skada, är att använda CO2 som reaktant för sampolymerisationsreaktioner, i själva verket 

som C1-råmaterial (monomer) och som tryckgas i dessa reaktioner. Monomeren som är 

involverad i dessa reaktioner är propylenoxid (PO) som har hög reaktivitet, vilket möjliggör att 

CO2 kan bindas. Genom mekanismen för ringöppningspolymerisationen (ROP), kan CO2 

inkorporeras i polymerkedjan.  

  

Två olika typer av heterogena katalysatorer användes för sampolymerisationsreaktioner. Zink- 

glutarat (ZnGA) och dubbelmetallcyanid (DMC) valdes som potentiella lämpliga katalysatorer 

för att utföra polymerisationsprocesserna. Målet med denna doktorsavhandling var att studera 

dessa heterogena katalysatorer i sampolymerisationsreaktioner mellan PO och CO2 i syfte att 

förstå hur katalysatorn och processen kan förbättras med tanke på möjliga framtida industriella 

tillämpningar. 

 

För att karakterisera katalysatorerna, användes flera metoder, såsom fouriertansformerad 

infrarödspektroskopi (FTIR och FTIR med pyridin), induktivt kopplad plasma, optisk 

emissionsspektroskopi (ICP), ljusspridning (med luft och destillerat vatten), fysisorption av 

kväve, svepelektronmikroskopi och energi-röntgenspektroskopi (SEM-EDX), termogravi-

metrisk analys-masspektrometri (TGA-MS), röntgenfotoelektronspektroskopi (XPS) och 

röntgendiffraktion (XRPD). 

 

Målet med dessa sampolymerisationsreaktioner var att erhålla en CO2/propylenoxid sam-

polymer genom att skapa karbonatbindningar (polypropylenkarbonat, PPC) och genom att 

försöka minimera cyklisk karbonatproduktion (biprodukt, PC).  
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FTIR, kärnmagnetisk resonansspektroskopi (NMR) och size exclusion kromatografi (SEC) 

användes för att analysera de sampolymerer som erhållits från dessa reaktioner. Den första 

katalysatorn som användes för detta studium var zinkglutarat (ZnGA), vilket diskuteras i kapitel 

1. En uttömmande karakterisering av denna heterogena katalysator genomfördes samt en 

fullständig undersökning av dess beteende i sampolymerisationsreaktioner. 

 

Denna katalysator syntetiserades genom att blanda zinkoxid, glutarsyra och toluen. ZnGA 

visade sig vara en katalysator utan porositet och utan Brønsted- och Lewis-syraställen. Det 

aktiva området är den yttre ytan av katalysatorn, där aktiva säten bestående av Zn2+ finns. I 

denna katalysator var den genomsnittliga mängden Zn2 + ca 353 mg Zn/g katalysator. Provet 

hade en bred partikelstorleksfördelning. Morfologiskt bestod katalysatorpartiklarna av 

rektangulära plattor med en medelstorlek på 321,6 nm. 

 

Flera olika reaktionsbetingelser studerades för bildningen av sampolymererna från propylen-

oxid, koldioxid och propylenglykol (som initiator, PPG av 425 g/mol). I experimenten ingick 

olika mängder ZnGA (0,3, 0,6, 1,0, 1,5 g), olika reaktionstemperatur (60, 80°C) och 

reaktionstryck (6, 25 barg), förväntade värden på molekylviken av sampolymeren (725, 3000 g 

/mol) och samt olika reaktionstider (20, 40 h). 

 

Slutligen var det möjligt att dra slutsatser beträffande de bästa betingelserna som motsvarade 

1,5 g katalysator, 25 barg, 80°C, 40 h och 3000 Da som PO preliminär uppskattning. 

Omsättningstalet (TON) och omsättningsfrekvensen (TOF) hade låga värden vilket visade det 

mycket långsamma beteendet av denna katalysator. 
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Ett helt annorlunda beteende observerades då dubbelmetallcyanidkatalysatorn (DMC) 

användes. I kapitel 2 och 3 syntetiserades flera DMC-katalysatorerer som karakteriserades för 

att avgöra vilken ar dem var katalytiskt den mest aktiva. I kapitel 2 visades effekten av 

varierande initialmängder av ZnCl2 på den katalytiska aktiviteten. Detta gjordes för att 

bestämma inverkan av katalysatorframställningsmetoden på aktiviteten. 

 

Fem DMC-katalysatorer syntetiserades utgående från ZnCl2, K3 [Co(CN)6]2, tert-butanol 

(tBuOH, som komplexbildningsmedel (CA)) och PEG 1000 (som samkomplexbildande medel 

(sam-CA)). Zn/Co-förhållandet ändrades under syntesens gång, med ett reagensöverskott 

användes alltid för att avslöja dess inverkan på katalytisk aktivitet, kristallinitet och övriga 

egenskaper. Närvaron av K+ orsakade en dramatisk minskning på katalysatoraktiviteten, medan 

en ökning på Zn2+ ledde till att katalysatorn hade flera sfäriska agglomerat av partiklar (DMC-

E). 

 

Endast två av de katalysatorer som framställdes kunde med framgång aktiveras (D- och E-

katalysatorer, enligt vår nomenklatur). Deras morfologi var lamellär med sfäriska partikel-

agglomerat. Efter sampolymerisationsreaktionerna analyserades alla sampolymerer vilket 

visade att den mest aktiva katalysatorn var DMC-E. Med DMC-E var det möjligt att uppnå en 

hög katalytisk aktivitet (2,5 kg polymer/g katalysator) med en högre inkorporering av CO2 

(6,7%) och en lägre produktion av det cykliska karbonatet, PC (0,3%). 

 

Implementering av en mekanisk omrörning i stället för den ursprungliga magnetiska 

omröringen ledde till att polydispersitetsindexet (PDI) minskade från 5,97 och 13,09 till runt 1 

och 1,1. Detta innebär att korta sampolymerkedjor förekommer i bulkreaktionsmediet i stället 

för en hög polydispersitet. 
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Kapitel 3 var fokuserar på katalysatoraktiveringssteget före sampolymerisationsprocessen. 

Denna katalysator kallades DMC-A och den var exakt densamma som DMC-E som diskuteras 

i kapitel 2. Denna katalysator hade bara 0,0002 mol/g katalysator K+ , medan mängden Zn var 

0,0036 mol/g katalysator.  

 

Totalt 12 experiment genomfördes inom ramen för dessa DMC-katalysatoraktiveringsstudier 

genom att modifiera mängden katalysator och genom att använda 10, 20, 40 och 80 mg av DMC 

och 4, 8 och 18 g propylenoxid (PO) totalt. 

 

Denna typ av katalysator var de minst selektiva varvid högre koncentrationer av biprodukter 

(PC) erhölls i reaktionen. Då mängden av DMC ökades, ökade även mängden av PC för samma 

mängd CO2 som skulle inkorporeras i den slutliga sampolymeren.  

 

Genom att enbart använda 20 mg katalysator för ett satsförsök, producerade reaktionen mera 

PC och PC med de högsta värdena på TON och TOF och det lägsta PDI-värdet. Dessa resultat 

bekräftades också av ett FTIR spektrum för 20 mg av DMC-katalysatorn. 
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This doctoral thesis research started with the aim of producing polypropylene carbonates 

in copolymerization reactions using two different types of heterogeneous catalysts: zinc 

glutarate (ZnGA) and double metal cyanide (DMC) catalysts. 

Zinc glutarate catalyst (C5H6O4Zn) is an odourless white powder synthesized by the 

chemicals zinc oxide (s, ZnO), glutaric acid (s, GA) and toluene (l), where s and l denote 

solid and liquid, respectively.  Double metal cyanide (DMC) is a heterogeneous catalyst 

synthesized, in this research, from zinc chloride (ZnCl2), potassium hexacyanocobaltate 

(III) K3[Co(CN)6]2, tert-butanol (t-BuOH) and polyethylene glycol 1000 (PEG 1000, 

Mw=1000 g/mol). 

A complete study of these two catalysts and characterization of the polycarbonates 

obtained from the reactions are included in this thesis work. These reactions are 

copolymerization reactions, which means that two monomers are involved: the first is 

propylene oxide and the second is carbon dioxide. The reactions are carried out under 

subcritical conditions, in a semibatch mode.  

One of the most interesting aspects in this field and particularly in this PhD work is the 

use of CO2 not only as the pressurizing gas, but also as a C1 feedstock [1-12]. Carbon 

dioxide will be a very economical attractive resource. To reduce or to eliminate the use 

of hazardous substances is the objective of green chemistry. Trying to have a sustainable 

society in the future is capital nowadays. 
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Carbon dioxide as a feedstock for polymerization 

 

Carbon dioxide (CO2) causes the greenhouse effect, among other gases such as methane 

(CH4) and nitrous oxide (N2O). Anthropogenic actions such as burning coal or other fossil 

fuels increase the concentration of CO2 in the atmosphere year after year. Several 

regulations have been established to control the emissions, e.g. the Montreal Protocol and 

the Kyoto Protocol. In fact, at the Paris Climate Conference (COP21) in December 2015, 

195 countries adopted the first-ever universal, legally binding global climate deal. This 

agreement has been signed by 175 countries on the 22nd April 2016 [13]. The 

concentration in the atmosphere in 2015 rose to 400 ppm of CO2. This concentration was 

less than 320 ppm of CO2 in 1962 (National Oceanic & Atmospheric Administration, 

2015) [14, 15]. 

As a chemical or solvent, CO2 can be considered environmentally friendly with relatively 

low cost, high purity, nontoxic and non-flammable. It can be captured, stored and used in 

copolymerization reactions as a C1 feedstock [16, 17]. Using CO2 as a feedstock is 

motivated not only because of the green point of view, i.e. using a reaction by-product as 

a monomer, but because of the economical aspect. Using CO2 as a C1 feedstock assures 

lower OPEX in carbon sources from other chemicals, such as epoxides in this case [18]. 

The point is to substitute the weight of other organic monomers by the incorporation of 

CO2. 

The “reagent” monomer that was involved in these researched copolymerization reactions 

was Propylene oxide (PO).  Propylene oxide (C3H6O) is a colourless liquid with an ether-

like odour. 
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Through the mechanism of ring opening polymerization (ROP), the epoxide (PO) opens 

itself and the incorporation of CO2 in the polymer chain becomes possible [19-21]. This 

process is based on thermodynamic preferences. 

 

Figure 1. Copolymerization reaction among propylene oxide and carbon dioxide [22]. 

 

 

Zinc glutarate -  the first active catalyst 

 

One of the pioneers on this kind of copolymerization reactions was Inoue in the 1960’s 

[23]. Epoxides had not been used before as a monomer in alternating copolymerization 

until the group of Inoue used them with carbon dioxide to obtain polycarbonates using an 

organometallic compound.  
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First, the metal alkoxide reacts with carbon dioxide and then, the epoxide with the metal 

carbonate bond.  

Propylene oxide has been studied with acid anhydride and with α-amino acid N-carboxy 

anhydride, such as diethylzinc and ethanol. Other epoxides have also been copolymerized 

and characterized such as epiclorohydrin, and styrene oxide with carbon dioxide [12, 24, 

25].  

Ree and Kim et al, carried out several copolymerizations between propylene oxide and 

carbon dioxide and studied the influence of several heterogeneous catalysts [26, 27]. They 

proposed a procedure for the synthesis of zinc glutarate catalysts (the experimental 

procedure followed in Chapter 1 with some negligible differences). Numerous catalysts 

were synthesized and tested in copolymerization reactions (using eleven different glutaric 

acid derivatives, and they obtained different zinc dicarboxylate catalysts giving the 

highest yield of the polypropylene carbonate (PPC) using zinc glutarate (ZnO/GA) as the 

catalyst. Also, the highest molecular weight was achieved by this heterogeneous catalyst. 

Chisholm et al. [28], explained in detail the structure and conformation of the poly 

(propylene carbonate) from the reaction among carbon dioxide (CO2) and propylene 

oxide (PO). The catalyst employed was zinc glutarate which has active Zn-OH groups 

that they synthesized according to the procedure of Ree et al. [29]. Zinc oxide and glutaric 

acid were used in the synthesis. 

Morphological parameters are used for catalyst characterization. It has been found that 

the catalyst with the highest crystallinity and crystal quality but with the lowest surface 

area had the highest catalytic activity in copolymerization reactions.  
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It was also concluded that the one obtained by using zinc oxide (ZnO) and glutaric acid 

(GA) was the most active for this type of copolymerization between CO2 and PO (with a 

low surface area) [26, 30-35]. 

The research showed in Chapter 1 using ZnGA as the catalyst in copolymerization 

reactions was carried out at Åbo Akademi University (Åbo/Turku, Finland). 

 

Double metal cyanide a novel highly active catalyst 

 

Chapter 2 is focused on the use of DMC catalysts, instead of zinc glutarate for these kind 

of copolymerization reactions. Several catalyst systems have been developed for the 

synthesis of polycarbonates [36] and many studies have focused on finding new catalysts 

with improved activity and selectivity [37].  

The main goal is to synthesize a catalyst which is rapid enough to reduce the reaction 

time to make the process technically feasible, but at the same time slow enough in the 

propylene oxide (PO) incorporation to give CO2 the opportunity to react and incorporate 

into the polymer chain [3, 38].  

Several research groups have pursued this path on developing both homogeneous and 

heterogeneous catalysts for CO2 fixation [39, 40] and one of the successful examples is 

double metal cyanide (DMC) catalyst [41, 42]. The DMC catalyst generally referred to 

zinc hexacyanometalate is prepared by a reaction of a zinc halide and a 

hexacyanometalate salt [43] and a complexing agent in some cases [44]. DMC catalysts 

not only are effective for propylene oxide ring-opening (ROP) but also for CO2-epoxides 

copolymerization [37, 42, 45-47].  
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These catalysts are highly active and give polyether polyols which have a low 

unsaturation and a narrow molecular weight distribution [45], yielding biodegradable 

polycarbonates with a wide potential for polyurethane applications [48]. 

Improvements have made the DMC catalysts much more attractive for commercial 

manufacture of polyoxypropylene polyols [45]. Copolymerization of propylene oxide 

(PO) and CO2 using a DMC complex based on Zn3[Co(CN)6]2 has been successfully 

carried out by different researchers. For instance, Chen et al., 2004 demonstrated that 

Zn3[Co(CN)6]2 enhances the catalytic activity better than Zn3[Fe(CN)6]2 [49]. Gao et al. 

(2012) studied the effect of molecular weights of the initial polypropylene glycols (PPG) 

on the polymerization and the reaction conditions [46]. Li et al. (2011) studied the 

copolymerization process of CO2 and PO without initiators [47]. Zhou et al. (2011) 

demonstrated the use of high crystallinity catalysts and they studied the effect of various 

reaction conditions, such as the amount of the catalyst, the reaction time and the 

copolymerization temperature [50].  

Sebastian and Srinivas studied DMC catalysts prepared by different methods and their 

influence on the catalytic activity for CHO-CO2 copolymerization [51]. They reported 

that even with a moderate crystallinity and without co-complexing agents, the catalyst is 

high active for copolymerization. CO2 adsorption studies revealed that a higher guest-

host interaction results in a higher catalytic activity [52]. 

Developing a highly active catalyst system which is capable of producing high-

molecular-weight polypropylene carbonate (PPC) and a low amount of cyclic 

polycarbonate (PC,  by-product) is fundamental; under the control of the percentage of 

CO2 incorporation [47]. 
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In this research carried out at the University of Valladolid, the effect of different Zn/Co 

initial ratios on the preparation of five DMC catalysts was demonstrated by testing the 

activity in the copolymerization process, the cyclic polycarbonate (PC) production and 

CO2 coupling. A comprehensive study of all the catalysts, including thorough physical 

and chemical characterizations has been performed using a number of different analytical 

techniques. 

 

Activation of the double metal cyanide catalysts 

 

Chapter 3 is devoted to the activation process before each copolymerization reaction 

experiment.  

Since Inoue and co-workers first disclosed the ring-opening copolymerization (ROP) of 

CO2 with 1,2-epoxypropane by ZnEt2-H2O [23], much attention and progress has been 

made within the past decades to explore various relating catalysts to ensure the 

copolymerization and afford to synthesize a range of aliphatic polycarbonates [43]. The 

copolymerization process of CO2 is strongly dependent on the selection of the catalyst 

and various heterogeneous and homogeneous catalysts have been studied [20].  

Homogeneous catalysts are generally suitable for research, because their chemical 

structure can be well defined, and some homogeneous catalysts show high activity and 

product selectivity. Among them, typical homogeneous catalysts are metal porphyrins, 

zinc phenolate, discrete β-diiminate zinc, and binary or single bifunctional catalyst 

systems based on metal-salen complexes. Prominent among these catalysts are β-

diiminate zinc complexes and metal salen complexes [36, 53-56].  
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Dinuclear and bimetallic catalysts comprising metal(II/III) complexes such as Co(III), 

Cr(III), Mn(III) or Al(III) [40] are used with co-catalysts. The co-catalysts are typically 

ionic compounds such as bis(triphenylphosphine)iminium (PPN) chloride (PPNCl), or 

Lewis bases. These catalysts are coordinated by ligands such as salens or porphyrins [20].  

It was noteworthy that Salen-Co complexes has shown excellent effects [36]. The most 

effective catalysts for epoxide/CO2 copolymerization proved to be chiral salen Co (III) 

complexes in combination with strong Lewis acids and nucleophilic co-catalysts [57, 58]. 

 

 

 

 

 

 

Figure 2. Proposed ground-state structure of the active site of Zn-Co (III) DMCC catalyst by Wei 

R.J et al. 

Both catalysts involving monometallic or bimetallic mechanisms show a high activity and 

selectivity to polycarbonate, a good stereo-selectivity and in some cases an enhanced 

enantioselectivity [23-25] under mild conditions. The reactions using metallic catalysts 

have disadvantages, such as a poor solubility of the catalyst, difficulties in catalyst 

recycling, air sensitivity, need of a co-solvent, or requirement for high temperatures [17, 

59, 60]. 

Although the chemical or crystal structures of heterogeneous catalysts have not been 

completely elucidated, some of them show a good potential in industrial applications [8].  
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Zinc glutarate (or other carboxylates) and double metal cyanides are the two major classes 

of heterogeneous catalysts [61]. Double metal cyanide complexes (DMC) are well-known 

catalysts for the ROP of epoxides [19, 21, 37, 41-43, 45, 46, 49, 51, 52, 58, 62-76]. 

Generally, the DMC catalysts are obtained by reacting a selected metal salt with a cyanide 

derivative of another metal in the presence of an electrodonor organic complexing ligand 

[49, 77]. The most commonly studied double metal cyanide catalyst is Zn3[Co(CN)6]2 

[20, 41, 46] and it has been identified as the most active for copolymerization [52]. 

Besides, a variety of transition metal elements such as Ni, Co, Fe, Mn have also been 

studied [64]. 

The incorporation of DMC in the copolymerization of epoxides and CO2 have some 

disadvantages. One of the disadvantages is the low CO2 insertion in the polymer chain.   

While DMC catalysts offer significant advantages for the ROP of epoxides, few reports 

have been published on the copolymerization of epoxides with CO2 thereby [19, 21, 37, 

41-43, 45, 46, 49, 51, 52, 58, 62-76, 78, 79]. The catalysts are highly active giving 

polyether polyols with low unsaturation and narrow molecular weight distribution 

compared with similar polyols synthesized via conventional KOH catalysis, resulting in 

high performance polyurethane products [80]. 

In this chapter, we show a high active DMC catalyst prepared with potassium 

hexacyanocobaltate and zinc chloride, as well as a catalyst activation study where the 

amounts of PO and DMC used for copolymerization have been changed to elucidate the 

best conditions [45, 64, 66, 70, 81-84]. 

As far as we know, there are practically no reports available on the catalyst activation 

under different conditions where the amount of DMC used is crucial to obtain the 

maximum efficiency for the copolymerization process. 
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This reaction can be the base of a future chemistry to obtain polymers based on bio-

alcohols, determining whether new green polyurethanes and polycarbonates can be 

synthesized with an industrial application such as biodegradable thermoplastics and 

biomedical polymers. 
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There has been a will of starting up this new research branch in both laboratories: 

Reaction Engineering and Industrial Chemistry Laboratory of the Process Chemistry 

Centre (PCC) at Åbo Akademi University (Turku, Finland) and Chemical Engineering 

and Environmental Technology Department from the University of Valladolid 

(Valladolid, Spain). 

The main objective of this research consists on producing CO2/propylene oxide 

copolymers through the Ring Opening Polymerization process in batch and subcritical 

conditions.  

To reach this goal the first step is to build the system in both facilities; this means design 

and start up both experimental systems. The working conditions are at subcritical pressure 

but they could be working also at supercritical conditions, making up several parts of the 

equipment.  

Once both systems are ready, the next step implies the synthesis of both catalysts which 

are going to be used for the copolymerization reactions. Two types of heterogeneous 

catalysts are going to be used for these copolymerization reactions. The synthesis 

procedure, their morphologies and their behaviour are completely different.  

Each chapter of this thesis is in charge of different studies involving both catalysts: the 

best conditions for copolymerization reactions, the most active catalyst, the best 

conditions for activation processes, differences in the catalyst behaviour in order to get 

the final copolymer with or without by-product after the reaction… 

Dividing all this studies into three chapters and two annexes, the specific objectives for 

each one are the following: 
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Chapter 1. Heterogeneous Zinc glutarate catalyst study in copolymerization reactions 

among propylene oxide and carbon dioxide in batch and subcritical conditions. Specific 

objectives: 

• Establish a correct synthesis procedure for this catalyst. Synthesis conditions like 

temperature, pressure, time and amount of reagents. Steps needed to get the 

catalyst. Reproducible method and results. 

• Characterization of the catalyst by several techniques such as Fourier transform 

infrared spectroscopy (FTIR and FTIR with pyridine), Inductively coupled plasma 

optical emission spectroscopy (ICP), Light scattering (with air and distilled 

water), Nitrogen-physisorption, Scanning electron microscopy and Energy–

dispersive x-ray spectroscopy (SEM-EDX), Thermogravimetric analysis-mass 

spectrometry (TGA-MS), X-ray photoelectron spectroscopy (XPS) and X-ray 

powder diffraction (XRPD).  

• Study of Zinc glutarate catalyst in copolymerization reactions using propylene 

oxide and carbon dioxide as reagents. Obtain the best subcritical conditions in 

batch mode for the reactions: amount of catalyst, reaction temperature, reaction 

pressure, final copolymer molecular weight and reaction time. 

• Characterization of the copolymers by Fourier transform infrared spectroscopy 

(FTIR) and Size exclusion chromatography (SEC) techniques. 
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Chapter 2. Effect of Zn/Co initial preparation ratio in the activity of a Double Metal 

Cyanide catalyst for propylene oxide and carbon dioxide copolymerization. Specific 

objectives of this chapter: 

• Study of the ratio among metals (Zn/Co) in the synthesis procedure of this 

heterogeneous Double Metal Cyanide catalyst (DMC). 

• Catalyst characterization by techniques such as Fourier transform infrared 

spectroscopy (FTIR), Inductively coupled plasma optical emission spectroscopy 

(ICP), Nitrogen-physisorption, Scanning electron microscopy (SEM) and X-ray 

powder diffraction (XRPD).  

• Study of the activation of these DMC catalysts in copolymerization reactions 

using propylene oxide and carbon dioxide as reagents.  

• Determine the stirring influence in copolymerization reactions. 

• Characterization of the copolymers by Fourier transform infrared spectroscopy 

(FTIR), Nuclear magnetic resonance (NMR) and Size exclusion chromatography 

(SEC) techniques. 

 

Chapter 3. . Influence of the activation step in the copolymerization of carbon dioxide 

and propylene oxide using double metal cyanide as a catalyst. 

• Study the activation step varying the amount of catalyst in each experiment.  

• Characterization of the most active Double Metal Cyanide catalyst from Chapter 

2 by Fourier transform infrared spectroscopy (FTIR), Inductively coupled plasma 

optical emission spectroscopy (ICP), Nitrogen-physisorption, Nuclear magnetic 

resonance (NMR), Scanning electron microscopy (SEM) and X-ray powder 

diffraction (XRPD) techniques. 



                                                    Objectives                    

 

 
66 

 
 

 

• Determine the best reagents and catalyst amounts in order to improve activation 

step. 

• Determine the effect of the stirring system during the activation step. 

• Characterization of the final copolymer obtained at different reaction conditions 

by Fourier transform infrared spectroscopy (FTIR), Nuclear magnetic resonance 

(NMR) and Size exclusion chromatography (SEC) techniques. 

 

Appendix 1. Solubility of CO2 in polypropylene carbonates at different conditions 

• Determine the maximum amount of CO2 in the liquid phase during the 

copolymerization reactions by understanding CO2 solubility in the polymers 

• Determine the tendency of the solubility with temperature and pressure. 

 

 

 

 

 

 

 

 



	
	
	
	
	
	
	
	
	
 

 

CHAPTER	1	
 

Heterogeneous	Zinc	glutarate	catalyst	
study	in	copolymerization	reactions	
among	propylene	oxide	and	carbon	

dioxide	in	batch	and	subcritical	
conditions 

 

 

 

	

	



 



                                                   Chapter 1 

 

 
69 

 
 

ABSTRACT 
 

A huge variety of heterogeneous catalysts has been used for polymerization processes. In 

this case, zinc glutarate (ZnGA) was selected and prepared for copolymerization 

reactions.  

Carbon dioxide (CO2) acted not only as the pressurized medium to drive the reaction but 

also as a monomer for the reaction itself because it was used by purpose as a C1 feedstock. 

The other monomer that was involved in the reaction was propylene oxide. Through the 

mechanism of Ring Opening Polymerization or Copolymerization (ROP or ROCOP), the 

incorporation of CO2 in the polymer chain becomes possible.  

In this chapter, a comprehensive characterization of this heterogeneous catalyst was done 

and a complete study of its behaviour in copolymerization reactions was carried out, to 

determine whether new green polycarbonates as a base for polyurethanes can be 

synthesized with an industrial application.  

Several reaction experiments were performed by changing the amount of ZnGA (0.3, 0.6, 

1.0, 1.5 g), the reaction temperature (60, 80 ºC), the pressure of CO2 (6, 25 barg) in the 

reactor, the final expected molecular weight of the polymer (725, 3000 g/mol) and the 

reaction time (20, 40 h).  

Through these results, firstly it was possible to determine the best amount of catalyst for 

the reaction (1.5 g) and the effect on the polymerization process.  

Secondly, once the best amount of catalyst was determined, it was maintained and the 

temperature effect on of the copolymerization reaction was studied. It was possible to 

determine that an increase in temperature provided better final copolymers.  
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The reactor pressure, the thermodynamics and kinetics had a huge impact on the 

polymerization reactions. It was possible to determine that under subcritical conditions 

of CO2, the pressure has not a decisive effect on the copolymerization reactions.  

Finally, two more variables were studied: molecular weight of the final copolymer, which 

showed a considerable impact in the viscosity of the final copolymer when it was 

increased, and the reaction time. The last variable srevealed whether the process could be 

carried out in a horte time but maintaining the same quality. 

Several techniques were used to analyse the synthesized catalyst and the polymers 

obtained after the reaction. Techniques such as Fourier transform infrared 

spectroscopy (FTIR and FTIR with pyridine), inductively coupled plasma optical 

emission spectroscopy (ICP), light scattering (with air and distilled water), nitrogen 

physisorption, size exclusion chromatography (SEC), scanning electron microscopy and 

energy–dispersive X-ray spectroscopy (SEM-EDX), thermogravimetric analysis-mass 

spectrometry (TGA-MS), X-ray photoelectron spectroscopy (XPS) and X-ray powder 

diffraction (XRPD) were successfully used. 
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1. INTRODUCTION 
 

In this chapter, a comprehensive study (synthesis and characterization) of the use of zinc 

glutarate (ZnGA) in copolymerization is presented. This catalyst is known to achieve high 

molecular weights but it usually requires long reaction times. A complete study of the 

catalyst is shown herein besides the characterization of the polycarbonates synthesized 

from it. These reactions are copolymerization reactions, which implies that two 

monomers are involved: one is propylene oxide and the other is carbon dioxide.  

Carbon dioxide (CO2) is one of the main gases causing the greenhouse effect. Several 

sources like anthropogenic actions as burning coal or other fossil fuels are increasing the 

concentration of CO2 in the atmosphere, methane (CH4) and also nitrous oxide (N2O). 

Several regulations are established to control the emissions, for example, the  Montreal 

Protocol and the Kyoto Protocol. In fact, at the Paris climate conference (COP21) in 

December 2015, 195 countries adopted the first-ever universal, legally binding global 

climate deal. This agreement has been signed by 175 countries on the 22nd April 2016 [1]. 

About 40% of all the emissions remained in the atmosphere while the rest are on lands 

and oceans (causing acidification on them). Just from burning coal in 2013, 2.9 ppmv 

were added to the environment. In 2015 the concentration in the atmosphere raised 400 

ppm of CO2 while it was less than 320 ppm of CO2 in 1962 (National Oceanic & 

Atmospheric Administration, 2015) [2, 3].  

Developing new biorenewable resources instead of continuing using the petroleum based 

ones is a challenge [3].  
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Heede affirmed that 63 % from the total of fuel fossils consumed in the period 1750-2010 

had been produced, with technology and financial support, by a total of 70 companies and 

eight government-run industries [4].  

Heede and Oreskes suggested that an important part of fossil fuel reserves must be not 

consumed to maintain the climate change below 2°C and preventing a dangerous 

anthropogenic interference (DAI) with the environment [5]. The International Energy 

Agency (IEA) remarked to consume less than 1/3 of the fossil fuel reserves to 2050 to 

achieve it [6]. The agency concludes that several actions from stated-owned companies, 

investor-owned companies and governments are urgently needed. 

As a way of attenuate this damage, CO2 (a chemical environmentally friendly, low cost, 

high purity, nontoxic and non-flammable chemical) can be captured and stored and used 

in copolymerization reactions as a C1 feedstock [7].  

The idea behind using CO2 as a monomer is not to save the world from climate change 

by adding CO2 to polymers, as the total amount of CO2 for this task is minimal compared 

to the total CO2 emitted; this is very obvious. The target pursued in this chapter is not 

only because of the green point of view of using a reaction by-product as a monomer 

(CO2) but because of the economical aspect involved here. Using CO2 as a C1 feedstock 

assures lower OPEX in carbon sources from other chemicals, as in epoxides in this case 

[8].  

The incorporation of CO2 in the polymer chain can be possible by means of the Ring 

Opening Polymerization (ROP) mechanism that epoxide exhibits. 

One of the pioneers of this kind of copolymerization reactions was the group of Inoue in 

the 1960’s [9].  
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Epoxides had not been used before as a monomer in alternating copolymerization until 

Inoue and co-workers used them with carbon dioxide to obtain polycarbonates in the 

presence of an organometallic compound. First, the metal alkoxide reacts with the carbon 

dioxide and then, the epoxide with the metal carbonate bond. Propylene oxide was studied 

with acid anhydride or with α-amino acid N-carboxy anhydride, such as diethylzinc and 

ethanol.  The polymer was characterized with IR, NMR and an elemental analysis. Other 

epoxides were copolymerized with carbon dioxide and characterized, for 

example,epiclorohydrin, ethylene oxide and styrene oxide. Hino et al. studied 

copolymerization reactions involving carbon dioxide and propylene oxide, using catalysts 

such as diethylsinc-benzenediaceboxylic acid or zinc-benzenedicarboxylic acid [10]. 

More recently, Ree and Kim et al made several copolymerizations between propylene 

oxide and carbon dioxide studying the influence of several heterogeneous catalysts [11, 

12]. They proposed a procedure for the synthesis of a zinc glutarate catalyst (experimental 

procedure followed in this chapter with some negligible differences). Several catalysts 

were synthesized and tested in copolymerization reactions (using eleven different glutaric 

acid derivatives, they obtained different zinc dicarboxylate catalysts such as zinc 3.3-

dimethylglutarate (ZnO/3.3-DMGA), zinc 2-methylglutarate (ZnO/2-MGA), zinc 3-

ketoglutarate (ZnO/3-ketoGA), etc.), giving the highest yield of the poly (propylene 

carbonate) obtained (PPC) using zinc glutarate (ZnO/GA) as the catalyst.  

The highest molecular weight was achieved by this heterogeneous catalyst. Infrared 

spectroscopy gave information about their coordination characteristics: bidentate 

coordinating bonding mode, unidentate coordination or a mixed coordination mode.  

Zinc glutarate belongs to the first group with syn-anti and syn-syn bridging modes. Wang 

et al. synthesized high crystalline zinc glutarate catalysts by ultrasonic and mechanical 

stirring methods.  
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A comparison showed a higher catalytic efficiency for the catalysts synthesized via 

ultrasonic methods [13]. They analysed catalyst and polypropylene carbonate by 

techniques such as Fourier transform infrared spectroscopy, wide-angle x-ray diffraction 

technique, differential scanning calorimetry, thermogravimetric analysis and tensile test. 

Chisholm et al. explained in detail the structure and conformation of the poly (propylene 

carbonate) from the reaction between carbon dioxide (CO2) and propylene oxide (PO) 

[14]. The catalyst employed was zinc glutarate which has active Zn-OH groups as 

confirmed by Ree et al. [15]. They chose zinc oxide and glutaric acid to synthesize the 

catalyst. It was demonstrated that 1 g of ZnGA produced only 70 g of PPC in a 40 h of 

reaction time from PO/CO2.  

From PO they obtained a regioregular polypropylene oxide (PPO) at 60 ºC and with CO2 

(50 bar) they obtained poly (propylene carbonate) (PPC) with less than 5 % of polyether 

linkages and a small amount of propylene carbonate. 

Kim et al. tested several different sources of zinc to get zinc glutarate catalysts [16]. Using 

solid-state carbon-13 nuclear magnetic resonance spectroscopy and X-ray absorption they 

determined the structure of the catalysts. Morphological parameters such as the structure 

of the active zinc site, crystallinity and crystal quality are used for catalyst 

characterization. They found that the catalyst with the highest crystallinity and crystal 

quality but with the lowest surface area had the highest catalytic activity in 

copolymerization reactions.  

It was also concluded that the catalyst obtained by using zinc oxide (ZnO) and glutaric 

acid (GA) was the most active for this kind of copolymerization between CO2 and PO 

(with a low surface area). For zinc glutarate catalysts, the surface area has not the 

relevance which morphological parameters have in improving the catalytic activity.  
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Kim et al., sentenced a fundamental idea about the organometallic catalyst, zinc glutarate 

[17]. They previously claimed that the catalyst with the highest crystallinity gave the 

highest yield.  

Crystal quality and size are fundamental for the catalytic activity of the catalyst, as it was 

discussed before, showing a monoclinic structure. The results of Kim et al. explained the 

network structure of the catalyst showing that the Zn2+ centers are the active sites of the 

catalyst located at the surface. The active centers are coordinated with four oxygen atoms 

(carboxyl oxygen) in a syn-anti bridge configuration with a tetrahedral geometry.  

Ree et al. used various sources for preparing different zinc glutaric catalysts and 

derivatives [18]. They prepared monoclinic structure with P2/c space group of sc-ZnGA 

(single crystals) by hydrothermal reaction between zinc perchlorate hexahydrate and 

glutaronitrile. It was found in copolymerization reactions that as PO is absorbed easier 

than CO2 on Zn2+ from the catalyst surface, PO is the monomer which initiates the 

copolymerization being inserted into the Zn-O bonds.  

Moreover, they confirmed that ZnGA from ZnO and GA gives the highest yield (64 g). 

The activity, as it has been mentioned previously, depends on the zinc source and the 

morphological parameters (crystallinity and surface area) from the different ZnGA 

catalysts.  

The aim of this chapter is to study several processes by varying the amount of ZnGA, 

reaction temperature, pressure of CO2, molecular weight of the final polymer and reaction 

time, trying to find the best reaction conditions possible. We start from the idea that ZnGA 

is not a rapid catalyst but will explore the margin of improvement.  
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The research was carried out at Åbo Akademi University (Åbo/Turku, Finland). There 

has been and there is a willingness of starting and continuing this new research line 

devoted to CO2-polymers.  
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2. OBJECTIVES 
 

There are two main objectives to reached in the research reported in this chapter. 

 

The first aim is to synthesize and characterize the heterogeneous zinc glutarate catalyst. 

Zinc glutarate was synthesized at the Industrial Chemistry and Reaction Engineering 

Laboratory of Åbo Akademi (Turku, Finland). Once it is synthesized, the next goal is to 

characterize it in order to understand its role as the catalyst in copolymerization reactions. 

 

Several techniques were be used to characterize this heterogeneous catalyst:  Fourier 

transform infrared spectroscopy (FTIR and FTIR with pyridine), Inductively coupled 

plasma optical emission spectroscopy (ICP), light scattering (with air and distilled water), 

nitrogen physisorption, scanning electron microscopy and energy–dispersive X-ray 

spectroscopy (SEM-EDX), thermogravimetric analysis-mass spectrometry (TGA-MS), 

X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRPD). 

 

The second main goal is to perform a comprehensive study of the copolymerization 

reactions under subcritical conditions with this catalyst. In this case, the best conditions 

for the copolymerization and the catalyst behaviour will be defined. The propylene 

oxide/CO2 copolymer will be obtained under subcritical conditions in a batch-wise 

process. Several specific objectives will be pursued. The molecular weight targeted will 

be 3000 g/mol and, in any case, below 6000 g/mol to assure the liquid phase (avoiding 

high viscosity polymers to favour stirring and mass transfer). 
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The work consisted of design and start up the experimental system and polymerization 

studies by changing experimental parameters such as reaction pressure, reaction 

temperature, catalyst amount, final molecular weight of the polymer and reaction time.  

 

To characterize the polymer obtained in each experiment, Fourier transform infrared 

spectroscopy (FTIR) and size exclusion chromatography (SEC) were the techniques used 

for this purpose. 
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3. MATERIALS AND METHODS 
 

All the work devoted to the synthesis of zinc glutarate catalyst and all the 

copolymerization reactions were carried out in  the Industrial Chemistry and Reaction 

Engineering Laboratory at Johan Gadolin Process Chemistry Centre (PCC) at Åbo 

Akademi University (Åbo/Turku). 

 

3.1. MATERIALS 
 

3.1.1. CATALYST SYNTHESIS  
 

For synthesizing the zinc glutarate catalyst, the chemicals used were zinc oxide (ZnO) 

(puriss. p.a., ACS reagent, ≥ 99.0% (KT)) from Sigma-Aldrich and glutaric acid (GA) 

99% from Aldrich. Both reactants are in solid state at room temperature. Toluene (liquid 

phase) was obtained from J.T. Baker.  

 

 

Figure 1. Heterogeneous catalyst ZnGA 

 
 

3.1.2. COPOLYMERIZATION REACTIONS 
 

After the catalyst was synthesized, it was used for copolymerization reactions with 

propylene oxide (PO) and carbon dioxide (CO2).  
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Therefore, the materials required for these copolymerization reactions were carbon 

dioxide (AGA), nitrogen (N2) (5.0), propylene oxide (ReagentPlus® ≥ 99%, Aldrich) and 

polypropylene glycol (PPG, with an average Mn ~ 425, Aldrich). 

 

3.2. METHODS 
 

3.2.1. SYNTHESIS AND CHARACTERIZATION OF THE CATALYST 
 

The equipment used for the catalyst synthesis consisted of a Rotavapor from Heidolph, 

LABOROTA 4000-efficient, with silicon oil as a thermic fluid in a thermic bath with an 

inert argon atmosphere. The vacuum pump was from Vacuubrand, PC 3001 VARIO CVC 

3000. 

3.2.1.1. Fourier transform infrared spectroscopy (FTIR and FTIR with pyridine) 

FTIR and FTIR with pyridine were performed in the same equipment. FTIR is used to 

determine the  catalyst structure. The method requires that the bonds of the material are 

susceptible for measurements. Lewis and Brønsted acid sites of the catalyst are shown 

using infrared spectroscopy (ATI Mattson FTIR) with pyridine. It was necessary to 

analyse the catalyst with thermogravimetric analysis-mass spectrometry (TGA-MS), as 

described in section 6.1.8. A complete understanding about the behaviour of the catalyst 

was acquired with TGA-MS.  

 

3.2.1.2. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) 

This technique provides an elemental analysis which was used to determine the quantity 

of zinc in this catalyst. The samples were exposed to plasma irradiation. Their emission 

spectra identified the elements and the quantity of them. 
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3.2.1.3. Light scattering (with air and distilled water) 

Two different models of the same equipment (Mastersizer 2000 and 3000, Malvern) were 

used to determine the particle size distribution of the catalyst, in air and aqueous medium, 

respectively. In distilled water, where the zinc glutarate is not soluble, the sample was 

measured three times [12]. 

 

3.2.1.4. Nitrogen physisorption 

By nitrogen (N2) physisorption, surface area, pore volume and pore size distribution of 

zinc glutarate catalyst were determined by nitrogen physisorption [19-21].  

The macro- and microporous structures of a catalyst can be specified by several methods 

giving adsorption and desorption isotherms and different parameter values. The nitrogen 

physisorption equipment was a Sorptomatic 1900 (Carlo Erba Instrument). 

 

3.2.1.5. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy 

microanalysis (EDX) 

The properties of a catalyst are influenced by morphological parameters. Thus, 

characterization of the sample by scanning electron microscopy (SEM) and energy-

dispersive X-ray spectroscopy microanalysis (EDX) give very important information 

about the catalyst (size, shape, surface area, distribution of the crystals and amount of 

each component). The equipment used for both types of analysis was a Zeiss LEO Gemini 

1530. 
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3.2.1.6. Thermogravimetric analysis-mass spectrometry (TGA-MS) 

The thermal stability of the catalytic was determined by thermogravimetric analysis 

(TGA-MS). The equipment used was NETZSCH STA 449F1 using argon as inert gas. 

This equipment belongs to the Organic Chemistry Laboratory at Åbo Akademi 

University.  

 

 

3.2.1.7. X-ray photoelectron spectroscopy (XPS) 

The oxidation state of the metal (zinc) from the catalyst was determined by a Perkin-

Elmer PHI 5400 spectrometer (photoemission spectra) with a monochromatized Mg Kα.  

X-ray source operated at 14 kV and 200 W.  The pass energy of the analyser was 17.9 

eV. 

 

3.2.1.8. X-ray powder diffraction (XRPD) 

A Philips X’Pert Pro MPD X-ray powder diffractometer was used in the XRD 

measurements to determine the crystallinity of the sample. The diffractometer was 

operated in Bragg-Brentano diffraction mode and the monochromatized Cu-Kα radiation 

(λ = 1.541874 Å) was generated with a voltage of 40 kV and a current of 45 mA. The 

primary X-ray beam was collimated with a fixed 0.25° divergence slit and a fixed 15 mm 

mask. A 7.5 mm anti-scatter slit was used in the diffracted beam side prior to the 

proportional counter. The measured 2θ angle range was 6.6° - 70.0°, with a step size of 

0.026° and measurement time of 100 s per step. The sample, zinc glutarate, was measured 

on a copper (Cu) sample holder.  
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3.2.2. COPOLYMERIZATION REACTIONS AND CHARACTERIZATION OF THE 
PRODUCT 
 

A Parr reactor (Parr Instrument Company, Inc. Moline, Illinois, U.S.A), with a volume of 

382 cm3 was used for the polymerization reactions. The mechanical stirrer was from Parr 

Instrument Company, Moline, Illinois, U.S.A. A1120HC II55 with a motor from Bodine 

Electric Company, Chicago 60618, USA, Small Motor, type: 32D3BEPM. This stirrer 

assures good mass and heat transfer inside the reactor. 

The temperature of the reactor was controlled using a Parr 4843 temperature control unit 

equipped with a J-type thermocouple. Pressure and temperature were also logged and 

saved on a computer using a PicoLog TC08 logger (Fike ® Corporation). The system had 

two inlets: one for carbon dioxide (CO2) conducted to a Swagelok 304 L stainless steel 

tank and the other one, for nitrogen (N2). The equipment had two cooling systems: one 

inside (tap water) and a coil (glycol as a refrigerant) outside the reactor for unreacted 

condensed monomers. Besides, the same vacuum pump used in the synthesis of the 

catalyst assisted to remove easily these unreacted monomers from the reactor. 

Two techniques were used to analyse the final polymers: Fourier transform infrared 

spectroscopy (FTIR, same equipment as in Section 3.2.1) and size exclusion 

chromatography (SEC) explained in Section 6.2.2. 
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4. EXPERIMENTAL SETUP AND PROCEDURE 
 

4.1. CATALYST SYNTHESIS  
 

The procedure for the synthesis of zinc glutarate catalyst is similar to the one described 

by Ree et al. [15].  

Using a round flask, 98 mmol of glutaric acid (GA) was dissolved in 150 ml of toluene. 

Once the mixture is stirred, 100 mmol of zinc oxide (ZnO) was added to it. A rotary 

system and a refrigerated coil, with an argon atmosphere, was used to separate and 

condense by-products. The mixture was stirred at 55 °C during 4 h. A make-up step for 

the mixture was necessary. First, it was cooled down to room temperature and then a 

filtration step, with several washes with acetone, was needed. The zinc glutarate catalyst 

was the product rejected in the filter.  

The powder catalyst was then dried in the same equipment at a vacuum of -18 mbar and 

a temperature of 100 °C during two days. Finally, the catalyst was crashed in a mortar 

and dried again during three more days at - 25 mbar and 100 °C.  

 

4.2. COPOLYMERIZATION REACTIONS 
 

A Parr reactor autoclave (382 ml) was used for the copolymerization reactions.  

The reactor vessel was filled with the desired amount of catalyst (the day before the 

reaction, it was placed under a vacuum pressure of - 25 mbarg inside the reactor to dry it 

for the copolymerization), starter (polypropylene glycol) and the required amount of 

propylene oxide.  
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A mechanical stirrer was used, at any moment, for assuring homogeneous mixture. Once 

the system was closed, nitrogen was passed through the system to check that there were 

no leaks; three different attempts were made for each reaction at different pressures.  

 

The reactor was heated to the reaction temperature and carbon dioxide was added until 

the desired reaction pressure was attained. As the reaction conditions were reached and 

stabilized, the reaction was kicked-off and it was continued during the next 40 h. 

 

Once the reaction is finished, pressure was slowly released using a go back-pressure valve 

at the same time that temperature was decreased. Unreacted propylene oxide monomers 

fully condensed in cold-trap with a round flask before going to the extraction duct. Before 

opening the reactor, 30 min at a low vacuum pressure (-600 mbarg) were necessary in 

order to recover all the unreacted monomers from the reactor.  
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5. DIAGRAMS OF THE SYNTHESIS AND REACTIONS 
 

5.1. BLOCK DIAGRAM OF THE SYNTHESIS OF THE CATALYST 
 

 

 

Figure 2. Block diagram of the catalyst ZnGA preparation process 
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5.2. BLOCK DIAGRAM OF THE COPOLYMERIZATION REACTION 
 

 

Figure 3. Block diagram of the copolymerization reaction using ZnGA as catalyst 
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5.3. SYMBOLS DIAGRAM OF THE COPOLYMERIZATION REACTIONS 
 

 

 

 

 

Figure 4. Symbols used in the process block diagram 
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5.4. PROCESS FLOW DIAGRAM OF THE COPOLYMERIZATION 
REACTIONS 

 

Figure 5. Process flow diagram of the copolymerization reactor for ZnGA 
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A nitrogen stream is used to make the reactor (R-101) inert and, also to check if there are 

leaks.  

Two main stream are going to be driven to the reactor with carbon dioxide (CO2) and 

with propylene oxide (PO). The line with CO2 has a rupture disk, just for security in the 

case that the reactor pressure exceeds the maximum tared value (V-102) and PO has to 

be pumped (P-101) into the reactor. In order to avoid the evaporation of PO, its vessel is 

pressurized with 5 barg of N2. 

The reactor (R-101) has a mechanical agitation and a cooling system inside it with tap 

water. The temperature can be considered constant at any moment and any point of the 

reactor. The reactions are very exothermic and stirring is a very important parameter to 

avoid hotspots or runaway effects. 

A cold trap (E-101) was placed at the outlet to separate the unreacted monomers from the 

final product. A pump (P-102) was used at the same time with a nitrogen flow to create 

vacuum and assure that no more unreacted monomers are present in the product. Also, it 

is for a safety operation after the system has been exposed to high pressure. 
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6. RESULTS AND DISCUSSION 
 

6.1. ZINC GLUTARATE CATALYST 
 

Different studies have determined the synthesis conditions of several zinc carboxylates. 

Zinc glutarate has been selected as the one with the highest activity and the selected one 

for these copolymerization reactions among carbon dioxide and propylene oxide.  Zinc 

glutarate catalyst has been synthesized following the procedure by Ree et al. as it was 

explained in the previous section 4.1 [15, 18, 22]. 

 

6.1.1.  Fourier Transform infrared spectroscopy (FTIR) 
 

The white fine powder zinc glutarate catalyst has been subjected to FTIR technique. 

Figure 6 shows the infrared absorption spectra of this catalyst (ZnGA). Studies, such as 

the one conducted by Stephan Klaus et al. have determined the IR bands for zinc glutarate 

[23]. Similar spectra were obtained in the synthesis. Several peaks appeared at different 

wavelengths which corresponded to the bonds at 2947 cm-1 (carboxylic acids with high 

concentration of O-H bonds), 1760 cm-1 (anhydride, C=O), 1589 cm-1 (aromatics, C=C), 

1525 cm-1 (carboxylates), 1442 cm-1 (alkane, strong C-H scissoring) and 1402 cm-1 (Zn).  
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Figure 6. Spectrum of the heterogeneous catalyst, ZnGA 

 

 

6.1.2. Fourier transform infrared spectroscopy (FTIR) with pyridine 
 

As it was described in section 3.2.1, the fine powder catalyst was subjected also to FTIR 

technique with pyridine. The FTIR with pyridine was tried three times but the catalyst 

pellet broke in the first two experiments. After performing the TGA-MS analysis, the 

conclusion was that this happened because the first ramp of the FTIR with pyridine 

procedure increased to 450 ºC and the catalyst could not withstand this temperature.  

Once the suitable conditions were determined, the procedure of FTIR with pyridine set 

the temperature for the variation ramp (ZnGA decomposition temperature is around 400-

450 ºC). In an FTIR cell, a thin catalyst wafer was pressed and placed into it. The air in 

this cell was evacuated and the temperature rose to 300 ºC. After 1 h, the temperature was 

decreased to 100 ºC.  
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The background spectra of the sample were recorded. As a probe molecule, pyridine was 

adsorbed on the sample during 30 min and at 100 ºC.  

Desorption at 150 ºC, 250 ºC and 350 ºC during 1 h was the next step. The spectra of the 

sample were recorded after each change on the step-temperature. The scanning took place 

under vacuum conditions and at 100 ºC. Peaks at 1545 cm-1 indicate Brønsted acid sites 

(BAS) and peaks at 1450 cm-1 indicate Lewis acid sites (LAS). Using the constants of 

Emeis, a quantitative measure of BAS and LAS could be calculated. The procedure has 

been described before by Kumar et al. but it was slightly modified for this specific sample 

[24]. 

 

The first attempts (with the initial procedure) were not satisfactory; the sample broke 

every time because it was not consistent enough. After a thermogravimetric analysis 

(TGA), temperatures of the protocol were changed in a way that the sample could stand 

the temperatures and not break itself. Nevertheless, in the range where Brønsted and 

Lewis acids appear, no spectra were detected. It can be concluded,that the changes in 

temperature of the followed method were suitable but the sample does not have Brønsted 

and / or Lewis acid sites. 

 

6.1.3. Inductively Coupled Plasma	Optical Emission Spectroscopy (ICP-OES) 

This technique was performed by a microwave digestion (the samples have been digested 

in Teflon ® and glass) and a quantitative analysis of zinc by using Optical Emission 

Spectroscopy (ICP-OES) were done, twice.  
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The results are listed in Table 1. 

 

Table 1. Several zinc glutarate measurements with ICP-OES 
 

Sample 
Zn 

(213.857nm) 
mg/g 

ZnGA_1 320 
ZnGA_2 362 
ZnGA_3 368 
ZnGA_4 362 

 

This technique determines the amount of zinc in the sample (an average of 353 mg Zn / 

g catalyst). 

 

6.1.4. Light scattering (LS)	 

As zinc glutarate was not integrated in the library of components from the software, the 

component chosen for characterizing the sample was just zinc. The refraction index (RI) 

of the sample, based on zinc, was then imposed and maintained at 2.008. To compare 

with the measurements conducted at the University of Valladolid, the refraction index 

was then modified to 1.54.  

The liquid level of the beaker was also searched for being equal in each attempt, around 

400 ml. The sample was mixed in distilled water under vigorous agitation (around 1500 

rpm) trying to avoid the formation of air bubbles inside the liquid so the particle 

distribution would not be disturbed. Using a pump integrated with the equipment, the 

water with the catalyst particles was driven inside the equipment and also returned to the 

beaker.  Six single measurements were made for each sample. All the measurements were 

carried out at least twice, particularly in the liquid medium where they were repeated 

three times.  



                                                   Chapter 1 

 

 
95 

 
 

In the case of the measurement in distillate water, the liquid phase created a non-desirable 

effect in particle sizes which was visible from the second measurement.  It is known that 

zinc glutarate is not soluble in most of the solvents so distillate water was selected as the 

aqueous phase for the method [12]. 

 

6.1.4.1. Light scattering in aqueous phase 

For the first two experiments the mass of the catalyst was 0.59 g, while for the third one, 

was 0.32 g.  The liquid level of the beaker was also checked for being equal in each 

attempt. This was 450 ml for the first two measurements and 400 ml for the last one. 

The sample was mixed in distilled water under vigorous agitation (around 1500 rpm) 

trying to avoid the formation of air bubbles inside the liquid so the particle distribution 

would not be disturbed. Using a pump integrated with the equipment, the water with the 

suspended catalyst particles was driven inside the equipment and returned to the beaker. 

Each sample was exposed to six single measurements.  

The following results show the average particle size distributions of the samples measured 

in distilled water. 

 

-First sample- 

 

Zinc glutarate was not part of the chemicals integrated in the library of the equipment 

(Mastersizer 3000, Malvern) so it was selected just as zinc. The refraction index (RI) of 

the sample, based on zinc, was then imposed and maintained at 2.008. 
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Figure 7. Particle size distribution of zinc glutarate in water. First sample. 

 

Figure 7 shows just one peak which means that the material was not polydisperse and its 

representation was unimodal.  A quantitative analysis of the size distribution from this 

first sample is displayed in Table 2. 

 

 Table 2.  Particle size distribution from the first sample. 

 

 

It is remarkable that the 50% of the sample had a size of 157 μm with a specific surface 

area of the particle of 46.74 m2/kg.  

 

-Second sample- 

 

For the second sample, taking into account that the system was going to recognize zinc 

as the sample, the refraction index selected was the refraction index of the measurements 

made in University of Valladolid, it was 1.54 (as this parameter can be modified). 

This second sample showed a different behaviour from the previous one.  

 

Specific surface area Dx10 Dx50 Dx90 Laser obscuracion Residual

(m 2 /kg) (μm) (μm) (μm) (%) (%)

46.74 73 157 378 2.74 12.7
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The size distribution was bimodal, indicating that the material is polydisperse.  

Some particle agglomeration process was taking place there between the catalyst particles 

and water because of solubility problems. Zinc glutarate is not soluble in water and in 

other solvents just in acidic solutions (pH < 2) [18, 22]. 

 

 

Figure 8. Particle size distribution of zinc glutarate in water. Second sample. 

 

The first peak is not as high as the one obtained in the first sample, where the volume 

density raised 10 %. The particle distribution corresponding to the second sample is 

displayed in Table 3. 

 

Table 3. Particle size distribution from the second sample. 

 

 

The 50 % of the sample has a size of 350 μm, higher than the previous one, with a specific 

surface area of the particle of 30.74 m2 / kg, which implies that fewer particles are 

suspended in the liquid phase (agglomeration process). 

 

Specific surface area Dx10 Dx50 Dx90 Laser obscuracion Residual

(m 2 /kg) (μm) (μm) (μm) (%) (%)

30.74 82 350 1821 1.77 6.4
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-Third sample- 

 

The particle size distribution for the experiment is shown in Figure 9. 

 

 

Figure 9. Particle size distribution of zinc glutarate in water. Third sample. 

 

Also in this measurement a second peak appeared confirming the the bimodality of the 

particle size distribution. The sample was a new one, as in the second sample, but particles 

from the first sample had remained in the system, suspended in the medium even after 

washing the solution several times. 

 

The results arelisted in Table 4. 

 

Table 4. Particle size distribution of the third sample. 

 

 

The average sample size (50%) is 307 μm, which is considerable higher than the one 

before, with a specific surface area of the particle of 24.60 m2 / kg, which means that 

fewer particles are suspended in the liquid phase (agglomeration process) from the 

previous measurements. 

Specific surface area Dx10 Dx50 Dx90 Laser obscuracion Residual

(m 2  / kg) (μm) (μm) (μm) (%) (%)

24.60 108 307 1836 0.55 21.0
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Laser obscuration is a parameter which show how opaque the solution is. This parameter 

decreased in each sample, from 2.74 to 0.55 % which  means that the laser cannot pass 

through the solution as easily as in the first experiment. Particle agglomeration became 

the most probable explanation for this phenomenon. Later on, all these results obtained 

in aqueous environment will be compared with the ones from air measurements. 

 

6.1.4.2. Light scattering in air 

Light scattering experiments in air were carried out at the Chemical Engineering and 

Environmental Technology Department at the University of Valladolid. The equipment 

was the same as the one used at Åbo Akademi University, but a different model. It was a 

Mastersizer 2000 (Malvern).  

 

 

Figure 10. Particle size distribution of zinc glutarate in air. 

   

Three peaks at very different particle sizes were obtained (considering a refraction index 

of 1.52). Figure 10 shows a multimodal distribution of a catalyst that has a high 

polydispersity. Table 5 reveals the size distribution of zinc glutarate in air as a medium 

of analysis. 
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Table 5. Particle size (μm) of the catalyst 

 

 

As it can be appreciated, 50% of the material has a particle diameter 118.2 μm. This result 

is similar to the first experiment carried out in distilled water (157 μm). However, this 

distribution is multimodal but different from the one shown in Figure 8.  A comparison 

is presented in Table 6. 

 

Table 6. Comparative table of light scattering data. 

 

The results are not very accurate. Samples 2 and 3 in water show similar size distributions 

but several suspended particles had remained in the system from the first measurement in 

the equipment so the values are not certain.  

The specific surface area in the air measurement is 10 times larger than the first one 

obtained from water.  

As it can be appreciated from the respectively figures, the first peak in the air 

measurement appears at a smaller particle size (4 μm) and ends at a larger size (1167 μm) 

which results in a higher final surface area of the sample. This is the reason of the huge 

difference between the surface areas. Besides, parameter Dx50 in both cases had rather 

equal values. So, it is possible to conclude that the results from the first experiment in 

water and the experiment in air can be considered similar. 

Specific surface area Dx10 Dx50 Dx90 Laser obscuracion Residual

(m 2  / kg) (μm) (μm) (μm) (%) (%)

475 4 118 1167 1.38 0.5

Specific surface area Dx10 Dx50 Dx90 Laser obscuracion Residual

(m 2  / kg) (μm) (μm) (μm) (%) (%)

Water 1 46.74 73 157 378 2.74 12.7
Water 2 30.74 82 350 1821 1.77 6.4
Water 3 24.60 108 307 1836 0.55 21.0

Air 1 475.00 4 118 1167 1.38 0.5

# SampleMedium
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Surface area, crystallinity and crystallinity perfectness influence the activity of the 

catalyst [11, 25]. Usually if the catalyst is heterogeneous, larger particles lead to a smaller 

surface area which affects the activity of the catalyst. Herein (considering sample 1 and 

sample 4 from Table 6), the average  particle size is 138 μm. This value is around ten 

times higher than the largest one reported by Kim et al. (15.3 μm) and 25 times higher 

than the particle size of the zinc glutarate catalyst synthesized from zinc oxide, glutaric 

acid and toluene (5.7 μm) [11].  

According with the arguments presented previously, as the zinc glutarate synthesized here 

has larger particle sizes, it is completely coherent to have surface area values considerable 

smaller (shown in Table 2) than those obtained from Kim et al. [11]. However, they have 

demonstrated that using an amphiphilic block copolymer [Pluronic PE6400: poly 

(ethylene glycol)-block-poly (propylene glycol)-block poly (ethylene glycol)] in the 

synthesis of zinc glutarate it is possible to increase the surface area of this catalyst.  

 

6.1.5.  Nitrogen physisorption 

The equipment used for nitrogen – physisorption was described in section 3.2.1.4. After 

the burette was under outgassing conditions, 0.25 g of the sample was placed inside it. 

Previously to be analysed, the burette with the catalyst inside was under 0.01 Pa, 150 ºC 

during an outgassing of 3 h. It was possible to calculate the mass lost after the outgassing. 

This mass corresponded to the water of the sample (moisture) that had been removed. 

It is remarkable that practically no water was lost during the outgassing (4.5 %). No 

isotherms were found.  The micropores evaluated with the Dubinin surface area 

calculation method and the Horvath-Kawazoe pore size calculation method were chosen 

confirmed that this material is non-porous.  
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The specific surface area of this sample was practically negligible implying that zinc 

particles correspond to the active sites of the catalyst.  While in the analysis our results 

were found about surface area and pore volume were found negligible, Kim et al. 

synthesized different zinc glutarates from several sources and methods and studied the 

surface area by nitrogen adsorption obtaining values between 19-34 m2/g [16]. 

It is known that one catalyst with low surface area but the best crystal properties shows 

the highest catalytic activity. Nevertheless, morphological parameters are the factors 

which influence more the catalytic activity than the surface area [16, 26]. In section 6.1.8, 

the crystallinity of the zinc glutarate will be shown and then it will be possible to make a 

decision about the activity of the catalyst. 

 

6.1.6. Scanning Electron Microscopy and Energy-Dispersive X-ray analysis (SEM and 

SEM-EDX) 

 

6.1.6.1. Scanning Electron Microscopy (SEM) 
 

The zinc glutarate obtained has a rectangular plate shape with different thicknesses and 

sizes. It is possible to characterize the catalyst (see Figure 11 and Figure 12) in two scales 

(μm and nm). 

 

  

Figure 11. SEM images of zinc glutarate. 
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Several studies have identified the morphology of zinc glutarate. Depending on the way 

of the synthesis, the size and shape of the particles are different; it is wrinkled petal bundle 

morphology [18], rectangular plate morphology [11] such as in this chapter, agglomerated 

particles, etc. In Figure 12, four different SEM images from zinc glutarate catalyst are 

displayed at a zoom of 200 nm. 

 

  

  

Figure 12. SEM images showing different particles sizes (nm) 

 

The particle sizes are 180-520 nm, the average size being 321.6 nm. The sample is really 

polydispersed, as it by explained by light scattering results. Figure 13 shows clearer SEM 

images at 1μm and 100000 x as magnification of the image.  
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Figure 13. SEM images showing different particles sizes (nm) 

 

6.1.6.2. Scanning Electron Microscopy Energy–dispersive X-ray spectroscopy (SEM-

EDX) 

 

Through this analysis, the percentage of each component in the sample was defined, 

which gives important information about the catalyst.  

Figure 14 shows the two zones where the analysis has been done. Surface 1 is a wide area 

while Surface 2 is focus on the surface of one particle. The results from both zones are, 

logically, not the same. For this analysis, the equipment gave information about the 

voltage (15.0 kV), the pixel size of the image (1.18 μm), the magnification of the image 

(100) and the resolution of the image (1024 by 768). 
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Figure 14. SEM-EDX analysis for ZnGA. Surface 1 and Surface 2 are shown in blue colour. 

 

 

The results from Surface 1 are shown in Fig. 15. 
 

 
 

Figure 15. Spectra of the Surface 1. 
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Here it is demonstrated that if the area is wide, the major component corresponds to 

carbon followed by oxygen and zinc. On the other hand, if the analysis is focused on the 

surface of one particle, the major component is zinc followed by oxygen and carbon. 

 

 

Figure 16. Spectra of Surface 2 

 
 
A quantitative analysis is presented in Table 7-10. 
 

 

Table 7. Weight percentage of the elements from both surfaces 

Surface Sample O-K Zn-K Si-K 

1 Zinc glutarate  57.00 43.00 -- 
2 Zinc glutarate  49.57 50.00 0.43 

 

 

Oxygen is the component that is more abundant on surface 1 while zinc is the major one 

on surface 2. 

The error (%) of each component in the measurement is shown in Table 8. 
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Table 8. Weight % Error (+/- 1 Sigma) of the elements from both surfaces 

Surface Sample O-K Zn-K Si-K 

1 Zinc glutarate  ± 0.52 ± 1.95 -- 
2 Zinc glutarate  ± 0.46 ± 1.84 ± 0.06 

 

In terms of the atom percentage in both surfaces, more atoms of oxygen are present on 

surface 1 than on surface 2. 

 

Table 9. Atom % of the elements from both surfaces 

Surface Sample O-K Zn-K Si-K 

1 Zinc glutarate  84.42 15.58 -- 
2 Zinc glutarate  79.89 19.72 0.39 

 

The error (%) of each atom in the measurement is shown in Table 10. 

 

 

Table 10. Atom % error (+/- 1 Sigma) of the elements from both surfaces 

Surface Sample O-K Zn-K Si-K 

1 Zinc glutarate  ± 0.78 ± 0.71 -- 

2 Zinc glutarate  ± 0.74 ± 0.72 ± 0.06 
 

 

6.1.7. Transmission electron microscopy (TEM) 
 

Samples were suspended in ethanol and deposited straight away on a copper grid prior to 

analysis. The results are shown in Figure 17. 
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Figure 17. TEM micrographs of ZnGA catalyst. 

 

The darker areas correspond to zinc particles while the lighter ones correspond to the 

glutarate part of the catalyst. Figure 17 settle the same as nitrogen physisorption analysis, 

the surface area of this catalyst is really small because, as it has been explained before, 

zinc is the active site of the catalyst and it is not located at the outer side of the particles. 

 

6.1.8. TGA / DTA-MS (Thermogravimetric Analysis / Differential Thermal Analysis-

Mass Spectrometry) 

 

As it was explained in section 3.2.1.1, analysing the sample by FTIR with pyridine the 

catalyst wafer broke in each experiment. The catalyst did not withstand the high 

temperatures of the initial procedure so a TGA / DTA-MS analysis was performed to 

determine the stability of the sample [27]. 
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a)   

b)  

Figure 18 a) and b). TGA diagrams of the ZnGA catalyst. 

 

The red line corresponds to the temperature profile imposed for the analysis, while the 

green line represents the weight loss of the sample due to the slow pyrolysis procedure 

applied (basis of the TGA), where it can be seen the stability of the ZnGA vs temperature. 

The black line indicates the numerical estimation of the weight derivative with time 

(DTGA).  
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The maximum of the derivative indicates clearly that the catalyst decomposes at around 

400ºC, probably due to the glutarate gasification. The initial decomposition temperature 

of the sample is the temperature where the material started to disintegrate and it is the 

measure of its thermal stability. At 400 ºC the catalyst decomposition started so, because 

of that, the temperatures of the FTIR with pyridine procedure were modified to lower 

ones. The sample is still being decomposed up to 1000 ºC [28, 29], and a remaining ash 

inorganic content of 25% was found.  

 

 

6.1.9. XPS 
 

Zinc glutarate catalyst has been characterized by XPS by a number of authors [11, 18, 30, 

31]. The oxidation of each element was determined by this technique. The results are 

depicted in Figure 19. 

 

Figure 19. XPS spectrum of zinc glutarate sample.  

 

The spectra of the entire sample is shown in Fig. 19. In the following figures, each peak 

will be explained individually. 
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1. The carbon spectrum is displayed in Fig. 20. 

  

Figure 20. XPS spectrum of carbon with fitted peaks - Carbon 

 

Each peak gives an idea about the carbon bonds in the catalyst. Considering the binding 

energy (eV), it is possible to identify the compound on the surface. 

This spectrum has to be shifted three units to the right to adequate it to the correct values 

of the binding energy (the equipment can be charged when it is receiving the beam; 

normally, the spectrum moves to higher binding energies). See Figure 1 to review the 

molecular formula of the catalyst for identification of the bonds. 

From left to the right, the corrected peak 3 (288.8 eV) correspond to a carboxylic bond 

(C with O), the second corrected one (284.8 eV) correspond to a carbon bond (C with C) 

and the corrected peak 1 (282.8 eV) corresponds to carbide bond (C-H). 
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2. The oxygen spectrum is shown in Fig. 21. 

 

Figure 21. XPS spectrum of carbon with fitted peaks - Oxygen 

 

The XPS spectrum of oxygen has also to be shifted to the right scale. Peak 1 (531.5 eV) 

and in this case, peak 2 (529.2 eV) both shows metal oxide bonds. It makes sense because 

the catalyst was prepared from zinc oxide (ZnO). 

 

 

 

3. The zinc spectrum is shown in Fig. 22.    
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Figure 22. XPS spectrum of zinc with fitted peak – Zinc 

 

Zinc appears only in its oxidation state (2+). The corrected peak is located at 1022 eV 

which corresponds to a ZnO compound type. 

 

6.1.10. X-RAY DIFFRACTION 
 

The measured diffraction (2θ) angle range was 6.6° - 65.0° with a step size of 0.026° and 

a measurement time of 100 s per step. The diffractogram obtained is shown in Figure 23.  

To determine the single crystal structure, peaks appear at the same position as reported in 

literature [18]. This is a measure about no impurities phases are in the sample. The data 

quality for the measurement is much better than in that article which means that the peaks 

are well shaped and there is much less noise. The main peaks are shown in Table 11. 
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Table 11. Position and angle of every peak of the diffractogram of zinc glutarate catalyst 

 

No. Position [°2Theta] No. Position [°2Theta] 
1 12.82 24 41.00 
2 18.63 25 41.30 
3 19.24 26 42.63 
4 19.71 27 43.40 
5 20.34 28 44.68 
6 20.98 29 45.58 
7 21.97 30 46.16 
8 22.64 31 46.89 
9 23.04 32 47.51 

10 23.23 33 48.08 
11 25.68 34 50.27 
12 26.85 35 51.35 
13 28.58 36 52.65 
14 29.91 37 53.56 
15 31.88 38 55.24 
16 32.42 39 56.29 
17 33.39 40 57.03 
18 34.51 41 59.17 
19 36.34 42 59.96 
20 37.68 43 61.49 
21 38.93 44 62.05 
22 39.48 45 63.13 
23 39.92 46 64.36 

 

Zinc glutarate catalysts were described elsewhere [11, 18, 22, 32]. ZnII centra of the 

crystals are coordinated with four carboxyl oxygen atoms on different glutarate ligands 

via four syn–anti bridges. Ree et al., [11, 18, 22] defined the final geometry obtained as 

a distorted tetrahedral one. A monoclinic unit cell with a P2/c space group has been 

determined for ZnGA [11]. Lattice parameters are defined: a = 13.934 (3) Å, b = 4.7842 

(11) Å, c = 9.276 (2) Å and β = 90.628 (5) °. 
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CSD (Feb 2016, version 5.37), ISCD and PDF-2 databases were consulted and it was not 

able to find any crystal structure reference data for zinc glutarate. In some articles, the 

samples are just compared with a reference ZnGA sample and it is concluded whether the 

crystal structures match or not (the diffraction peak patterns are simply compared). So it 

is almost inevitable to conclude that this catalyst is not included in any open database. A 

possible reason could be that  there is no agreement on the indexing of the structure 

(reference quality is insufficient to make an appearance in the database). 

Ang et al. [33] suggested that among three different zinc glutarates synthesized from 

several zinc sources, the crystal structures are almost identical [33]. However, the overall 

crystallinity shows that the one synthesized by zinc oxide (ZnO) and glutaric acid (GA) 

is the most crystalline (which furthermore, is the one which has achieved the highest yield 

in polymerization reactions with CO2 [11, 34]); the selected ones for the catalyst synthesis 

described in this chapter. 

 

 

Figure 23. Measured and background corrected diffractogram of zinc glutarate catalyst. Detected 

diffraction peaks are represented by red lines. 

 



The measured and background corrected zinc glutarate diffractograms are presented in 

Figure 23. The Cu sample holder may partially contribute to the peaks detected at 2θ = 

43.4° and 50.3°, as the peak positions coincide with the Cu (111) and Cu (200) peak 

positions. 

  

6.2. POLY (PROPYLENE CARBONATE) 
 

To analyse the polymers from the copolymerization reactions, several techniques have 

been employed. The samples analysed had no post-treatment, so the results are directly 

representing what there was inside the reactor. It is possible to separate the polymer by 

first, adding 400 ml of methylene chloride. After it, the catalyst can be removed bu using 

400 ml of a solution of hydrochloric acid diluted and washing it with the same amount of 

distilled water [22]. Using a rotavapor, the product is concentrated, mixed with an excess 

of methanol and finally, a make-up step is needed to get the polymer.  

As it was described in section 5, one of the goals of this study was to achieve successful 

copolymerization reactions using zinc glutarate as the catalyst. Using FTIR and SEC, it 

was possible to determine whether the copolymerization reactions had taken place. 

Variables such as mass of catalyst, reaction temperature, reaction pressure, molecular 

weight of the final polymer and reaction time were studied to approach optimal reaction 

conditions. 
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6.2.1. Fourier Transform infrared spectroscopy (FTIR) 
 

Several studies were carried out to characterize the final polymers. All the experiments 

were done for a polymer with an expected final molecular weight of 3000 Da. 

 

6.2.1.1. Effect of the amount of catalyst (g) 
 

The first experiments were conducted by varying the mass of catalyst but maintaining the 

rest of variables set. As it is shown in Table 7, four different masses of catalyst were 

considered. Each condition was repeated twice.  

 

The spectra that are going to be presented in this section give information corresponding 

to the main bonds created during the polymerization reactions. At a wavelength around 

1742 cm -1, the peak corresponds to the carbonate bond, which is desired to be as higher 

as possible (PPC). At around 1800 cm-1, the peak corresponds to the formation of the by-

product of this reaction, the cyclic carbonate (CC). Finally, the last main peak corresponds 

to the possible free bonds (-OH) belong to the propylene glycol (PPG, starter of the 

reaction) at around 3400 cm-1. The smaller it is, more amount of carbonate bonds have 

been created during the reaction, indicating that it has been a successful one. 
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Table 12. Reaction conditions of mass variation experiments 

 

 

The FTIR of these samples is shown in Figure 24. 

 

Figure 24. FTIR of the final polymer changing the amount of catalyst 

 

Using 1.5 g of the catalyst, the highest amount of carbonate (~1742 cm-1) and the less 

amount of possible free bonds belong from propylene glycol (~3456 cm-1) were achieved. 

It was reasonable to assume that the higher peak corresponded to the amount of cyclic 

carbonate (~1800 cm-1) in 1.5 g of catalyst than with a smaller amount of ZnGA at the 

same time that the amount of free bonds are lower. It can be concluded that the best 

condition of reaction corresponds to 1.5 g of catalyst. 

# Experiment Sample m CATALYST (g) m PPG (g) m PO (g) P (barg) T (°C)

1 S1 0.3 10.0 55.4 7.5 61
2 S2 0.3 10.1 55.3 6.2 61
3 S3 0.6 10.1 55.7 6.2 61

4 S4 0.6 10.0 55.3 6.2 61

5 S5 1.0 10.2 56.3 6.2 61
6 S6 1.0 10.0 55.1 6.2 61
7 S7 1.5 9.9 54.8 6.2 61
8 S8 1.5 10.1 55.9 6.5 61
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6.2.1.2. Effect of the reaction pressure (barg) 
 

Once, the optimal amount of catalyst was determined, the variable to be studied was the 

pressure. The experiments were conducted at 5 and 25 barg. 

 

Table 13. Reaction conditions of pressure variation experiments 

 

 

The FTIR of the samples corresponding to Table 13 is shown in Figure 25. 

 

Figure 25. FTIR of the final polymer changing the reaction pressure. 

 

The pressure is related with the CO2 dissolved on the sample and with the carbonate 

formed.  

As it can be appreciated, the effect of pressure is not completely negligible but the 

production of carbonate and cyclic carbonate is not really affected by it.  

# Experiment Sample m CATALYST (g) m PPG (g) m PO (g) P (barg) T (°C)

8 S8 1.5 10.1 55.9 6.5 61
10 S10 1.5 10.1 55.6 25 61
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PO and CO2 are partially soluble in PPG but part of this PO change the phase and remains 

in vapour phase and part of the CO2 remains in gas phase. The pressure of 5 barg is the 

minimum pressure for copolymerization reactions, so the decision was to select 25 barg 

as desired pressure, which let us a margin of temperatures to check. 

 

6.2.1.3. Effect of reaction temperature (ºC) 
 

The conditions were 1.5 g of catalyst and a pressure of 25 barg. All these experiments 

were carried out at 61 ºC. For the study of reaction temperature, two different 

temperatures were selected, 61 ºC and 81 ºC. 

 

Table 14. Reaction conditions of reaction temperature variation experiments  

 

Figure 26 shows the FTIR at two temperatures. 

 

# Experiment Sample m CATALYST (g) m PPG (g) m PO (g) P (barg) T (°C)

10  S10 1.5 10.1 55.6 25 61
11  S11 1.5 10.0 55.3 25 81
12  S12 1.5 10.0 55.5 25 81
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Figure 26. FTIR of the final polymer changing the reaction temperature. 

 

This reaction was really slow so the differences between both temperatures were not 

significant in terms of the carbonate production. Indeed, the production of polypropylene 

carbonate was practically the same in both cases. More by-product was obtained as the 

temperature was increased but less possible alcohol bonds and less carboxylic and alkene 

bonds were detected. In any case, as the kinetics is more favourable at higher 

temperatures, the chosen one for the additional of the experiments was 80 ºC. 

 

6.2.1.4. Variation of the expected final molecular weight (Da) 
 

Until this moment, all the experiments were conducted considering a final polymer 

molecular weight of 3000 Da. For the next experiment, this was the parameter to be 

modified. The final molecular weight expected was 725 Da. 
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In this case, only one experiment was done to get a polymer of 725 Da. Table 15 and 

Figure 27 show the differences between this experiment (725 Da) and the previous one 

(3000 Da) under the same conditions. 

 

Table 15. Reaction conditions of the expected molecular weight variation experiments  

 

 

The amount of propylene oxide change depends on the final molecular weight of the 

polymer.  

 

 

Figure 27. FTIR of the final polymer changing the expected final molecular weight. 

 

The comparison of both spectra shows very clearly the differences whether the reaction 

had been taken place with a smaller amount of reactants (PO and CO2).  

  

MW (Da) # Experiment Sample m CATALYST (g) m PPG (g) m PO (g) P (barg) T (°C)

3000 12 S12 1.5 10.0 55.5 25 81
725 13 S13 1.5 10.0 6.2 25 81
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Practically, no reaction took place when the desired polymer has 725 Da. The green 

spectrum corresponds to a 3000 Da polymer. As shown by Figure 25, if the final 

molecular weight was 725 Da under the same reaction conditions (purple spectrum), there 

was a significant amount of –OH bonds unreacted and there was more cyclic carbonate 

than polypropylene carbonate.  

 

6.2.1.5. Effect of the total reaction time (h) 
 

Four experiments were carried out varying the reaction time from 40 h to 20 h as shown 

in Table 11 and Figure 26. Experiments 7 and 15 were carried out under similar initial 

conditions (6 barg and 61 ºC) except the reaction time (40 and 20 h, respectively). 

Experiments 12 and 14 (25 barg of reaction pressure and 81 ºC of reaction temperature) 

were performed under the best conditions changing just the reaction time (40 and 20 h, 

respectively).  

 

Table 16. Variation of reaction time. 

 

 

The FTIR spectra are shown in Figures 28-30. 

 

MW (Da) # Experiment Sample m CATALYST (g) m PPG (g) m PO (g) P (barg) T (°C) t reaction (h)
3000 7 S7 1.5 9.9 54.8 6.2 61 40

3000 12 S12 1.5 10.0 55.5 25 81 40

3000 14 S14 1.5 10.1 55.6 25 81 20

3000 15 S15 1.5 10.2 56.4 6.0 61 20
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Figures 28-30. FTIR comparison of final polymers changing the reaction time. 
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As the last figures showed, experiment 7 was performed successfully compared to 

experiment 15. A very high peak of polycarbonate was obtained in experiment 7, while 

the peak corresponding to the cyclic carbonate was smaller than in the conditions of the 

experiment 15. Comparing experiments 12 and 14, it is clear that with a shorter reaction 

time (exp.14), the product obtained is cyclic carbonate as a major component but not the 

poly(propylene carbonate). This implies that considering the same reaction time only, it is 

possible to evaluate the influence of the rest variables on the final product: the more pressure, the 

most successful reaction product is the general tendency. If the reaction time is decreased, no 

successful product is obtained, independent of the changes of other parameters. 

 

6.2.2. Size Exclusion Chromatography (SEC)  
 

All the reaction products were analysed by size-exclusion chromatography (SEC). The 

samples were not easily analysed by SEC, because they were not completely soluble in 

THF, the common solvent. A polystyrene calibration has been done and it determined 

that part of the sample was soluble in THF, but that part just represented the lower molar 

mass material (< 1000 Da). Figure a and 31b show the calibration curves made by MW 

standards of polyethylene glycol. Figure a and 32b show the normalized and overlaid SEC 

chromatograms. For the sake of comparison, a polymer with a molecular weight around 

3000 Da would elute at around 18 minutes. 
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Figure 31 a and b. Calibration curve made with polyethylene glycol and HPSEC runs with 

molecular weight standards of polyethylene glycol  

 

The calibration was made using a Jordi X-stream 50x10 mm + 300x10 mm column, the 

eluent was AcOH-MeOH-H2O 50:40:10, 1 ml/min and the detector was ELSD, Gain 3. 

  

 

Figure 32 a and b. Normalized and overlaid SEC chromatograms 

 

The samples were analysed in the Wood and Paper Chemistry Laboratory at Åbo 

Akademi University and they were discussed before to writing this section, due to the 

difficulties in the analysis since the first attempts. Following the nomenclature in Table 

17, samples S1-S6 seemed to be soluble in acetic acid or acetic acid-methanol but samples 

S7 and S8 were not soluble in acetic acid-methanol. Several solvents had been tried 

before.  
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These last samples, S7 and S8, were not stable over time; they changed from a smooth 

suspension into a semi-solid "gel" that could not be easily re-suspended. The analysis was 

repeated with another column and using a different eluent solvent mixture. Previous 

columns and eluent used were 2 x Jordi Gel DVB 500Å with THF, but the new column 

and the new eluent were Jordi X-stream H2O 1000Å with acetic acid-methanol-water 

5:4:1.  

Several comments have to be mentioned at this moment. The new column gave a lower 

resolution. The oligomer group eluted as only one peak instead of as a group of partly 

overlapping peaks. Retention times were not very stable (not reflective of real differences 

in molecular weights. The area percent value might be of interest for comparing the ratio 

between polymer and oligomer(s). 

 

Figure 33. Polymer and by-product (oligomer) chromatogram. 

 

Figure 33 shows that the peak corresponding to the polymer retention time (confirmed 

that was around 3000 Da) was in 14.1-15.1 min and the oligomer one (by-product) was 

in 16.2-17.1 min.  
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Table 17 summarizes the experiments conducted with zinc glutarate as a catalyst.  

 

 

Table 17. Copolymerization reactions. In bold, first experiments to be discussed. 

 

 

 

 

Figure 34. Polymer chromatogram for each sample. S1-S8 modified mass of catalyst. 

 

Sample (amount_P_T) Main Characteristics

S1_0.3_6_60 m cat = 0.3 g

S2_0.3_6_60 m cat = 0.3 g
S3_0.6_6_60 m cat = 0.6 g
S4_0.6_6_60 m cat = 0.6 g
S5_1.0_6_60 m cat = 1.0 g
S6_1.0_6_60 m cat = 1.0 g
S7_1.5_6_60 m cat = 1.5 g
S8_1.5_6_60 m cat = 1.5 g

  S9_1.5_10_60    P = 10 barg
 S10_1.5_25_60    P = 25 barg
 S11_1.5_25_80 T = 81°C

  S12_1.5_25_80 T = 81°C

 S13_1.5_25_80 MW = 725 g/mol

 S14_1.5_25_80 P = 25 barg. reaction time = 20h

  S15_1.5_06_60 P = 6 barg. reaction time = 20h
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The reactions which gave more polymer were S6, S7 and S8. As it can be seen in Figure 

34, S6 and S8 gave more by-product but S7 was the one that produced less amount of it. 

So, the copolymerization reaction in the experiment S7 was more successful than in the 

rest of experiments. It is possible to conclude that S7 shows the best amount of catalyst 

to continue with the reactions. Therefore, the rest of the reactions performed with 1.5 g 

of catalyst. 

 

 

 

Figure 35. Samples from S1-S8 modifying mass of catalyst. 

 

 

  

S1  S2 S3  S4 S5 S6 S7  S8 

S1  S2 
S3  S4  S5

S6
S7

S8 
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Table 18. Copolymerization reactions. In bold, latest experiments to be discussed. 

 

 

 

In the following discussion, experiments S10-S15 in which other parameters previously 

commented were modified, it is shown that most of the samples were not soluble or were 

just partially soluble in the eluent. Some of these new samples were again difficult to 

dissolve, especially S11 and S12 (but also S10). Also the unreacted monomers from two 

samples (distillate sample, D10 and D15) were analysed. In these distillate samples 

neither oligomer nor polymer peaks (only an artefact peak from filtering the samples) 

were detected. 

 

Sample (amount_P_T) Main Characteristics

S1_0.3_6_60 m cat = 0.3 g

S2_0.3_6_60 m cat = 0.3 g
S3_0.6_6_60 m cat = 0.6 g
S4_0.6_6_60 m cat = 0.6 g
S5_1.0_6_60 m cat = 1.0 g
S6_1.0_6_60 m cat = 1.0 g
S7_1.5_6_60 m cat = 1.5 g
S8_1.5_6_60 m cat = 1.5 g

  S9_1.5_10_60    P = 10 barg
 S10_1.5_25_60    P = 25 barg
 S11_1.5_25_80 T = 81°C

  S12_1.5_25_80 T = 81°C

 S13_1.5_25_80 MW = 725 g/mol

 S14_1.5_25_80 P = 25 barg. reaction time = 20h

  S15_1.5_06_60 P = 6 barg. reaction time = 20h
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Figure 36. Samples from S1-S8 modifying mass of catalyst. 

 

 

Figure 37. By-product (oligomer) chromatogram for samples S9-S15. 

S10  S11  S12  S13  S14  S15 

S10  S11  S12  S13  S14  S15 
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Figure 38. Polymer chromatogram for samples S9-S15. 

 

These results for S9-S15 (where S10 was an unsuccessful sample) are not totally reliable 

based on the low solubility of the polymer in the eluent. It is seen that S11 had more 

polymer and less by-product that S13 and S15. It is not possible to assure that conditions 

belonging to S11 were the better ones but they seemed to be, taking also into account the 

results obtained by FTIR technique. 
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7. CONCLUSIONS 
 

The heterogeneous zinc glutarate catalyst (ZnGA) was successfully synthesized and 

characterized by several techniques: Fourier transform infrared spectroscopy (FTIR and 

FTIR with pyridine), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP), 

Light scattering (with air and distilled water), Nitrogen-Physisorption, Scanning Electron 

Microscopy and Energy–dispersive X-ray spectroscopy (SEM-EDX), 

Thermogravimetric analysis-mass spectrometry (TGA-MS), X-ray photoelectron 

spectroscopy (XPS) and X-ray powder diffraction (XRPD). 

Through these techniques it is possible to conclude the following: 

- The catalyst was stable up to 400 ºC, although the reactions targeted were always 

below 130ºC.  

- The active reaction area of zinc glutarate corresponded to the outer surface area. 

No pores were found in its structure.  

- The catalyst particles had a rectangular plate shape with a d50 between 100-200 

μm. 

- Zinc glutarate can be used in copolymerization reactions, but it is an extremely 

slow catalyst. It achieved the ring opening polymerization process that propylene oxide 

suffers.  

 

Several different reaction conditions were screened for the formation of polypropylene 

carbonate from propylene oxide, carbon dioxide and propylene glycol (as initiator of 425 

g/mol). The reaction polymers were characterized by Fourier transform infrared 

spectroscopy (FTIR) and size exclusion chromatography (SEC).  
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The best conditions corresponded to 1.5 g of catalyst, 25 barg, 80 ºC, 40 h and 3000 Da 

of initial PO estimation. 

Values of turnover number (TON) and turnover frequency (TOF) are certainly small 

compared with other type of catalysts as will be discussed in Chapter 2 (DMC catalysts). 

An average values of TON and TOF for the best amount of catalyst corresponded to 1.6 

and 2.8*10-08 h-1, respectively, which demonstrated the slow behaviour of this catalyst. 

 

8. FUTURE WORK 
 

In this work we have tried to produce the PPC using a well-known zinc glutarate catalyst, 

however the difficulties arising from the use of this catalyst have been evident. 

Nevertheless a considerable amount of CO2 is incorporated in the polymer chain, and the 

viscosity of the resulting polymer is very high. This causes problems with the mass 

transfer in the reaction stopping it easily.  

Furthermore, the amount of catalyst needed is high (in the order of grams per 100 gram 

of product), which forces to recover the catalyst afterwards. We have not done this 

recovery because it involves a lot of time as it requires a complicated number of dilution 

and extraction steps. 

This will be a part of future work: to achieve the precipitation of the polymer, recover the 

catalyst and analyse this spent catalyst. Other possible option is to study this reaction 

under supercritical conditions, although the reactivity is too low, the use of CO2 under 

supercritical conditions may improve the mass transfer of the bulk polymer phase, and 

probably will improve the reactionability. 
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ABSTRACT 

 

Zn-Co double metal cyanide (DMC) catalysts were prepared by varying the initial 

amounts of ZnCl2 to analyse the influence of the preparation method on the different 

copolymerization parameters.  

 

Synthesized catalysts were analysed by several techniques, infrared spectrometry and 

inductively coupled plasma optical emission spectrometry, scanning electron 

microscopy, nitrogen physisorption and X-ray diffraction to determine which 

characteristics affect the catalytic activity. The copolymers were characterized by infrared 

spectrometry and gel permeation chromatography.  

 

A highly active catalyst (2.5 kg polymer / g catalyst) was synthesized, low amounts of 

cyclic carbonate by-product were produced (0.4 %) with medium crystallinity catalysts 

and considerable amounts of K+ (0.4 % to 1.0 wt %). 
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1. INTRODUCTION 

 

The world is confronted with a major crisis of climate change due to the increased 

evolution of greenhouse gases, with CO2 being the main contributing [1]. Methane (CH4) 

is now also a threat, due to permafrost defrosting and subsequent CH4 liberation related 

to global warming. In addition, as the current rate of petroleum consumption resources 

are predicted to be exhausted within the next century, there is a growing effort to develop 

new chemical processes using renewable resources [2].  

 

In this way, CO2 has received much more attention to develop processes for its use as a 

potential carbon resource [3]. Therefore, CO2 has not only became into an important C1-

carbon feedstock because it is an environmentally benign chemical and a safe alternative, 

but also because it has received the attention from an economical point of view due to its 

high purity availability at relatively low cost, and simplicity to handle it on an industrial 

scale (nontoxic and non-flammable) [4], [5].  

 

As a kind of potential approach, one of the most promising areas for CO2 is its application 

as a material for polymer synthesis [6]. Without the intention of competing against natural 

CO2 fixation in flora,  polycarbonates can be synthesized through the technologically 

viable process of CO2 fixation by coupling CO2 and epoxides in the presence of 

heterogeneous or homogeneous catalysts [7], [8], [9]. These final polycarbonate products 

have been proposed as low toxicity and biodegradable alternatives for packaging, 

engineering polymers and elastomers [8], receiving much more attention because they 

exhibited good mechanical properties [5].  
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Appealing economic advantages arise from the use of CO2. It is estimated that producing 

1 ton of the final polyol polymer (POL) product will consume approximately 758 kg of 

propylene oxide (PO) (without including CO2). Otherwise, as CO2 is included into the 

formula, polyol carbonate is produced (PPC) and the PO used is notably reduced. Thus, 

with a proper catalyst, it can be easily included a 15 wt % of CO2 into the PPC with 

savings up to 228 kg of PO in the process. As an example, in the Bayer pilot plant located 

in Leverkusen, Germany, values above the 30 % CO2 included into the PPC where 

obtained and this can lead to high OPEX (operational expenditure) savings. Finally, the 

impact over carbon footprint is estimated to decrease in 11-19 % [10]. 

 

In this sense, the past three decades a great progress has been made in the fixation of CO2 

into polycarbonates. Since the pioneering work of Inoue in 1969 using ZnEt2/H2O as a 

catalyst [11], many systems have been investigated and the effective utilization of CO2 

has been demonstrated. The importance of a catalyst  has never been overestimated [6, 

7], [12], [13]. 

 

To develop further this promising reaction, various catalyst systems have been developed 

for the synthesis of polycarbonates [8] and many studies have focused on finding new 

catalysts with improved activity and selectivity [9]. The target is to synthesize a catalyst 

fast enough to reduce the reaction time in order to make the process technically feasible, 

but keeping it at the same time slow enough in the PO incorporation to give CO2 the 

opportunity to react and incorporate into the polymer chain.  
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Thereafter, a number of catalysts were developed to enhance the copolymerization of CO2 

with epoxides such as cyclohexene oxide (CHO) and propylene oxide (PO) [5].  

Nevertheless, they are generally less effective for the copolymerization of propylene 

oxide (PO) with CO2, and undesired by-products such as propylene carbonate (PC) are 

produced [14]. Propylene carbonate is a by-product which reduces the atom economy of 

the reaction, although under certain circumstances it might be of help by reducing the 

polymer viscosity by acting as a solvent and fostering mass transfer. 

 

Several research groups have pursued this path on developing both homogeneous and 

heterogeneous catalysts for CO2 fixation [2, 4] and one of the successful examples is the 

double metal cyanide (DMC) catalyst [1, 7]. The DMC catalyst generally referred to zinc 

hexacyanometalate and prepared by reaction of zinc halide and hexacyanometalate salt 

[3] and a complexing agent in some cases [5]. These complexes are considered to be 

effective not only for propylene oxide ring-opening (ROP) but also for copolymerization 

of CO2-epoxides [6, 7, 9, 13, 14]. The catalysts are highly active and give polyether 

polyols which have a low unsaturation and a narrow molecular weight distribution [6], 

yielding biodegradable polycarbonates with a wide potential for polyurethane 

applications [15]. 

 

Improvements have made DMC catalysts much more attractive for commercial 

manufacture of polyoxypropylene polyols [6].  
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Copolymerization of propylene oxide (PO) and CO2 using DMC complex based on 

Zn3[Co(CN)6]2 has been successfully carried out by many researchers. Chen et al., 2004 

demonstrated that Zn3[Co(CN)6]2 enhances the catalytic activity higher than 

Zn3[Fe(CN)6]2.  

 

The study showed that lower temperature and lower amount of catalyst was favourable 

for CO2 incorporation but propylene carbonate was produced as co-product [3]. Gao et 

al. (2012) [13] studied the effect of molecular weight of the initial polypropylene glycols 

(PPG) on polymerization and reaction conditions. Results showed that the catalytic 

activity changed with carbonate unit content and molecular weight, it reached 10.0 kg 

oligomer/g DMC catalyst, also, the carbonate unit content varied between 15.3 % and 

62.5 %, and the weight ratio of PC was controlled to less than 8.0 wt %.  

 

Li et al. (2011) [14] studied the copolymerization process of CO2 and PO without 

initiators. The catalytic activity reached 60.6 kg polymer/g DMC after 10 h. The 

production of the by-product propylene carbonate (PC) was between 0.4 to 4.4 wt %, but 

very high molecular weight copolymers were obtained, being the maximum in 130000 

g/mol. In this sense they confirmed that severe oxidative degradation took place for the 

low-carbonate-content PPC and that the air stability could be significantly improved by 

adding an antioxidant. Zhang et al. (2011) [9] reported a nanomellar Zn-Co(III) DMCC 

catalyst with a high surface area for copolymerization. Although the molecular weight 

was so high (31800 g/mol), the resultant copolymer had a considerable productivity (6050 

g polymer/g Zn), FCO2 (72.6%) and low PC (8.5 wt%).  
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Zhou et al. (2011) [16] reported good results on polymerization with high crystallinity 

catalysts and studied the effect of various reaction conditions, such as the catalyst amount, 

reaction time and temperature on the copolymerization. The efficiency of the catalyst was 

high, 7488 g polymer/g catalyst and the results showed that insertion of CO2 into chains 

is significantly affected by the amount of catalyst and ambient temperature. The PC 

production was controlled to be less than 5 % while the molar fraction of CO2 exceeded 

30 %.  

 

On the contrary, Sebastian and Srinivas [17] studied DMC catalysts prepared by different 

methods and their influence on the catalytic activity for CHO-CO2 copolymerization. 

They reported that even with a moderate crystallinity and without co-complexing agents, 

the catalyst are high active for copolymerization, also, CO2 adsorption studies revealed 

that the higher the guest-host interaction is, the higher would be the catalytic activity, 

providing polycarbonates with CO2 incorporation as high as 86 mol%, average molecular 

weight of 20900 g/mol and polydispersity index of 1.8. Therefore, as far as the 

copolymerization of PO and CO2 is concerned, developing a highly active catalyst system 

capable of producing high-molecular-weight poly(propylene carbonate) (PPC) and low 

amount of PC byproduct is fundamental; under the control of the percentage of CO2 

incorporation [14]. 
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In this work, we will address the effect of different Zn/Co initial ratio in the preparation 

of five DMC catalysts by testing the catalytic activity in the copolymerization process, 

the cyclic polycarbonate (PC) production and CO2 coupling. A comprehensive study of 

all the catalysts, as well as physical and chemical characterization has been performed 

using a number of different analytical techniques. 

 

 

2. EXPERIMENTAL 

 

2.1. MATERIALS 

 

Zinc chloride (ZnCl2), potassium hexacyanocobaltate (III) K3[Co(CN)6]2, tert-Butanol (t-

BuOH) and polyethylene glycol (PEG 1000, Mw=1000 g/mol) were used for catalysts 

without further purification (Sigma-Aldrich). Propylene oxide (PO, ≥ 99%, Sigma-

Aldrich), polypropylene glycol (PPG 725, Mw= 725 g/mol, Sigma-Aldrich) and CO2 

were used as received.  

 

2.2. PREPARATION OF DMC CATALYST 

 

Different amounts of ZnCl2 and K3[Co(CN)6]2 were used for the preparation of DMC in 

order to determine the effect of including one or the other reagent in excess. The weighted 

amounts of both reagents can be seen in Table 1, 1.77 g of PEG 1000 were added and 

used as co-complexing agent.  
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Although the stoichiometry of the reaction is 1.5 Zn/Co molar ratio (equation 1), the 

amounts were changed to determine how an excess of one or another metal can influence 

different catalyst parameters such as catalytic activity, crystallinity, bounding and 

copolymerization. The catalyst recovered (g) was the amount of catalyst obtain in each 

DMC preparation (Table 1). 

 

ሻଷሿଶܰܥሺܥଷሾܭ2  ଶ݈ܥ3ܼ݊ 	→ 		 ܼ݊ଷሾܥሺܰܥሻሿଶ ↓ 	6݈ܥܭ						ሺequation	1ሻ	 

 

Table 1. Amounts of Zn and Co used in the preparation of the different catalysts and experimental 

Zn/Co mol ratio. 

 

DMC 
ZnCl2 

(g) 

K3[Co(CN)6]2 

(g) 

Zn/Co 

mol ratio 

Catalyst recovered 

(g) 

A 0.31 6.94 0.1 0.48 

B 0.79 5.78 0.3 1.20 

C 1.56 3.86 1.0 2.49 

D 2.35 1.93 3.0 1.67 

E 2.81 0.77 8.9 0.78 

 

The precise K3[Co(CN)6]2 amount for each experiment was dissolved in 80 ml of milli-Q 

water and ZnCl2 in 210 ml of milliQ water and 50ml of t-BuOH. Both solutions were 

mixed and stirred vigorously during 15 min at 50 °C. After 13 min, PEG 1000 was added 

to the mixed solution and the white suspension was centrifuged six min at 5000 rpm.  
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The isolated slurry was re-suspended under vigorous stirring during 20 min in 100 ml of 

a t-BuOH: H2O (50:50) solution and it was centrifuged as described previously. The solid 

material was re-suspended in 100 ml of 100% t-BuOH and stirred for 30 minutes, filtered 

(Omnipore PTFE membrane filter, 0.1 µm, Merck Millipore) and dried under vacuum at 

50 °C during 30 hours. 

 

2.3. COPOLYMERIZATION PROCESS OF CO2 AND PROPYLENE OXIDE 
 

Polymerization is a highly exothermic process and a runaway reaction due to a sudden 

polyol formation may take place if the PO concentration in the liquid phase is high (e.g. 

due to accumulation of PO because of inefficient agitation). To avoid this completely 

undesirable situation which might cause a serious safety problem and usually leads to 

overcooked polymers, the PO is often added continuously to the reaction in a semi-batch 

operation mode.  

Batch co-polymerizations of different Zn3[Co(CN)6]2 (DMCs) and CO2 were carried out 

in a 350 ml reactor. An initial template polymer was used for catalyst activation and for 

a better control of the final molecular weight. PPG 725 was used for that purpose, 

assuming that the number of moles of polymer was constant during the reaction and that 

all the –OH branches grew equally. The amounts of the starter PPG 725 and of the catalyst 

DMC were set at 30 g (0.0413 mol) and 40 mg (6.38•10-5 mol), respectively and placed 

in the reactor under continuous stirring and homogenous temperature. Three successive 

inertisations using nitrogen were carried out at different pressures (5, 15 and 20 barg) to 

remove all oxygen moieties.  
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The reactor was then heated up to 130 ºC under vacuum conditions. Once the temperature 

was raised, application of the vacuum was continued during 30 min to remove moisture 

in the starting PPG polymer.  

 

First, under vacuum conditions (-0.80 barg), the activity of the catalysts was tested by 

two sequential activations at 130 ºC inserting a fixed amount of PO. The amount of PO 

added for the activations was estimated to be around 10 % of the total PO required if a 

3000 g/mol PPC was pursued. Once the first amount of PO was pumped into the reactor, 

the following criteria were followed to determine whether the catalyst had been activated 

properly. The pressure of the reactor increases due to PO vaporization, up to 

thermodynamic equilibrium. The catalyst takes typically 10 to 30 min to activate, and 

after that, the reactor pressure decreases due to PO consumption. If a temperature peak 

followed by a decrease of the pressure occurred before one hour of the first addition, the 

catalyst passed the activation test. Otherwise, if the pressure did not decrease to the initial 

vacuum conditions, the catalyst was not activated properly and the experiment was 

interrupted.  

 

The second activation was carried out under the same conditions as the first one. Finally, 

a third PO addition was done with CO2 at the copolymerization pressure (10 barg) only 

when the catalyst behaved properly in the two previous additions. After the PO batch 

additions, once the system was stationary, the temperature was decreased down to the 

copolymerization temperature of 105 ºC and PO was pumped in a continuous way (0.35 

ml/min). This PO flowrate is considered to be the maximum heat that the equipment is 

able to remove by the cooling system, to avoid runaway reactions and hotspots.  
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After this stage, a continuous flow of CO2 was fed into the system during two hours to 

keep the pressure constant.  

Finally, the pressure was slowly released and the system was kept under a vacuum flow 

of nitrogen to eliminate the unreacted monomers of PO during one hour. Then, the reactor 

was cooled down and the final copolymerization product was weighted and prepared for 

further analyses. 

 

2.4. CHARACTERIZATION OF THE CATALYST  

 

Elemental analyses of Zn (213.857 nm), Co (238.892 nm) and K (766.491 nm) were 

performed by optical emission ICP (Varian 725-ES), after a previous microwave 

digestion of samples (ETHOS SEL Milestone). Infrared spectra from 400 to 4000 cm-1 

were recorded using a Fourier transform infrared spectrometer (FTIR) from Bruker 

ALPHA at a resolution of 2 cm-1 and data were taken after 64 scans. Environmental 

scanning electron microscope (ESEM) images were recorded by ESEM-FEI-Quanta 

200F after coating with 10 nm gold layer. X-ray diffraction (XRD) patterns and 

crystallinity results were obtained on Bruker D8 Discover A25 diffractometer using Cu 

ceramic tube at 2.2 kW and LynxEye detector. The micropores and mesopores of the 

catalyst were analysed by nitrogen physisorption (Sorptomatic 1900, Carlo Erba 

Instrument). The sample preparation was as follows, first an outgassed burette was 

weighted, and then 0.25 g of DMC A was added to the burette under outgassing conditions 

during three hours at 150 ºC and 0.01 Pa, after which the burette was weighed to 

determine the moisture of the sample and the specific surface area of the catalyst (m2/g) 

was measured. 
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2.5. CHARACTERIZATION OF THE COPOLYMER 

 

Spectroscopic analysis of the polymers was performed using FTIR (Bruker ALPHA) at a 

resolution of 2 cm-1 and the data were recorded after 64 scans. The amount by weight of 

CO2 incorporated in the polymer chain was determined by means of 1 H-NMR (Hydrogen 

- nuclear magnetic resonance, Bruker AV III HD 500, 500 MHz, pulse program zg30, 

waiting time d1:1s, 120 scans).  The sample was dissolved in deuterated chloroform. The 

relevant resonances in the 1 H-NMR spectra (based on TMS = 0 ppm) used for the 

integration were: 1.05–1.25 (methyl group of polyether moieties, area of the resonance 

corresponds to three H atoms); 1.25– 1.35 (methyl group of carbonate moieties in 

polyether carbonate, area of the resonance corresponds to three H atoms); 1.50 (methyl 

group of cyclic carbonate, area of the resonance corresponds to three H atoms). Taking 

into account the intensities, the relative concentrations as well as the weight fractions 

were calculated. The number average molecular weight (Mn) and polydispersity index 

(PDI) of the polymer products were calculated from the obtained curves in a Waters 1515 

size exclusion chromatograph (SEC) with 2 Agilent PLGel 5 µm mixed D (300x7.5) 

columns, the temperature of which was set at 35 °C using THF as the solvent. The 

detection was performed with a refractive index detector, solvent flow was 1 ml/min, and 

the calibration was performed with PS standards. 
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3. RESULTS AND DISCUSSION 

 

3.1. ANALYSIS AND CHARACTERIZATION OF THE CO-ZN BASED 
CATALYSTS 
 

The preparation method including temperature, purity of feedstock, complexing agent 

and the mode of reagents addition have significant effects on the catalytic activity of the 

final DMC activity [5, 17]. As the DMC catalysts were prepared by mixing K3[Co(CN)6]2 

and ZnCl2, KZn[Co(CN)6] or K+ can be also formed. The presence of potassium ions 

could result in a drastic decrease of activity of the DMC [5]. 

 

The experimental procedure of the DMC synthesis has been already developed by several 

authors and with different preparation methodologies such as  by Chen et al., 2004, Zhan 

et al., 2011, Kim et al., 2004, Zhang et al., 2015 et al., Chruściel et al., 2014 or Li et al., 

2011 among them [3, 9, 18-21]. However, just a few publications report the effect of 

changing the amount of the initial reactants [1, 17, 22]. 

 

In order to examine the effects of how different initial metal concentrations in the DMC 

can influence its chemical and morphological characteristics and catalytic activity, five 

catalysts were prepared by changing the concentration of ZnCl2 and they were used for 

polymerization reactions. tert-Butanol (t-BuOH) was used as complexing agent (CA) to 

help the retention of ZnCl2 in the catalyst [5] and the co-complexing agent (co-CA) PEG 

1000, according to Guo et al., (2014) was used to decrease crystallinity and increase the 

catalytic activity [7].  
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Thus, they play an important role in the DMC catalyst and ring opening polymerization 

(ROP) [13]. The catalyst was prepared following the literature [23]. All the samples were 

analysed to determine the differences based on the amounts of K, Co and Zn (Table 2).  

 

Table 2. Final composition of the different prepared catalysts analysed by ICP.  

Samples 
Zn  

(% mol/mol) 

Co  

(% mol/mol)

Zn/Co  

mol ratio

K 

(mol/g) 

Co 

 (mol/g) 

Zn 

(mol/g) 

A 60 40 1.50 0.0008 0.0022 0.0033 

B 58 42 1.38 0.0007 0.0022 0.0031 

C 59 41 1.44 0.0004 0.0028 0.0040 

D 60 40 1.50 0.0003 0.0028 0.0042 

E 61 39 1.56 0.0001 0.0026 0.0042 

 

FTIR spectroscopy was used to identify the coordination and bonding in metal 

complexes. Differences on the DMCs can be seen on the vibration bands which reveal 

differences in the bonding characteristics. The band which appears at 2192 cm-1 

corresponds to the –C≡N stretch of the DMC complex Zn3[Co(CN)6]2 · xH2O (x = 0 ~ 

12) in the presence of CA and co-CA. According to other researchers [12, 17], the main 

characteristic vibration bands that appear in all DMC (Figure 1) are: at 470 cm-1 the Co-

C stretching vibration indicates the presence of a coordinated t-BuOH in different 

amounts, 642 cm-1 correspond to Co-C bounding, 1199 cm-1 to 3º-C-O stretch, 1372 cm-

1 to -OH bending from t-BuOH, 1473 cm-1 to -CH scissoring, 1615 cm-1 to –OH bending 

form water, 1738 cm-1 correspond to the PEG incorporation into the catalyst, 2981 cm-1 

to –C-H stretch and the –OH stretch in all DMCs vibes from 3661 to 3296 cm-1.  
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The main difference in the FTIR analysis correspond to the synthesized catalysts with 

higher amounts of K3[Co(CN)6]2. Catalysts A and B showed one more vibration band at 

2129 cm-1 (Figure 1). This band may be caused by the –CN group from the excess of 

K3[Co(CN)6]2 added to the catalyst (AIST spectra database). 

 

Figure 1. FTIR spectra of the Co-Zn catalysts. 

 

 

Selected ESEM images revealed that the amount of reagents affects the particle size and 

the morphology (Figure 2) of the catalyst. The DMCs prepared showed lamellar, spherical 

and cubical distributions. Lamellar structures thickness changed from approximately 125 

nm for the sample A to lower sizes while ZnCl2 was increased in the synthesis. E sample 

exhibited lamellar structures with a thickness of approximately 33 nm together with more 

spherical agglomerates.  

It is interesting to note that more agglomerates and spherical structures were formed as 

Zn2+ was increased in the catalyst recipe; although the final Zn/Co ratio was almost the 

same (Table 2). In agreement to Lee et al. (2009) [12], this fact could lead to an 

aggregation of DMC particles as well as co-CA acts as protecting agent.  
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As revealed by Figure 2, catalyst A and B present mostly lamellar and cubical structures 

while more agglomerates are formed and cubical structures change to spherical in catalyst 

C. Finally in catalysts D and E, the excess of Zn2+ could lead to thin lamellar structures 

surrounded by spherical agglomerates which might indicate that the aggregation process 

is completed in these cases (Figure 2). 

 

Figure 2. SEM images of DMC catalysts prepared with different initial concentrations of Zn and 

Co. 

 

The surface properties, crystal structure and crystallinity values of the synthesized 

catalysts were examined by X-ray diffraction.  
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All of them were identified as Prussian blue analogues (characteristic reflections of 

Zn3[Co(CN)6]2 * 12 H2O are marked with lines in Figure 3) [12].  

 

Sample A was characterized by cubic (14.9, 17.3, 24.5, 34.8, 39.2 º) and monoclinic 

structures (14.5, 20.7, 23.5, 24.9 º) [17, 24]. This sample presented an amorphous 

structure, as it had a pronounced intensity reflection at 23.7º [7]. Sample B presented a 

mixture of cubic and in a lesser extent monocyclic structures, in which the monoclinic 

phase characteristic peaks at 20.7 º and 23.5 º [24] had low intensity.Particularly, sample 

C showed a cubic lattice structure with no monocyclic phase together with the highest 

crystallinity (50.3 %). On the other hand, samples D and E presented also a mixture of 

cubic and monoclinic structures, the monoclinic structure being more intense in sample 

E. The extent of the monoclinic structures was more intense at Zn/Co ratios different from 

the stoichiometric value.   
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Figure 3. X-ray diffraction of the different Co-Zn catalysts. *Characteristic peak of an amorphous 

state. 

 

3.2 CATALYTIC TEST  

 

From the results we can conclude that a proper activation of the catalysts only took place 

when ZnCl2 was in excess in the DMC preparation. This fact leads to changes in the 

catalyst structure, which is in accordance with previous research [1, 7, 13, 24, 25, Gao, 

2012 #8].  
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In our case, samples D and E were activated properly. Differences in the activities are 

exclusively due to the preparation method. Catalyst D with a molar starting mixture of 

Zn:Co:t-BuOH:PEG formulae 1.0:0.3:30.6:0.1, finished the first activation after 40 min 

with 7.2 g of PO added and its second activation was carried out with 2.2 g of PO and 

finished after 80 min.  

 

A quicker activation was carried out by catalyst E with a molar starting mixture of 

1.0:0.1:25.6:0.1 that activated much faster, the first activation finished after 28 min with 

7.4 g of PO and its second activation finished after 52 min with 2.3 g of PO added (Fig. 

4).  

 

The catalyst yield is 1.4 kg polymer/g catalyst for D sample and 2.5 kg polymer/g catalyst 

for E. Compared to previous studies, this value is high for 10 barg (working pressure), 

previous studies have similar catalytic activities working at higher pressures [17, 18]. As 

an example, Chen et al. (2004) [3] obtained catalytic activities from 1.5 to 2.1 by working 

at pressures of 20 to 45 bar. Recently Gao et al. (2012) [13] reported a yield of 3.8 (kg/g) 

working at 40 bar.  
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Figure 4.  Catalyst activation. A, B and C nonactive catalysts, D and E active catalysts. (1) First 

catalyst activation, (2) PO consuming stage, (3) second catalyst activation, (4) second PO 

consuming stage. 
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Therefore, we suggest that the appropriate catalyst for DMC polymerization should be 

one with the characteristics of the catalyst D/E. GPC figures (Figure 5) showed that the 

sample E has consumed half of the starter peak while the sample D has consumed almost 

all the peak. This implies that D catalyst is more reactive than E, but lacks of activity to 

decrease the PDI in the final product.  

 

In this sense, specific surface area analysis was performed in both active catalyst to 

evaluate the pore volume and relate it to the catalytic activity and polymerization process. 

As can be seen in Table 3, the specific surface areas of both catalysts arehigh (846 m2/g 

D sample, 743 m2/g E sample for microporous analysis and 533 m2/g D sample, 515 m2/g 

E sample for mesoporous analysis). Sample D had a smaller amount of water than E and 

the highest mesoporous volume (0.51 cm3/g). Both catalysts D and E are characterized as 

porous, however the values of specific surface area and eliminated water % are different 

(Table 3).  

 

We suggest that once the reagent molecule gets inside the pore, some of them are not able 

to release that molecule. This fact also avoids the release of the water content in the pores, 

obtaining long polymer chains, which leads to high PDI values. This phenomenon is 

observable for catalyst D (Table 4). Nevertheless, when the pore allows the incorporation 

of the reagent molecule as well as the subsequent release of water and polymer molecules, 

it results in shorter polymer chains. In this case, the PDI value decreases as became visible 

for catalyst E (Table 4). 

 



                                                  Chapter 2 

 

 

 

 
166 

 
  

The specific surface area follows the previous assumption (Table 3). In terms of pore 

volumes, smaller pore values (catalyst E) allow the polymer molecule remain less hold 

inside the pores.  

This enables a higher number of short polymer chains, a decrease on PDI value and higher 

water % elimination. By optimizing the agitation system, this effect is less pronounced 

due to the improvement in internal and external diffusion processes.  

 

 

Figure 5. GPC analysis of active catalyst samples D and E 

 

 

 

 

 



                                                  Chapter 2 

 

 

 

 
167 

 
  

Table 3. Microporous, mesoporous and surface area of the active catalysts D and E analysed by 

nitrogen physisorption 

 

Sample % water Specific surface area m2/g Pore volume cm3/g 

D_microporous 18.15 846.80 0.30 

D_mesoporous 12.86 533.12 0.51 

E_microporous 21.43 743.07 0.26 

E_mesoporous 21.80 515.24 0.35 

 

Moreover, we state that thorough washing to eliminate all K+ from the catalyst is not 

strictly necessary for a proper working of the catalyst due to with 4000 ppm for E 

(0.4%wt) or even 10000 ppm for D (1.0%wt) of K+ in the DMC the activation and 

polymerization reactions exhibit good results (vide infra).  

Although it has been reported in previous studies that DMC with a lower crystallinity are 

more active for copolymerization and the DMC exhibited high catalytic activity only 

when the crystallinity degree was ≤ 30%, our results as the ones reported by Zhou et al. 

(2011) [16] and Sebastian et al. (2014) [17] showed significant differences provided that 

D and E are active catalysts with a medium crystallinity (> 40%). In fact, it is consistent 

with the theory reported by Peeters et al. (2013) [24] that the influence on the catalytic 

activity is based on the structure properties of the Zn2+ ion.  

At the surface of cavity generated by a block vacancy, Zn atoms with an incomplete 

coordination sphere are found [26] so higher activity can be achieved by more vacancies 

around Zn [7].  
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Also, coordinated CA and disperse Cl- in the structure activates Zn2+ ions that are critical 

for high activity of catalysts [17]. 

 

3.3 PPC COPOLYMER CHARACTERIZATION 
 

For the copolymerization reaction, the total amounts required of catalyst, PO and PPG 

were estimated depending on the desired molecular weight for the final copolymer, in this 

case approximately 3000 g/mol. By considering this value, the amounts of PO and PPG 

to be used in the reaction were calculated. 

 

The FTIR spectrum of the obtained copolymers is shown in Figure 6. A sharp C=O 

asymmetric vibration absorption at 1744 cm-1 and a C-O stretching vibration at 1260 cm-

1 was found, providing the evidence of the incorporation of CO2 into the polymer chain 

[3, 7]. At the same time, low intensity peaks appear at 1790 and 790 cm-1 which are 

characteristic for cyclic carbonates (PC). 

 

The copolymerization reaction resulted in the main product, polypropylene carbonate 

(PPC) and the by-product, cyclic polycarbonate (PC). Before the reaction is carried out it 

is recommendable to estimate the % CO2 which could be incorporated as well as the 

amount which is going to be formed of PC, in order to predict the PO amount needed for 

the PPC synthesis reaction. The more incorporation of CO2, the less PO will be necessary 

for the reaction, for a similar final molecular weight. On the contrary, the higher amount 

of PC is generated by reaction, the higher amount is needed of PO. 
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Comparing the calculated data to the experimental ones analysed by NMR (Table 4), the 

data showed that the incorporated CO2 values are similar to the estimated values, 5.6 wt 

% for D and 6.7 wt % for E. Comparing to other studies which have been carried out 

under similar conditions and similar pressures (10 bar), the CO2 incorporation is higher 

than in the case of Langanke and Wolf (2015). This authors obtained 4.1 wt % of CO2 

working at a higher pressure 22 bar [27].  

 

Calculating the CO2 incorporation on % CU (mol) units, values correspond to 7.7 and 9.4 

% CU (values obtained by NMR). These results are close to the ones obtained in other 

studies conducted at higher pressures. Chen et al., (2004) obtained values of 15% working 

at 20 bar [3] and Li et al., (2011) obtained 13 % CU but in this case working at 40 barg 

[21]. The benefit of these DMCs was that the amount of the cyclic carbonate produced in 

the reaction was very low, 0.4% for D and 0.3% for E (Figure 6). Thus, these DMCs were 

more selective catalysts regarding to the main product PPC, also the production of high 

amount of the by-product PC leads to a decreased production of PPC. 

 

In this way, we have achieved a high selective DMC that can be used at high temperatures 

(105ºC) on the contrast to the study of Darensbourg et al. (2003) [28] where the tendency 

to produce large quantities of PC increased with elevated temperatures. 

 

 

 

 

 

 

 



                                                  Chapter 2 

 

 

 

 
170 

 
  

 

 

Table 4. Data of copolymerization of CO2 and PO for the active catalysts (a) 

 

(a) All copolymerization were carried out at 105 ºC, 10 barg with 30 g of PPG (725 g/mol) and 90 g of PO. 

(b) Calculated by kg polymer/g catalyst  

(c) TON calculated as mol PPC/mol catalyst, TOF calculated as TON/h 

(d) Carbonate content unit (CCU) and ratio of PC in the product (WPC) was determined by NMR 

 

 

Figure 6. FTIR spectra of the copolymer obtained with catalysts D and E 

 

Cat. 
PPG/DMC 

(g/mg) 
t (h) 

Yield 

(b) 

TON

(c) 

TOF 

(c) 

WPC
(d) 

(%wt)

CCU(d) 

(%wt) 

PPC 

product PDI 

Mw Mn 

D 30/42 6.5 1.4 34 7 0.3 5.6 25267 1930 13.09

E 30/41 6.0 2.5 99 14 0.4 6.7 15930 2660 5.97 
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The copolymers obtained had high and low molecular weights whicht implied a high 

polydispersity (PDI), this fact was due to a less intensive agitation in the reactor during 

the copolymerization process. The increased viscosity of the polymer caused mass 

transfer limitations due to the agitation, as the magnetic stirring was insufficient and 

therefore ineffective.  

The PO dripping always in the same area and the inefficiency of the agitation led to 

formed molecules with a long carbon chain, and other molecules with shorter chains, in 

more remote to the PO feeding areas. This resulted in an unexpectedly high 

polydispersity, as can be seen in Table 4.  

The increase of the viscosity may be due to a low formation of the cyclic polycarbonate, 

however, this is a characteristic result and one of the objectives to achieve, because it 

avoids the need of further purification processes to remove the cyclic polycarbonate.  

A low PDI is essential for optimal properties of the polyol in its subsequent use for the 

synthesis of polyurethanes. This could be improved by including a vigorous agitation 

system or a mechanical stirrer, during the copolymerization reaction that will lead to 

decrease notably the PDI and so the molecular weight. Thus, two more reactions were 

carried out in a Parr reactor (Parr Instrument Company, Inc. Moline, Illinois, U.S.A), with 

a volume of 382 cm3 with a mechanical stirrer (Parr Instrument Company, Moline, 

Illinois, U.S.A. A1120HC II55 with a motor from Bodine Electric Company, Chicago, 

USA) to prove this fact.  

Variables such as temperature, and amount of catalysts used were the same as in the other 

experiments. The PO amount was changed in order to prove the agitation effect on the 

PDI of the final polymer. As the final molecular weight is not an essential variable on the 

PDI value, the reaction was carried out to 1000 g/mol instead of 3000 g/mol.  
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The results showed a considerable decrease in the PDI. The values obtained for PDI were 

1.11 and 1.10 for D and E catalysts, respectively being Mw and Mn 1066 and 960 for 

catalyst D and 1139 and 1034 for catalyst E. Therefore, both catalysts are appropriate for 

copolymerization processes because both can decrease the final PDI, producing low 

amounts of PC. Finally, the incorporated CO2 in the chain will be increased while the 

working pressure also increases. As Guo et al. (2014) [29] reports, higher pressure, lower 

temperature and longer reaction time increase the speed of ring opening. It is worth to 

mention that using these DMC catalysts,  low amounts of PC are produced and once this 

active catalyst is obtained, they can be used for increasing the CO2 incorporation by 

varying the temperature and increasing the pressure. 

 

4. CONCLUSIONS 

 

In this study, Zn/Co double metal cyanide catalysts were synthetized by varying the 

amounts of ZnCl2 in the preparation method. The main goal was to synthesize active 

DMC catalysts which lead to produce very low quantities of the by-product (cyclic 

carbonate) and an increased production of the main product, polypropylene carbonate. 

Different DMC catalysts were tested for that purpose. 

Only when Zn was in excess, the catalyst was active but a thorough washing to eliminate 

K+ until is not detected, it was appreciated that it is not necessary in order to obtain high 

active catalysts.  
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With amounts between 0.40 % and 1.00 wt % ppm K+, the catalyst exhibited a good 

activity and only two washings were necessary. This fact might help in the reduction of 

the reaction time and the solvent costs in the preparation of DMCs.  

 

Active catalysts showed a medium crystallinity, which implies that the amorphous state 

was not override. Thus, it leads to the fact that the catalytic activity was influenced based 

on the structural properties of the Zn2+ ions in which the Zn-OH group in the DMC 

catalyst is the active site for polymerization. The study revealed that the preparation 

method based on initial amounts of Zn2+ can affect the copolymerization process. 

Although the PDI was between 5.97 and 13.09 due to the high viscosity of the 

polymerization in the bulk fluid (as low amounts of PC were obtained), it could be 

improved by enhance the stirring system. To prove this, two more reaction experiments 

were carried out using a mechanical stirrer. The effect was clear producing a decrease in 

the PDI value. 

 

The nitrogen physisorption and GPC analysis of these catalysts revealed that with a higher 

amount of water and similar specific surface area, catalyst E is less reactive but the 

catalytic activity is higher than for catalyst D. The specific surface area and pore volume 

are crucial to characterize the catalytic activity in order to obtain short polymer chains, 

which implies a good value of PDI in the final product. 

 

The highest catalytic activity (2.5 kg polymer/g catalyst), more CO2 incorporation (6.7 

%) and less production of PC (0.3 %) even at high temperatures (105 ºC) were performed 

by the DMC E, prepared with the highest amount of ZnCl2, although the stoichiometric 

reaction was similar in all the cases. 
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ABSTRACT 
 

 

DMC catalysts activate under certain conditions to polymerize propylene oxide into 

polyether or propylene polycarbonate in the presence of CO2. For the catalyst activation, 

only PO is used to avoid catalyst poisoning before the activation. 

 

We have studied a prepared DMC catalyst during its activation period. Two variables 

were analysed, namely the amount of catalyst, from 10 mg to 80 mg and the amount of 

propylene oxide from 4 to 18 g (related to reactor pressure). We have found two different 

behaviours, a slow activation if PO is present in a low quantity and a rapid activation for 

higher PO quantities. The amount of the catalyst also influenced the behaviour but, while 

almost any quantity works for the activation, it is recommended not to use very low 

amounts, as they can be deactivated during the reaction. Turnover frequencies between 8 

and 31 mol polymer/mol catalyst/h were found. 
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1. INTRODUCTION 
 

Since Inoue first disclosed the ring-opening copolymerization (ROP) of CO2 with 1,2-

epoxypropane by ZnEt2-H2O [1], much attention and progress had been made within the 

past decades to explore various related catalysts to ensure the copolymerization and afford 

to synthesize a range of aliphatic polycarbonates [2].                                                       

 
Excessive concentration of atmospheric CO2, has significantly contributed to global 

warming and requires immediate remedies [3]. Thus, the utilization of CO2 remains 

important to reduce emissions, and as an economic driver to support carbon capture.  

 
The copolymerization process of CO2 is strongly dependent on the selection of the 

catalyst and various heterogeneous and homogeneous catalysts have been studied [4]. 

 
Homogeneous catalysts are generally suitable for research, because their chemical 

structures can be well defined, some homogeneous catalysts have shown high activity and 

product selectivity [5].  

 

Traditional homogenous catalysts systems include porphyrin [6], phenoxide,  β-diiminate 

(BDI), and salen systems. New strategies have come up for these catalysts including 

dinuclear BDI catalyst, binary linked salen, dinuclear salen and immobilized salen and 

BDI systems [7]. Bicomponent catalysts comprising metal(II/III) complexes such as 

Co(III), Cr(III), Mn(III) or Al(III) [8] coordinated by ligands such as salen [9] or 

porphyrins [10] and, dinuclear or bimetallic catalyst where two metals are coordinated by 

tethered ‘mononucleating’ ligands, such as Zn(II) β-diiminates (BDIs) or tethered 

Co(II)/Cr(III) salen [4] are one of the best options.  
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Metallic catalysts present some advantages, such as high activity, selectivity to 

polycarbonate, good stereoselectivity and in some cases enhanced enantioselectivity 

under mild conditions [11]. On the other hand, the reactions using metallic catalysts have 

disadvantages, such as poor solubility of the catalyst, difficulties in catalyst recycling, air 

sensitivity, need of co-solvent, or high temperatures [12].  

 
It was noteworthy that salen Co complexes showed excellent effects [13]. Since 2004, 

Coates first reported salen Co(III) complex [8]. This complexes showed an excellent 

selectivity to polypropylene carbonate formation (99% vs. cyclic carbonate) with 99% of 

carbonate linkages [14]. A significant effort was devoted to the synthesis of more efficient 

salen Co complexes, which contributed to better understanding of the reaction mechanism 

[9, 11]. The most effective catalysts for epoxide/CO2 copolymerization proved to be 

chiral salen Co (III) complexes in combination with strong Lewis acids and nucleophilic 

co-catalysts [11]   

 
On the other hand, although the chemical or crystal structures of heterogeneous catalysts 

have not been completely elucidated, some of them show a good potential in industrial 

applications [5]. Zinc glutarate (or other carboxylates) and double metal cyanides are the 

two major classes of heterogeneous catalysts [15]. Other typical heterogeneous catalyst 

include ZnEt2/active hydrogen-containing compound systems [5], carboxylic zinc [16], 

and rare-earth metal coordination ternary catalysts [17].  

For copolymerization using carbon dioxide, these heterogeneous catalysts require much 

more forcing conditions than homogeneous species [4].  

 
In the case of zinc glutarate (ZnGA) to obtain appreciable amounts of polymer, high 

catalyst loading, high CO2 pressures and long reaction times are mandatory [18, 19].  
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High activities have been achieved by using ultrasound treatment, different supports for 

ZnGA synthesis and different amounts of catalyst [20-22].  

 
Actually it has been tested for terpolymerization achieving TON of 123 with charging 

200 mg of ZnGA and 50ml of PO [15] . ZnGA catalyst has been analysed by different 

techniques and exhibits yield of 64 g polymer/g catalyst with loadings of 1 g of catalyst 

and 100 ml of PO [23, 24]. Double metal cyanide complexes (DMC) are well-known 

catalysts for the ROP of epoxides [25].  

 
Generally, the DMC catalysts are obtained by reacting a selected metal salt with a cyanide 

derivative from another metal in the presence of an electrodonor organic complexing 

ligand [26]. The most commonly studied double metal cyanide catalyst is Zn3[Co(CN)6]2 

[4, 27, 28] and it has been identified as the most active for copolymerization [29]. Besides, 

a variety of transition metal elements such as Ni, Co, Fe [30], and Mn have also been 

studied [29]. DMC complexes has been used for copolymerization of cyclohexene oxide 

(CHO) and CO2 [31, 32] and also for copolymerization of propylene oxide (PO) and CO2 

[28, 33, 34]. In addition to the correct selection of the types of salt and the complexing 

ligand, relatively complicated preparatory methods are required to obtain the DMC 

catalysts, involving several critical factors which determine the resulting catalytic 

activity, the kinetic path and the quality of the resulting poly-adducts [26].  

 
Furthermore, the incorporation of DMC in the copolymerization of epoxides and CO2 has 

some disadvantages. One of them is the low CO2 insertion in the polymer chain. Besides 

that, the copolymerization conditions involving DMC catalyst include temperatures in the 

range of about 80-130 ºC and pressures usually from 50 to 100 atm.  
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Importantly, the copolymer produced has only a moderate molecular weight with wide 

polydispersity [35]. Recent improvements have made DMC catalysts much more 

attractive for commercial manufacture of polyoxypropylene polyols [12–15].  

 
The catalysts are highly active and give polyether polyols which have low unsaturations 

and narrow molecular weight distribution compared with similar polyols synthesized 

using a conventional KOH catalyst, resulting in high performance polyurethane products 

[16]. Furthermore, the amount of catalyst is very small and its influence on the final 

polymer can be neglected, so there is no need of catalyst recovery after the reaction in 

such case. Although DMC catalysts offer significant advantages for the ROP of epoxides, 

just few reports have been published on the copolymerization of epoxides with CO2 

thereby [25]. 

 

In this chapter, we report the activation tests of a DMC catalyst prepared with potassium 

hexacyanocobaltate and zinc chloride for polypropylene glycol (PPG) and a 

copolymerization process with propylene oxide (PO). The aim is to elucidate the best 

conditions for the catalysis productivity in terms of activation. As far as the authors know, 

no reports have been published on the catalyst activation studies under different 

conditions, where the amount of DMC used is crucial to obtain the maximum efficiency 

for the copolymerization process. 
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2. EXPERIMENTAL 
 
 

2.1 MATERIALS 
 

 
Zinc chloride (ZnCl2), potassium hexacyanocobaltate III (K3[Co(CN)6]2), tert-BuOH (t-

BuOH) and polyethylene glycol (PEG 1000, Mw =1000 g/mol) were used for catalysts 

synthesis without further purification and purchased from Sigma-Aldrich. Propylene 

oxide (PO, ≥ 99 %, Sigma-Aldrich), polypropylene glycol (PPG 725, Mw = 725 g/mol, 

Sigma-Aldrich) and carbon dioxide (CO2) were used as received.  

 

2.2 PREPARATION OF DMC CATALYST 
 

 
A highly active catalyst was prepared as follows, 2.128 g of  K3[Co(CN)6]2 were dissolved 

in 80 ml of mili-Q water and 7.738 g of ZnCl2 in 210 ml of milliQ water and 50ml of t-

BuOH. Both solutions were mixed and vigorously stirred during 15 min at 50 °C. After 

13 min, PEG 1000 was added to the mixed solution, and the white suspension obtained 

was centrifuged during 6 min at 5000 rpm. The isolated slurry was re-suspended with 

vigorous stirring during 20 min in 100 ml of a t-BuOH:H2O (50:50) solution and 

centrifuged as described previously. The solid was re-suspended in 100 ml of 100 % t-

BuOH and stirred for 30 minutes, filtered (Omnipore PTFE membrane filter 0.1 µm, 

Merck Millipore) and dried under vacuum conditions at 50 °C during 30 hours. 
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2.3 CATALYST ACTIVATION AND COPOLYMERIZATION PROCESS 
 

PPG 725 was used as the initial template polymer for catalyst activation experiments. 

Assuming that the amount of polymer moles was constant during the reaction and also 

that all the –OH branches grew equally, the amount of PPG 725 starter was set at 30 g 

(0.04 mol) and also the activation temperature was set at 130ºC. The catalyst and PO 

amounts were changed in order to elucidate the best conditions for the catalyst 

productivity. The amounts used for each experiment are shown in Table 1. 

 

Table 1. Amounts of catalyst and PO used for each activation experiment. 

 

Catalyst (g) 
PO (g) 

1st activation 2nd activation Total 

0.010 

3.00 1.00 4.00 

6.20 2.00 8.20 

11.90 6.30 18.20 

0.020 

3.00 1.00 4.00 

6.10 2.10 8.20 

12.00 6.00 18.00 

0.040 

3.00 1.20 4.20 

6.10 2.00 8.10 

12.00 6.10 18.10 

0.080 

3.20 1.00 4.20 

6.10 2.10 8.20 

12.00 6.00 18.00 

 

 

The amount of PPG 725 starter and the selected amount of DMC catalyst were placed in 

the reactor under continuous stirring and heating.  
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Three successive inertisations using nitrogen were carried out at different pressures (5, 

15 and 20 barg) to remove all O2 moieties. A next step of heating to 130 ºC under vacuum 

conditions was performed during 30 min to remove moisture from the PPG starting 

polymer. Under vacuum conditions (-0.80 barg), the activity of the different amounts of 

catalyst (Table 1) were tested by two sequential activations at 130 ºC. The amount of PO 

was also changed to perform the different experiments (Table 1). Usually, the amount of 

PO added for the activations was estimated to be around 7 % of the total PO required if a 

PPC 2000 g/mol was pursued (6.10 g). Also, a lower (3.0 g) and a higher (12.0 g) amount 

of PO were tested for the different experiments (Table 1). 

 

Once the first amount of PO (1st activation, Table 1) was pumped into the reactor the 

pressure increased due to the PO vaporization up to thermodynamic equilibrium. The 

catalyst required typically between 10 to 30 min to be activated, and after that, the reactor 

pressure decreased due to PO consumption.  

 

If a slight increase of the temperature followed by a decrease of the pressure occurred 

before one hour from the first addition, the catalyst had become active. Consequently, the 

second activation was performed in the same way as the first activation with the 

corresponding amount of PO (Table 1, 2nd activation). The activation experiments were 

finished at this point. 

 

The experiments of 3.0 g of PO (1st activation) were driven to polymerization by 

continuing with the reaction as follows: third PO amount was added at the 

copolymerization pressure (20 bar) with CO2.  
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After this PO addition and once the system had reached stable conditions, the temperature 

was decreased down to the copolymerization temperature (105 ºC) and PO was pumped 

in a continuous flowrate (0.35 ml/min). This PO flowrate is considered to be the 

maximum heat that can be removed from the system by the cooling equipment in order 

to avoid hot spots and runaway reactions. After this stage, a continuous flow of CO2 was 

fed into the system during 1 h to maintain a constant pressure. 

 

Finally, the pressure was slowly released and the system was kept under vacuum 

conditions, flushing with nitrogen to eliminate the unreacted PO monomers during 1 hour. 

Then, the reactor was cooled down to room temperature and the final copolymerization 

product was recovered and weighted and saved for further analyses.     

        

 

2.4 CHARACTERIZATION OF THE CATALYST  
 

 

Elemental analyses of Zn (213.857 nm), Co (238.892 nm) and K (766.491 nm) were 

performed by optical emission ICP (Varian 725-ES), after a previous microwave 

digestion of the samples (ETHOS SEL Milestone). Infrared spectra from 400 to 4000 cm-

1 were recorded using a Fourier transform infrared spectrometer (FTIR) from Bruker 

ALPHA at a resolution of 2 cm-1 and data were taken after 64 scans. Environmental 

scanning electron microscope (ESEM) images were taken by ESEM-FEI-Quanta 200F 

after coating with a 10 nm gold layer. X-ray diffraction (XRD) patterns and crystallinity 

results were obtained byBruker D8 Discover A25 diffractometer using Cu ceramic tube 

at 2.2 kW and LynxEye detector.  
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The micropores and mesopores of the catalyst were analysed by nitrogen physisorption 

(Sorptomatic 1900, Carlo Erba Instrument). For the sample analysis, an outgassed burette 

was weighted, and 0.25 g of DMC A was added to the burette under outgassing conditions 

during 3 h at 150 ºC and 0.01 Pa.  

After that, the burette was weighed to calculate the moisture of the sample and the specific 

surface area and pore volume of the catalyst (m2/g) were determined. 

 

2.5 CHARACTERIZATION OF COPOLYMER 
 

 
A spectroscopic analysis of the polymers was performed using FTIR (Bruker ALPHA) at 

a resolution of 2 cm-1 and spectral data were recorded after 64 scans. The amount by 

weight of CO2 incorporated in the polymer chain was determined by means of 1 H-NMR 

(Bruker AV III HD 500, 500 MHz, pulse program zg30, waiting time d1:1s, 120 scans). 

The sample was dissolved in deuterated chloroform. The relevant resonances in the 1 H-

NMR spectra (based on TMS = 0 pm) used for integration were: 1.05–1.25 (methyl group 

of polyether moieties, area of the resonance corresponds to three H atoms); 1.25– 1.35 

(methyl group of carbonate moieties in polyether carbonate, area of the resonance 

corresponds to three H atoms); 1.50 (methyl group of cyclic carbonate, area of the 

resonance corresponds to three H atoms). Taking the intensities into account, the relative 

concentrations as well as the weight fractions were calculated. The number average 

molecular weight (Mn) and polydispersity index (PDI) of the polymer products were 

calculated from the obtained curves in a Waters 1515 size exclusion chromatograph 

(SEC) with 2 AGILENT PLGel 5 µm mixed D (300x7.5) columns, the temperature of 

which was set at 35°C using THF as solvent.  
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The detection was performed with a refractive index detector, the solvent flow was 1 

ml/min, and the calibration was done with PG standards. 

 
 
 

3. RESULTS AND DISCUSSION 
 
 

3.1 DMC CATALYST CHARACTERIZATION 
 

 

DMC catalysts are highly efficient PO homopolymerization catalysts [36] and they have 

been developed for decades for the production of high molecular weight and lower 

unsaturation polyethers [32]. Catalysts based on Zn3[Co(CN)6]2 exhibits the highest 

activity [37].  

 
It is reported that these active catalysts are a mixture of crystalline (35-70 wt%) and 

amorphous DMC [38]. A higher catalytic activity could be achieved by adding a 

complexation agent (CA) such as t-BuOH which activate the Zn2+ ions [39]. Also, an 

excess of ZnCl2 in the preparation is vital for the catalytic activity. The retained ZnCl2 

enables the catalyst to be active, the active species being probably related to ZnCl2 

coordinated by a cyanide ion [32].  

 
The Zn-Co catalysts were prepared with ZnCl2 in excess, complexing and co-complexing 

agents as described above. Different techniques have been used to describe the chemical 

properties of the catalyst prepared for the study, in order to determine the influence of its 

characteristics on the activation processes.  
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ICP analysis was used to determine the amounts of Co, Zn and mainly K on the sample 

(Table 2). As the DMC catalyst was prepared by mixing K3[Co(CN)6]2 and ZnCl2, 

KZn[Co(CN)6] or K+ can be also formed [32]. High amounts of K+ could lead to a 

decrease of the catalytic activity of DMC.  

Although in our case the content of K+ is higher than in a previous work [29], less than 

100 ppm compared to 7820 ppm, the catalyst remains active for co-polymerization.  

 

 

Table 2. Amounts of K, Co and Zn on the DMC catalyst analysed by ICP 

 
Sample Zn/Co mol ratio K mol/g Co mol/g Zn mol/g ∑ (Zn+Co) mol/g

A 1.3478 0.0002 0.0027 0.0036 0.0063 

 

 

FTIR spectroscopy was used to identify the coordination and bonding in the DMC catalyst 

(Figure 1). The IR spectra exhibited the characteristic peak at 2189 cm-1 attributed to the 

-C≡N stretch of the K3[Co(CN)6]2 in the presence of CA and co-CA [31]. More 

characteristic peaks of the DMC are at 3460 cm-1 the –OH stretch, at 2977 cm-1 the C-H 

stretch, at 1608 cm-1 the -OH bending from water, at 1470 cm-1 the –CH scissoring, at 

1372 cm-1 the –OH bending from t-BuOH, at 1196 cm-1 the 3º-C-O stretch, at 642 cm-1 

the Co-C bonding and at 471 cm-1 the Co-C stretching, this peak demonstrate that the 

main compound of DMC, Zn3 [Co(CN)6]2 was successfully formed [25].   
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Figure 1. FTIR spectra of the Zn-Co catalyst 

 

Figure 2 shows the X-ray diffraction pattern of the catalyst being identified as the Prussian 

blue analogue of Zn3[Co(CN)6]2 * 12 H2O  (lines marked in Figure 2) where most peaks 

disappear due to the decrease of crystallinity [31]. The catalyst exhibited sharp lines 

which are related to a crystalline pattern [40], being a DMC with high crystallinity 

(75.2%) besides the addiction of complexing (CA) and co-complexing agents (co-CA). 

The X-ray pattern is ascribed to cubic and monoclinic phases. Despite the overlap of some 

of the lines arising from the two different phases, reflections at 17.1º, 24.3º and 39.1º 

correspond to a typical cubic lattice. The reflections at 14.5º, 17º, 23.7º and 24.7º are 

assigned to the monoclinic phase, being the 23.7º angle a clear diagnostic [41].   
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Figure 2. X-ray diffraction of the catalyst 

 

The IR band positions correspond to differences in the structure and bonding cyanide 

groups. As reported by Sebastian et al. (2014), the IR band at 2181 cm-1 is ascribed to the 

cubic structure and the 2190 cm-1 band corresponds to the monoclinic structure.  

 

Thus, according to the X-ray results, the catalyst is formed by both structures. Bands at 

2153 and 2220 cm-1 are due to surface cyanide groups [39] (Figure 3). The presence of 

these peaks confirms that the catalyst might consist of monoclinic and other phases along 

with the cubic phase. 
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Figure 3.  FTIR spectra of the -C≡N stretch from the K3[Co(CN)6]2 amplified 

 

 

The ESEM images at different magnifications, 100.000x (a) and 50.000x (b) show the 

particle size and morphology of the synthetized DMC (Figure 4). This catalyst has thin 

lamellar structures with a length approximately of 33 nm surrounded by spherical particle 

agglomerates. 

 

 

 

 

 

Figure 4. ESEM images of the synthetized catalyst 

 

(b)(a) 
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The nitrogen physisorption analysis was carried out by microporous and mesoporous 

methods. The micropores of  DMC A (21.28 % moisture) were analysed by the Dubinin 

surface area calculation method (714.12 m2/g) and the Horvath-Kawazoe pore size 

calculation method (0.254 cm3/g). The mesopores of DMC A (12.87 % moisture) were 

determined by the BET surface area calculation method (393.69 m2/g) and the Dollimore-

Heal pore size calculation method (0.364 cm3/g). The main parameter for the nitrogen 

physisorption technique for the catalyst characterization is the surface area of the sample. 

A very high surface area (714.12 m2/g) was determined compared to previous studies 443 

m2/g [42] and 653 m2/g [37]. The high surface area implies that the catalyst presents many 

active sites for copolymerization reaction. 

 

 

3.2 CATALYST ACTIVATION STUDY 
 

Before starting the reaction, the experience showed that the catalyst sites need to be 

activated properly.  

The activation is usually carried out using PO alone, avoiding CO2 that can retard the 

reaction rate. In this study, two activation steps were applied.  

In the first step, PO is added to the reactor at the activation temperature and under vacuum 

conditions. Due to thermodynamic phase equilibrium, the PO vaporizes as soon as it 

reaches the reactor, thus increasing the reactor pressure. The PO is transferred from the 

gas phase to the liquid phase (initial polymer) and as the catalyst activates it is consumed 

in the liquid phase.  

If the activation occurs properly the final pressure almost reaches the initial vacuum 

value.  
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From a transport phenomenon point of view, two steps in series take place there, first, 

mass transfer from the gas to the liquid and second, the reaction on the active sites of the 

catalyst.  To be completely sure that all the sites are active, a second activation was 

conducted in all cases. For the second activation, the amount of PO pumped into the 

reactor was slightly smaller (Figure 5). The activation of a small amount of a 

heterogeneous catalyst suspended in a viscous liquid far from trivial.  

 

The study of the catalyst activation was carried out by varying two different parameters: 

the initial amount of DMC used and the PO used for the two subsequent activations.  

We wanted to study how the sites were activated depending on the quantity of PO 

available per potential active centre and depending on the number of active sites per the 

initial polymer chain. In this sense, 12 experiments were performed using, 10, 20, 40 and 

80 mg of DMC catalyst and 4, 8 and 18 g of OP in total for the activations (Table 1).  

This study clearly showed the existence of two different activation mechanisms, 

depending on the conditions which prevail in the time of activation, as illustrated by 

Figure 5.  

 

Thus, an activation which can be called "fast" is characterized by an induction time, where 

a constant pressure, followed by a sudden drop in pressure is maintained. This activation 

period depends on the initial pressure in the reactor. The curiosity in this case is that at a 

low amount of catalyst per mol of PO, the consumption rate is extraordinary rapid. A 

second type of activation called "slow" was also found in some of the experiments. In this 

case, once the maximum pressure in the reactor was reached (after the first PO addition) 

this pressure begins to decrease gradually without showing a proper activation period 

(which is characterized by a sudden pressure decrease).  
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In this case, the higher amount of catalyst causes a higher PO consumption rate, as could 

be expected from a heterogeneous catalyst: a higher amount of the catalyst increases the 

reaction rate. 

 

 

 

Figure 5. Catalyst activation with different amount of PO and DMC added for the 

copolymerization reaction. 

 

 

As shown by Figure 6, the boundary between both types of activation depends on the 

pressure reached in the reactor after loading the PO, i.e. the number of moles of PO 

loaded. A hypothetical interpretation of these behaviors could be sketched as follows: 

when there is an excess of moles with respect to the catalyst (as in the case of introducing 

18 g PO giving a maximum pressure of 4.2 barg), a rapid equilibration between the free  
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PO in the bulk liquid and PO adsorbed on the catalyst sites takes place, and all active sites 

are activated simultaneously resulting in a sudden drop of the pressure (by fast PO 

consumption).  

 

On the other hand, when an insufficient amount of PO is fed (as in the case of 4 g of OP 

giving a maximum pressure of 1.2 barg) the PO diffuses slowly to reach the active site 

and activation occurs gradually only on certain sites. At intermediate pressures (e.g. the 

case of 8 g of PO and 2.2 barg pressure), depending on the relative amount of PO both 

types of activation might occur, and it is not that easy to make an accurate prediction.  

 

 

Figure 6. Fast and slow activation types as a function of the initial pressure 

 

As this reaction is highly exothermic, at high PO flowrates inside the reactor or at high 

consumption rates of PO, it is possible to obtain hotspots or runaway reactions. 

 A good control of the released heat from the reaction is necessary.  
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From the results obtained just taking into account the DMC activation processes, it can 

be suggested that the optimal ratio DMC/PO should be the one that assures a complete 

activation of the catalyst and a moderate reaction rate for the best homogeneous product, 

which involves a low PDI. This ratio could be improved depending on the corresponded 

process requirements such as the refrigeration system, the amount of the final product to 

be obtained and the molecular weight of the final product. Furthermore, it can be expected 

that a homogeneous activation of the catalyst may result in an improved polymerization 

and thus a better quality of the final product. 

 

 

3.3 COPOLYMERIZATION STUDY BY VARYING THE INITIAL 
AMOUNTS OF DMC  
 
 

The FTIR spectra of the obtained copolymers are shown in Figure 7. A sharp C=O 

asymmetric vibration absorption at 1742 cm-1 and a C-O stretching vibration at 1252 cm-

1 was found, providing the evidence of the incorporation of CO2 into the polymer chain 

[28, 34]. At the same time, low intensity peaks appear at 1809 and 786 cm-1, characteristic 

for the byproduct, cyclic carbonate (PC). 
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Figure 7. FTIR of the co-polymer experiments using 3 g of PO for the first activation and the 

different amounts of DMC. (A) Complete FTIR of the copolymer, (B) Figure zoom at the 

copolymer and by product peaks. 

 

As can be seen in Figure 7, when DMC A (0.01 g) is used the vibrational bands that 

correspond to the PC (cyclic carbonate, 1809 cm-1) and PPC (polycarbonate, 1742 cm-1) 

are the smallest. When DMC A (0.02 g) is used the PC vibrational band area is smaller 

than for the DMC A (0.04 g) and DMC A (0.08 g) but the PPC band area remains the 

same. For the higher amounts of catalyst (0.04 and 0.08 g) the PC vibrational band area 

is higher, respectively, while the PPC remains equal to that for 0.02 g of DMC.  
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Table 3. Copolymerization data for the DMC A and the different amounts of catalyst used (a) 

 

 

 

(a) All copolymerizations were carried out at 105 ºC, 20 barg with 30 g of PPG (725 g/mol) and 50 g of PO 

in total. 

(b) TON calculated as mol PPC/mol catalyst, TOF calculated as TON/h 

(c) Carbonate content unit (CCU) and ratio of PC in the product (WPC) was determined by NMR 

 

 

As the DMC catalyst is not a selective one, both carbonate and byproduct (PC) were 

obtained in these experiments. When a higher amount of DMC is used for the 

experiments, the by-product production increased but maintaining similar incorporation 

of carbonate into the polymer. If more catalyst is involved in the reaction, more active 

sites are available to carry out the co-polymerization process. Under these operation 

conditions, the reaction is favorable to obtain the by-product instead of PPC.  

When only 20 mg of catalyst are used even having less active sites in the medium, the 

reaction drives to PPC production. Results showed (Table 3) that the more DMC amount 

is added into the system, the lower TON and TOF values are obtained, with the exception 

of 20 mg of DMC. With this amount of DMC, the TON and TOF values are the highest, 

146 and 31 respectively.  

Catalyst 
PPG/DMC 

(g/mg) 
t (h) TON(b) TOF(b)

WPC
(c) 

(%wt)

CCU(c) 

(%wt) 

PPC 

product PDI 

Mw Mn 

A 30/10 6.0 135 22 0.7 5.9 10002 1283 7.79 

A 30/20 4.7 146 31 1.1 7.6 7745 1435 5.40 

A 30/40 3.7 49 13 2.1 9.4 11048 1779 6.21 

A 30/80 2.9 24 8 2.7 8.5 12713 1583 8.03 
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Also, it showed the smallest PDI value (5.40), a considerable incorporation of CO2 (7.6 

wt %), maintaining a suppressed by-product production (1.1 wt %). These results confirm 

the ones obtained by FTIR, according to which the best amount of catalyst that can be 

used is 0.02 g for these operation conditions.   

 

4. CONCLUSIONS 
 

The DMC catalysts require activation to work properly in the polymerization. Adding 

enough of propylene oxide in the batch at a higher temperature than that of the reaction, 

e.g. 130 ºC when reaction takes place at 90 to 105 ºC, is very important. We have 

demonstrated that the activation period is crucial for the catalyst and it highly depends on 

the transport phenomena of the propylene oxide to the catalyst sites. Thus, two different 

types of activation, namely “slow” and “fast” were encountered. The “slow” activation is 

the most expected one. A minimum amount of propylene oxide is added, so the mass 

transfer is slow, not all the centers activate at the same time, indeed only few are activated. 

Therefore, the PO consumption was extremely slow, although the PO amount was really 

small. On the other hand, the “fast” activation, works against the expected behavior.  

A considerable high amount of propylene oxide is added, the ratio of PO per an active 

site is high, all the sites having enough PO and all of them activating efficiently. This 

ends in an extremely rapid consumption of PO (a sudden drop in the reactor pressure).  

A relation between the pressure in the reactor and the type of activation was envisaged. 

The catalyst produced exhibited TOF between 8 and 31 mol polymer/mol catalyst/h. 
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This research about processing polyalcohols, polycarbonates and polyurethanes in 

copolymerization reactions is a contribution to the new trend of green technology in every 

process from laboratory scale to industrial scale. 

Two different types of catalysts were studied during this research. Both with completely 

different characteristics, were used for copolymerization reactions between propylene 

oxide (PO) and carbon dioxide (CO2). Several techniques were used for the 

characterization of the synthesized catalysts and for the obtained copolymers from each 

reaction. 

This PhD thesis is formed by three papers, in publication process, which are shown in the 

present document as Chapters 1-3. Annexes with related work which was developed 

during these years of research are incorporated. Chapter 1 is focused on the zinc glutarate 

catalyst whileChapters 2 and 3 are dedicated to the study of double metal cyanide (DMC) 

catalysts. Practically the same analytical techniques were used for the characterization of 

both types of catalysts, showing differences among them on specific surface area, pore 

volume, structural configuration, shape and size of the particles and catalytic activity in 

the copolymerization reactions. 

About the study of the zinc glutarate (ZnGA) catalyst, it has been demonstrated that this 

catalyst has no pores and no acids sites, so all the active surface area corresponds to the 

outer surface of the catalyst. Zn2+ ions are identified as the active sites of the sample. 

The morphology of the particles was described as rectangular plate shapes with an 

average of 321.6 nm and an amount of zinc of 353 mg Zn / g catalyst. 
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In terms of the catalyst behaviour in the copolymerization reactions, an extensive study 

was done modifying several process variables. In this way, the best reaction conditions 

were determined to get a 3000 g/mol polymer. The optimal conditions were 1.5 g of 

catalyst, 25 barg, 80 ºC and 40 h. Although the ZnGA catalyst can open the epoxide 

(ROP) and form copolymers, it is extremely slow having low TON and TOF values.  

A very different behaviour was observed using a double metal cyanide (DMC) catalyst. 

Five different double metal cyanide (DMC) catalysts were synthesized by changing the 

metal ratio in them to determine the effect on the catalytic activity. The main objective 

was to find a catalyst which produces a low amount of the by-product (PC) and a high 

amount of the desired product (PPC). 

The characterization of the five catalysts revealed porous catalysts with a considerable 

amount of moisture in the pores and specific surface areas around 850 m2/g. The 

morphology showed lamellar and spherical agglomeration shapes of particles. Structural 

properties determined that Zn-OH groups in these DMC catalysts were the active sites for 

the polymerization reactions. Only two of five catalysts synthetized were successfully 

activated. They were used for the copolymerization reactions of PO and CO2. The stirring 

system was a very important issue to be considered for this kind of reactions.  

Previous PDI values were between 5.97 and 13.09 due to the high viscosity of the 

medium. Switching from a magnetic stirrer to a mechanical one, the PDI values decreased 

drastically to 1-1.1.  This value implies that short and more distributed polymer chains in 

the bulk fluid were obtained. 
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Among all the catalysts synthesized in this study, the DMC E catalyst showed the highest 

catalytic activity (2.5 kg polymer/g catalyst), with more CO2 incorporation into the chain 

(6.7%) and the less production of PC (0.3%). 

Once it was known which one of all the synthesized DMC catalysts was the best one in 

order to be reactive and to increase the productivity of the process, the next research step 

was a study about the activation step prior to the polymerization reaction. This catalyst 

(DMC A) is exactly the same as DMC E, previously discussed but, in this document 

particularly in Chapter 3, it appears with the same nomenclature as the corresponding 

paper. The activation of the catalyst is a crucial step. We have demonstrated that 

depending on the quantity of propylene oxide available per potential active sites of the 

catalyst, and depending on the amount of catalyst per the initial polymer chain, the 

activation proceeds in two different ways. A “slow” activation, when not enough 

propylene oxide is used and only several potential active sites are certainly activated and 

a “fast” activation, where all the sites activate at once and they consume the propylene 

oxide at an unexpectedly high rate. 

Different amounts of PO and DMC were used in this research. Twelve experiments were 

carried out by using 10, 20, 40 y 80 mg of catalyst and 4, 8 and 18 g of PO in total. The 

results showed that using only 20 mg of catalyst, more PPC was produced and less PC 

was obtained. Also, TON and TOF values were the highest obtained and the PDI value 

showed the lowest values.  These results are also confirmed with the FTIR spectrum 

obtained for 20 mg of the catalyst. 

 The solubility of CO2 in several different PPC produced at different conditions was 

measured to vary from 0.022 g CO2/g PPC at 4.8 bara and 18 ºC to 0.637 g CO2/g PPC at 

76.2 bara and 120 ºC. The solubility increased with pressure and temperature. 
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1. INTRODUCCIÓN 

 

Esta tesis surgió con la idea de producir carbonatos de polipropileno en reacciones de 

copolimerización utilizando dos tipos diferentes de catalizadores heterogéneos: Glutarato 

de zinc (ZnGA) y los catalizadores Double Metal Cyanide (DMC). 

A lo largo de este trabajo, se ha hecho un estudio completo de ambos catalizadores 

además de la caracterización de los policarbonatos obtenidos en las reacciones. 

Uno de los aspectos más interesantes de este tema y, particularmente, en esta Tesis 

Doctoral, es el uso del CO2 no sólo como medio de presurización de la reacción sino 

también como fuente de alimentación de C1. 

Entre otros gases como el gas metano (CH4) y el óxido nitroso (N2O), el dióxido de 

carbono es una de las principales fuentes que causan el efecto invernadero. Las acciones 

por parte del hombre como la quema de combustible y otros fuel están incrementando la 

concentración de dicho gas (CO2) en la atmósfera. 

De cara a atacar y solucionar este problema el CO2, que es un gas amigable con el medio 

ambiente, con baje coste, alta pureza, no tóxico y no inflamable, ha sido capturado, 

almacenado y utilizado en reacciones de copolimerización como fuente de alimentación 

C1. 

Utilizar el CO2 como fuente de carbono C1 no es sólo por su importancia desde el punto 

de vista de química verde (al eliminar o reducir el empleo de sustancias peligrosas para 

lograr una sociedad sostenible en un futuro) ya que utiliza un subproducto no deseado de 

reacción como monómero, sino también por su importancia desde un aspecto económico. 
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Estas reacciones, las cuales son llevadas a cabo en condiciones subcríticas y en modo 

batch, son reacciones de copolimerización, reacciones que implican la utilización de dos 

monómeros como reactivos: óxido de propileno y dióxido de carbono. 

 

 

Figura 1. Reacción de copolymerización via catálisis heterogénea con un catalizador Double 

Metal Cyanide Complex [Zn–Co (III) DMCC] de zinc-cobalto (III). 

 

El hecho de emplear el CO2 como fuente de carbono C1, asegura menor OPEX en fuentes 

de carbono provenientes de otros químicos, como en este caso, epóxidos. 

A través del mecanismo de Apertura de Anillo en Polimerizaciones (ROP), el epóxido 

(PO) se abre permitiendo la incorporación de CO2 en la cadena de polímero. 

Se han sintetizado y probado muchos catalizadores para reacciones de copolimerización 

a lo largo de los años.  

De diferentes derivados del ácido glutárico, se han llegado a obtener varios catalizadores 

dicarboxilatos de zinc, dando el mayor rendimiento en carbonato de polipropileno (PPC) 

y mayor peso molecular alcanzado utilizando glutarato de zinc (ZnGA) como catalizador 

heterogéneo (desde ZnO / GA). Para la caracterización del catalizador se tienen en cuenta 

parámetros morfológicos. Aquel catalizador con elevada cristalinidad y calidad de cristal 

pero con menor área superficial, mostraba mayor actividad catalítica en reacciones de 

copolimerización. 
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El catalizador sintetizado a partir de óxido de zinc (ZnO) y ácido glutárico  (GA) resultó 

ser el más activo para este tipo de copolimerización entre CO2 y PO. 

La investigación realizada con este catalizador se muestra en el Capítulo 1.  

El Capítulo 2 y el Capítulo 3 utilizan, para esta reacción de copolimerización, otro tipo 

de catalizador heterogéneo, Double Metal Cyanide (DMC), en lugar del glutarato de zinc 

(ZnGA). 

Todos los estudios que ha habido relacionados con la síntesis de policarbonatos, han 

girado en torno a desarrollar nuevos catalizadores que mejoren la actividad y la 

selectividad del mismo en reacción. Un catalizador que sea suficientemente rápido para 

reducir el tiempo de reacción pero, a la vez, suficientemente lento a la hora de incorporar 

PO, dando la oportunidad al CO2 de reacción y de incorporarse en la cadena del polímero. 

Muchos grupos de investigación han llevado a cabo estudios con catalizadores 

homogéneos y heterogéneos para mejorar la fijación del CO2 en el polímero. Uno de los 

catalizadores que han demostrado ser válidos para ello, a la vez que para la apertura del 

epóxido, son los catalizadores tipo DMC. 

Estos catalizadores DMC normalmente son hexacianometalatos de zinc preparados por 

reacción entre un haluro de zinc y una sal hexacianometalata junto a un agente 

complejante. 

Son altamente activos, producen polioles poliéter con bajas insaturaciones con 

distribuciones estrechas de pesos moleculares y sirven para obtener policarbonatos 

biodegradables con un amplio potencial para aplicaciones de poliuretanos. 
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Muchos estudios han demostrado que se han llevado a cabo reacciones de forma 

satisfactoria entre el óxido de propileno (PO) y el dióxido de carbono (CO2), utilizando 

complejos DMC basados en Zn3[Co(CN)6]2 (el catalizador más estudiado de entre todos 

los complejos). Utilizando en complejo con cobalto, en lugar de con hierro 

(Zn3[Fe(CN)6]2), la actividad catalítica es mayor, es el más activo para reacciones de 

copolimerización. 

En el Capítulo 2 el estudio que se ha llevado a cabo ha consistido en mostrar el efecto que 

tiene el empleo de diferentes ratios Zn/Co en la preparación de 5 catalizadores DMC, 

probando su actividad catalítica en reacciones de copolimerización, la producción de 

subproducto (PC) y la incorporación de CO2. 

El Capítulo 3 estudia el proceso de activación del catalizador DMC que mejores 

resultados ha mostrado en el Capítulo 2. El proceso de activación de un catalizador DMC 

es un paso previo a la reacción de copolimerización. 

En este capítulo, se muestra un catalizador DMC de elevada actividad, preparado con 

hexacianocobaltato de potasio y cloruro de zinc.  Se muestra un estudio de la activación 

del catalizador donde las cantidades de PO y de DMC varían para determinar cuáles son 

las mejores de cara al proceso de copolimerización. 

Un estudio de la activación del catalizador en diferentes condiciones donde se varía la 

cantidad del mismo es crucial para obtener la máxima eficiencia en el proceso. 

Esta reacción puede ser la base de una química nueva en el futuro para obtener polímeros 

basados en el uso de bioalcoholes, determinando si nuevos poliuretanos y policarbonatos 

verdes pueden sintetizarse con aplicaciones industriales como termoplásticos 

biodegradables, polímeros con aplicaciones biomédicas… 
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Además de estos 3 capítulos, el documento presente consta del Anexo I, donde se 

muestran las experiencias llevadas a cabo para mediciones de solubilidad del CO2 en 

diferentes copolímeros desarrollados en el laboratorio.   

 

 

2. OBJETIVOS 

 

Ha habido un gran interés en establecer esta nueva línea de investigación en ambos 

laboratorios: Reaction Engineering and Industrial Chemistry Laboratory del Process 

Chemistry Centre (PCC) perteneciente a Åbo Akademi University (Turku, Finlandia) y 

el Departamento de Ingeniería Química y Tecnología del Medio Ambiente de la 

Universidad de Valladolid (Valladolid, España). 

El principal objetivo de esta investigación consistió en producir copolímeros de 

CO2/óxido de propileno gracias al proceso de apertura de anillo (ROP) en batch y en 

condiciones subcríticas. 

Para alcanzar este objetivo, el primer paso fue construir el sistema experimental en ambos 

laboratorios. 

Las condiciones de trabajo fueron en condiciones subcríticas pero ambos sistemas 

podrían trabajar también en condiciones supercríticas, simplemente acondicionando 

ciertas partes del sistema.  

Una vez que ambos sistema estaban listos, el siguiente paso implicaba la síntesis de ambos 

catalizadores heterogéneos que se utilizaron para las reacciones de copolimerización.  
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El procedimiento de síntesis, sus características morfológicas y su comportamiento son 

completamente diferentes. 

Cada capítulo de esta tesis está a cargo de diferentes estudios con ambos catalizadores: 

las mejores condiciones para reacciones de copolimerización, el catalizador más activo, 

las mejores condiciones para el proceso de activación, diferencias en el comportamiento 

de ambos catalizadores de cara a obtener el copolímero final, con o sin subproducto 

después de la reacción… 

Todos estos estudios están divididos en tres capítulos y dos anexos. Los objetivos 

específicos para cada uno de ellos son los siguientes: 

 

Capítulo 1. Estudio del catalizador heterogéneo Glutarato de zinc en reacciones de 

copolimerización entre óxido de propileno y dióxido de carbono en batch y condiciones 

subcríticas.  Los objetivos específicos son: 

• Establecer un procedimiento de síntesis para este catalizador. Condiciones de 

síntesis como temperatura, presión, tiempo y cantidad de reactivos. Etapas 

necesarias para la obtención del catalizador. Método y resultados reproducibles. 

• Caracterizacion del catalizador mediante diversas técnicas como Fourier 

transform infrared spectroscopy (FTIR and FTIR with pyridine), Inductively 

coupled plasma optical emission spectroscopy (ICP), Light scattering (with air 

and distilled water), Nitrogen-physisorption, Scanning electron microscopy and 

energy–dispersive X-ray spectroscopy (SEM-EDX), Thermogravimetric 

analysis-mass spectrometry (TGA-MS), X-ray photoelectron spectroscopy (XPS) 

y, finalmente, X-ray powder diffraction (XRPD).  
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• Estudio del catalizador Glutarato de zinc en reacciones de copolimerización 

utilizando óxido de propileno y dióxido de carbono como reactivos. Obtener las 

mejores condiciones subcríticas en batch para las reacciones: presión de reacción, 

temperatura de reacción, cantidad de catalizador, peso molecular final del 

copolímero  y tiempo de reacción.  

• Caracterización de los polímeros obtenidos mediante las técnicas Fourier 

transform infrared spectroscopy (FTIR) y Size exclusion chromatography (SEC). 

 

Capítulo 2. Efecto de la relación Zn/Co inicial en la actividad de un catalizador Double 

Metal Cyanide (DMC) en copolimerizaciones mediante óxido de propileno y dióxido de 

carbono. Los objetivos asociados a este capítulo son los siguientes: 

• Estudio de la relación entre metales (Zn/Co) en el procedimiento de síntesis de 

este catalizador heterogéneo DMC. 

• Caracterización del catalizador mediante técnicas como Fourier transform 

infrared spectroscopy (FTIR), Inductively coupled plasma optical emission 

spectroscopy (ICP), Nitrogen-physisorption, Scanning electron microscopy 

(SEM) y, por último,  X-ray powder diffraction (XRPD).  

• Estudio de un correcto protocolo de operación para la reacción de 

copolimerización. 

• Determinación del efecto y la influencia de la agitación como parámetro durante 

reacciones de copolimerización. 

• Caracterización de los copolímeros por Fourier transform infrared spectroscopy 

(FTIR), Nuclear magnetic resonance (NMR) y, finalmente, por Size exclusion 

chromatography (SEC). 
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Capítulo 3. Estudio de activación de los catalizadores DMC en reacciones de 

copolimerización. Estudio del proceso de activación variando la cantidad de catalizador 

en cada experimento. 

• Estudio de la activación de los catalizadores DMC en reacciones de 

copolimerización utilizando óxido de propileno y dióxido de carbono como 

reactivos. 

• Caracterización del catalizador Double Metal Cyanide más activo de los 

sintetizados en el Capítulo 2. Técnicas empleadas: Fourier transform infrared 

spectroscopy (FTIR), Inductively coupled plasma optical emission spectroscopy 

(ICP), Nitrogen-physisorption, Nuclear magnetic resonance (NMR), Scanning 

electron microscopy (SEM) y, finalmente, X-ray powder diffraction (XRPD). 

• Determinación de las mejores cantidades de reactivos y catalizador de cara a 

mejorar la producción de copolímero. 

• Caracterización del copolímero final obtenido en diferentes condiciones de 

reacción mediante Fourier transform infrared spectroscopy (FTIR), Nuclear 

magnetic resonance (NMR) y Size exclusion chromatography (SEC). 

 

 

Annexe 1. Solubility study of CO2 in several polymers at different pressure conditions. 

• Determine the effect on the stirring system during the copolymerization reactions. 
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3. RESULTADOS Y DISCUSIÓN 

 

CAPÍTULO 1.  Estudio del catalizador heterogéneo Glutarato de zinc en reacciones de 

copolimerización entre óxido de propileno y dióxido de carbono en batch y condiciones 

subcríticas. 

 

El objetivo principal de este capítulo fue realizar un estudio exhaustivo del catalizador 

Glutarato de zinc (ZnGA). Para ello, el primer objetivo específico a llevar cabo fue la 

síntesis de este catalizador heterogéneo.  

 

Figura 1. Glutarato de zinc (ZnGA). 

 

El catalizador se ha sintetizado a partir de óxido de zinc, ácido glutárico y tolueno. 

Numerosas técnicas se han llevado a cabo para caracterizar este catalizador: Fourier 

transform infrared spectroscopy (FTIR and FTIR con piridina), Inductively coupled 

plasma optical emission spectroscopy (ICP), Light scattering (with air and distilled 

water), N2-physisorption, Scanning electron microscopy and energy–dispersive x-ray 

spectroscopy (SEM-EDX), Thermogravimetric analysis-mass spectrometry (TGA-MS), 

X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRPD). 
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A través de estas técnicas, se ha determinado la ausencia de porosidad de este catalizador, 

donde la zona activa del catalizador corresponde a la superficie externa del mismo, 

mostrando que no dispone de ácidos Brøwnsted y/o Lewis. 

El contenido medio de zinc en el catalizador es de 353 mg Zn / g catalizador, siendo la 

muestra muy polidispersa en cuanto a tamaño de partícula mostrando, a su vez, una 

morfología en forma de placas rectangulares, con un tamaño medio de 321.6 nm (Figura 

2).  

 

Figura 2. Imágenes SEM correspondientes al catalizador ZnGA 

 

Una vez que este catalizador se obtuvo de forma satisfactoria y reproducible, se utilizó 

para obtener un copolímero de CO2 / óxido de propileno; buscando la creación de enlaces 

policarbonatos (PPC) y tratando de minimizar la producción del carbonato cíclico (PC, 

subproducto de la reacción de copolimerización).  
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En estas reacciones, el dióxido de carbono no sólo actúa como medio de presurización 

para llevar a cabo la reacción, sino que también participa en la copolimerización como 

monómero, como fuente de carbono, C1. El otro monómero implicado en la reacción es 

el óxido de propileno. 

Gracias al mecanismo de apertura de anillo (Ring Opening Polymerization, ROP), la 

inserción de CO2 en la cadena es posible. 

A través de Fourier transform infrared spectroscopy (FTIR) y de Size exclusion 

chromatography (SEC), se ha analizado el producto final de cada reacción de 

copolimerización. 

Varias copolimerizaciones se han llevado a cabo variando las condiciones de reacción 

como la cantidad de catalizador (0.3, 0.6, 1.0, 1.5 g. Ver Figura 3), la temperatura de 

reacción (60, 80 ºC), la presión de reacción (6, 25 barg), el peso molecular final esperado 

de cada polímero (725, 3000 g/mol) y el tiempo de reacción (20, 40 h). 

 

Figura 3. FTIR que representa el estudio de la cantidad de ZnGA en cada reacción. 
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En la figura 3 se muestra el estudio de cantidad de catalizador donde 1.5 g de catalizador 

se demostró que era la cantidad idónea para llevar a cabo polimerizaciones a 6 barg y     

60 ºC con una cantidad de iniciador de 10 g y de óxido de propileno de 55 g.  

En esas condiciones, el pico correspondiente al enlace carbonato (~1742 cm-1) es el mayor 

de todos (es el producto de reacción que se busca obtener) y el pico que muestra los 

posibles enlaces libres para reaccionar, es el menor de todos (~3456 cm-1). Esto quiere 

decir, que la reacción ha sido llevada a cabo de la manera más satisfactoria posible en 

esas condiciones.  

Una vez hecho el estudio de los copolímeros se llegó a la conclusión de que las mejores 

condiciones de reacción fueron a 25 barg, 80 ºC, 1.5 g de catalizador, buscando un peso 

molecular final de 3000 g/mol y un tiempo de reacción de 40 h. 
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CAPÍTULO 2.   Efecto de la relación Zn/Co inicial en la actividad de un catalizador 

Double Metal Cyanide (DMC) en copolimerizaciones mediante óxido de propileno y 

dióxido de carbono. 

 

En este capítulo, el objetivo principal consiste en establecer cuál de los catalizadores 

Double Metal Cyanide (DMC) sintetizados es el más activo produciendo mayor cantidad 

de policarbonato (PPC) y una menor cantidad de subproducto (carbonato cíclico, PC).  

Para ello, se ha variado la relación Zn/Co en el método de síntesis; aunque la 

estequiometría de la reacción es 1.5 Zn/Co (mol), las cantidades de ambos reactivos se 

han modificado para determinar la influencia de cada metal en exceso en la actividad 

catalítica en las copolimerizaciones, en la cristalinidad del catalizador, etc.  

Estos catalizadores heterogéneos DMC se sintetizan a partir de ZnCl2, K3[Co(CN)6]2 , 

tert-butanol (tBuOH, como agente complejante (CA)) y PEG 1000 (como agente co-

complejante, (co-CA)).  

Una vez establecido tanto el protocolo de síntesis de los catalizadores como el protocolo 

de reacción, se sintetizaron cinco catalizadores DMC diferentes y se llevaron a cabo las 

respectivas polimerizaciones entre el óxido de propileno y el CO2.  

Los catalizadores sintetizados se caracterizaron mediante el análisis con técnicas tales 

como  Fourier transform infrared spectroscopy (FTIR), Inductively coupled plasma 

optical emission spectroscopy (ICP, Tabla 1), Scanning electron microscopy (SEM), N2-

physisorption y X-ray powder diffraction (XRPD). 
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Tabla 1. Composición final de los catalizadores sintetizados analizados por ICP. 

  

Samples 
Zn 

(% mol/mol) 

Co  

(% mol/mol) 

Zn/Co  

mol ratio 

K 

(mol/g) 

Co 

 (mol/g) 

Zn 

(mol/g) 

A 60% 40% 1.47 0.0008 0.0022 0.0033 

B 58% 42% 1.39 0.0007 0.0022 0.0031 

C 59% 41% 1.45 0.0004 0.0028 0.0040 

D 60% 40% 1.50 0.0003 0.0028 0.0042 

E 61% 39% 1.58 0.0001 0.0026 0.0042 

 

 

La presencia de iones K+ hace que la actividad del catalizador DMC decrezca 

drásticamente, mientras que la presencia de iones Zn2+ hace que la morfología del 

catalizador tenga cada vez más aglomerados esféricos (ver catalizador E). A través de los 

análisis por SEM y N2-physisorption, estos catalizadores muestran distribuciones tipo 

laminares, esféricas y cúbicas (Figura 4) con áreas superficiales alrededor de 850 m2/g. 

El área superficial y el volumen de poro son parámetros cruciales para determinar la 

actividad catalítica de cara a obtener cadenas de polímero más cortas, lo que implica un 

buen valor en el índice de polidispersidad (PDI) en el producto final de reacción. El hecho 

de implementar un sistema de agitación mecánico, mejoró considerablemente el valor de 

la PDI, reduciendo su valor drásticamente desde valores comprendidos entre 5.97 y 13.09 

hasta 1-1.1. Esto lleva consigo la obtención de cadenas más cortas de polímero, en el 

producto final, y mejor distribuidas.  
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Figura 4. Imágenes SEM de los DMC sintetizados con distinta concentración inicial de Zn y 

Co. 

 

Tras someter los catalizadores a un test de activación y en concordancia con los 

argumentos presentados anteriormente, sólo los catalizadores D y el E (ambos con un 

exceso de Zn2+ en su preparación) han llegado a activarse (Figura 5). 
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Figura 5.  Etapa de activación de los catalizadores. A, B y C no son activos, D y E sí son 

catalizadores activados. (1) Primera activación, (2) periodo de consume de PO, (3) segunda 

activación, (4) segundo periodo de consumo de PO. 
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Por otra parte, los copolímeros obtenidos en las diversas reacciones fueron analizados 

mediante Fourier transform infrared spectroscopy (FTIR) y Gel permeation 

chromatography (GPC). Los resultados obtenidos se muestran en la Tabla 2.  

 

Tabla 2. Datos de copolimerización de CO2 y PO para los catalizadores activos(a) 

(a) Todas las polimerizaciones se llevaron  cabo a 105ºC, 10 barg con 30 gr de PPG (725 g/mol) y 90 gr de 

PO. 

(b) Calculado por kg polymer/g catalyst  

(c) TON calculado como mol PPC/mol catalizador, TOF calculado como TON/h 

(d) Unidad con contenido en carbonato (CCU) y ratio de subproducto (carbonato cíclico, PC) en el producto 

(WPC) determinado por NMR 

 

Con estos resultados, se observa con el catalizador DMC E una elevada actividad 

catalítica (2.5 kg polímero / g catalizador), mayor incorporación de CO2 (6.7 %) y menor 

producción de PC (0.3%). 

 

 

 

Cataliz. 

PPG/DMC 

(g/mg) 

t  

(h) 

Rendim(b) TON(c) TOF(c) 

WPC
(d)  

(%wt) 

CCU(d) 

 (%wt) 

PPC producto 

PDI 

Mw Mn 

D 30/42 6.5 1.4 34 7 0.4 5.6 25267 1930 13.09

E 30/41 6.0 2.5 99 14 0.3 6.7 15930 2660 5.97 
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CAPÍTULO 3. Estudio de activación de los catalizadores DMC en reacciones de 

copolimerización. 

 

El objetivo principal de este capítulo consiste en hacer un estudio de la productividad 

variando la cantidad de catalizador DMC. 

El catalizador, denominado DMC A, se sintetizó a partir de hexacianocobaltato de potasio 

y cloruro de zinc, como en el capítulo anterior.  

En el estudio, las cantidades de PO y DMC se han variado para determinar cuáles son las 

mejores condiciones para obtener la máxima eficiencia en el proceso de 

copolimerización. 

Las condiciones de estudio han sido 30 g de PPG y 130 ºC como temperatura de 

activación (Tabla 3). 
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Tabla 3.  Cantidades de catalizador y de PO utilizados en cada experimento de activación. 

 

Catalizador 

(g) 

PO (g) 

1a activación 2a activación Total 

0.010 

3.00 1.00 4.00 

6.20 2.00 8.20 

11.90 6.30 18.20 

0.020 

3.00 1.00 4.00 

6.10 2.10 8.20 

12.00 6.00 18.00 

0.040 

3.00 1.20 4.20 

6.10 2.00 8.10 

12.00 6.10 18.10 

0.080 

3.20 1.00 4.20 

6.10 2.10 8.20 

12.00 6.00 18.00 

 

La muestra fue caracterizada mediante diversas técnicas de análisis como Fourier 

transform infrared spectroscopy (FTIR), Inductively coupled plasma optical emission 

spectroscopy (ICP), Environmental scanning electron microscope (ESEM), N2-

physisorption y X-ray powder diffraction (XRD). 

El catalizador sintetiza se ha preparado a partir de K3[Co(CN)6]2 y ZnCl2,  donde 

KZn[Co(CN)6] y los iones K+ también pueden formarse. Como ya se ha comentado en el 

capítulo anterior, elevadas cantidades de K+ conllevan a una menor actividad catalítica 

del DMC. Este catalizador sólo contiene 0.0002 mol/ g cat de K+ mientras que de Zinc 

contiene 0.0036 mol/ g cat. 

La morfología de este catalizador corresponde a una estructura en láminas con 

aglomerados esféricos. (Figura 7) 
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Figura 7. Imagen ESEM del catalizador de estudio 

   

Este DMC tiene un área superficial de microporos de 714.12 m2/g con un volumen de 

microporo de 0.254 cm3/g. Por otra parte, el área correspondiente a mesoporos es de 

393.69 m2/g con un volumen asociado de poro de 0.364 cm3/g. Este catalizador dispone 

de muchos centros activos para las reacciones de copolimerización. 

En cuanto a los copolímeros obtenidos, estos se han analizado mediante Fourier transform 

infrared spectroscopy (FTIR),  Nuclear magnetic resonance (H-NMR) y Size exclusión 

chromatography (SEC). 

Los experimentos llevados a cabo para este estudio de actividades de catalizadores DMC 

han sido 12, con 10, 20, 40 y 80 mg de catalizador y 4, 8 y 18 g de óxido de propileno 

(PO) en total. 
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En la Figura 8 se muestran los gráficos correspondientes a cada activación en los 

diferentes experimentos, mientras que en la Tabla 4 se muestran los resultados de las 

copolimerizaciones. 

 

 

Figura 8. Activaciones del catalizador con distintas cantidades de PO y DMC 
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Tabla 4. Datos de las reacciones de copolimerización con el catalizador DMC A, a diferentes 

condiciones(a) 

 

 

(a) Todas las copolimerizaciones se llevaron a cabo a 105 ºC, 20 barg con 30 g de PPG (725 

g/mol) y 50 g de PO en total. 

(b) TON calculado en mol PPC/mol catalizador, TOF calculado como TON/h 

(c) Contenido en carbonato (CCU) y ratio de PC en el product (WPC) determinado por NMR. 

 

Este tipo de catalizadores no son selectivos así que ambos productos son obtenidos. 

Cuando se aumenta la cantidad de DMC, la cantidad de subproducto aumenta, 

manteniendo constante la incorporación de CO2 en el polímero.  

Utilizando sólo 20 mg de catalizador, la reacción produce mayor cantidad de PPC y menor 

de PC, los valores de TON y TOF son los mayores que se han obtenido y la PDI muestra 

el menor valor de todos. Estos resultados también se confirman con el espectro de FTIR 

obtenido para 20 mg de catalizador. 

Cata. 
PPG/DMC 

(g/mg) 
t (h) TON(b) TOF(b)

WPC
(c) 

(%wt)

CTR(c) 

(%wt) 

PPC 

producto PDI 

Mw Mn 

A 30/10 6.0 135 22 0.7 5.9 10002 1283 7.79 

A 30/20 4.7 146 31 1.1 7.6 7745 1435 5.40 

A 30/40 3.7 49 13 2.1 9.4 11048 1779 6.21 

A 30/80 2.9 24 8 2.7 8.5 12713 1583 8.03 
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ANEXO 1. Estudio de la solubilidad de CO2 en policarbonatos obtenidos en reacciones 

de copolimerización utilizando catalizadores heterogéneos Double Metal Cyanide 

(DMC). 

 

Aparte de los anteriores capítulos, la tesis doctoral contiene también un apéndice.  

El Apéndice muestra la solubilidad del CO2 en diferentes policarbonatos. Varios 

experimentos llevados a cabo a diferentes temperaturas, tratando de cargar la misma 

presión inicial, se hicieron para mostrar cómo la solubilidad está influenciada por la 

temperatura y la presión.  
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4. CONCLUSIONS 

 

Esta investigación sobre la obtención de polialcoholes, policarbonatos y, por ende, 

poliuretanos en reacciones de copolimerización es una contribución más al empleo de 

tecnología verde (Green technology) en cualquier proceso desde escala laboratorio a 

escala industrial. 

En esta investigación, dos catalizadores heterogéneos, con un comportamiento diferente, 

se han utilizado para llevar a cabo reacciones de copolimerización entre óxido de 

propileno y CO2. 

Diversas técnicas se han utilizado para la caracterización tanto de los catalizadores 

sintetizados como de los copolímeros obtenidos en cada reacción. 

Esta tesis doctoral consta de tres papers en proceso de publicación, que se muestran en 

este documento escrito como Capítulo 1, Capítulo 2 y Capítulo 3 y, además, de dos anexos 

con trabajo que se ha desarrollado también durante estos años de investigación. 

El Capítulo 1 se centra en el estudio del catalizador Glutarato de zinc (ZnGA) mientras 

que tanto el Capítulo 2 como el Capítulo 3 se dedican al estudio de los catalizadores 

Double Metal Cyanide (DMC). 

Prácticamente se han utilizado las mismas técnicas analíticas para la caracterización de 

ambos catalizadores, mostrando diferencias entre ellos en el área superficial, volumen de 

poro, configuración estructural, forma y tamaño de las partículas y actividad catalítica en 

las reacciones de copolimerización. 
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En cuanto al estudio del catalizador ZnGA, se ha demostrado que éste no tiene poros ni 

sitios ácidos en él, con lo cual, toda la superficie activa del catalizador corresponde a la 

superficie externa siendo, los Zn2+ los centros activos del catalizador.  

La morfología de las partículas está definida en forma de placa rectangular con un tamaño 

medio de 321.6 nm y la cantidad de zinc en el catalizador es de 353 mg Zn / g catalizador. 

Sobre el comportamiento del catalizador en las reacciones de copolimerización, se ha 

llevado a cabo un estudio modificando diversas variables de proceso.  

Así, se ha determinado que las mejores condiciones de reacción para obtener un 

copolímero de 3000 g/mol son 1.5 g de catalizador, 25 barg, 80 ºC and 40 h de reacción. 

Aunque este catalizador es capaz de abrir el epóxido y formar copolímeros, su 

comportamiento es extremadamente lento con valores de TON y TOF realmente bajos. 

Un comportamiento diferente se ha observado al utilizar catalizadores tipo DMC.  

Cinco catalizadores Double Metal Cyanide (DMC) se han sintetizado variando la relación 

de metal en ellos, determinando así su efecto en la actividad catalítica. 

El objetivo principal fue encontrar un catalizador que produjese muy poca cantidad de 

subproducto (PC, carbonato cíclico) y una cantidad elevada del producto deseado (PPC, 

carbonato de polipropileno). 

La caracterización de estos catalizadores muestra un catalizador poroso con un importante 

contenido en agua en los poros y un área superficial alrededor de 850 m2/g. Su morfología 

es laminar con aglomerados de partículas esféricos. Los grupos Zn-OH de estos 

catalizadores se han determinado como los centros activos para las reacciones de 

polimerización. 
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De los cinco catalizadores diferentes que se sintetizaron y se utilizaron para las reacciones 

de polimerización entre el óxido de propileno y el CO2, sólo dos de ellos llegaron a 

activarse. 

El sistema de agitación resultó ser una variable muy importante en estos tipos de reacción. 

Valores previos de PDI estaban comprendidos entre 5.97 y 13.09 debido a la alta 

viscosidad del medio de reacción. Implementando un sistema de agitación mecánico en 

lugar del magnético, los valores de PDI disminuyeron drásticamente hasta el valor 1. Una 

menor PDI implica cadenas más cortas de polímero y más distribuidas en el medio de 

reacción. 

De todos los catalizadores sintetizados, el catalizador denominado DMC E mostró la 

mayor actividad catalítica (2.5 kg polímero / g catalizador), más incorporación de CO2 

(6.7 %) y la menor producción de carbonato cíclico (0.3 %). 

Una vez esclarecido cuál de todos los DMC sintetizados fue el mejor de cara a reacción, 

para aumentar la productividad del proceso, la siguiente investigación que se realizó fue 

un estudio de la etapa de activación previa a la de reacción.  

Este catalizador (DMC A) es exactamente el mismo que el catalizador DMC E, 

previamente discutido pero, en este documento concretamente en el Capítulo 3, aparece 

con la nomenclatura de la publicación correspondiente. 

Una vez conocido sobre qué catalizador se iba a hacer el estudio, se variaron las 

cantidades de óxido de propileno (PO) y de catalizador DMC. Doce experimentos fueron 

los que se llevaron a cabo utilizando 10, 20, 40 y 80 mg de catalizador y 4, 8 y 18 g de 

óxido de propileno (PO) en total. 
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Los resultados mostraron que el empleo de sólo 20 mg de catalizador, producía mayor 

cantidad de PPC y menor de PC. Además, los valores de TON y TOF fueron los mayores 

que se obtuvieron y la PDI mostró el menor valor de todos.  

Estos resultados también se confirman con el espectro de FTIR obtenido para 20 mg de 

catalizador. 

Hasta aquí se ha discutido todo lo relacionado con los capítulos y posteriores 

publicaciones de la tesis. 

El Apéndice (Appendix I), muestra la solubilidad del CO2 en diversos PPC obtenidos y 

en distintas condiciones. La solubilidad del CO2 en los PPC producidos fue de 0,022 g 

CO2 / g PPC a 4,8 bar absoluto y 18ºC y de 0,637 g CO2 / g PPC al 76,2 bara y 120 ºC. 

La solubilidad aumentó junto con la presión y la temperatura. 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                                            Resumen 

 

 
250 

 
 

 

 

 

 

 

 



	
	
	
	
	
	
	
	
	

 

 

FUTURE	WORK	
 

   



 

 

	



                                                                                                                                                      Future work 

 

 
253 

 
  

At the beginning of this PhD thesis, the author tried to produce PPC using, first of all, a 

well-known zinc glutarate catalyst. However, the difficulties arising from the use of this 

catalyst were evident. Nevertheless, a considerable amount of CO2 was incorporated in 

the polymer chain, and the viscosity of the resulting polymer was very high. This 

behaviour causes problems with the mass transfer in the reaction and stops it easily.  

Furthermore, the amount of catalyst needed was high (in the order of grams per 100 grams 

of product), which forces to recover the catalyst afterwards. We have not done this 

recovery because it involves a lot of time as it requires a complicated number of dilution 

and extraction steps. This will be on the future work: to achieve the precipitation of the 

polymer, recover the catalyst and analyse this spent catalyst. 

After knowing the behaviour of ZnGA in copolymerization reactions, DMC catalysts 

were studied. Chapters 2 and 3 were focused on the use of the DMC catalyst. 

Unfortunately, in both chapters, it was not possible to recover and analyse the spent 

catalyst either. This could give important information about the activity and changes on 

the morphology of the catalyst. More analysis and experiments are needed to reveal 

differences among the catalysts activated and catalysts that are not. So more catalysts 

have to be synthesized. 

One aspect that makes the author and the supervisors to be interested is to study all these 

reactions under supercritical conditions of CO2.  
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Figure 1. Phase diagram of CO2 (www.novasterilis.com). 

 

Although the reactivity is too low with zinc glutarate, the use of CO2 under supercritical 

conditions may improve the mass transfer of the bulk polymer phase and probably it will 

improve the reactivity for both types of catalysts. The research group in Valladolid, High 

Pressure Processes Group (HPP), is really strong on this technology with a long-time 

experience on diverse process at supercritical conditions of carbon dioxide. 

The author and the supervisors of this PhD thesis are keen on starting research with carbon 

dioxide and propylene oxide in terpolymerization reactions. This implies that one more 

monomer (3rd) is involved in these polymerization processes. This topic is a really new 

one and it is practically unexplored.  
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The 3rd monomer thought and suggested is ε-caprolactone, cyclic ester, colourless and the 

precursor of other caprolactams. Poly ε-caprolactone is a biodegradable polymer and can 

be used in polyurethanes. 
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1. INTRODUCTION 

 

The solubility of carbon dioxide (CO2) in mixtures with water has been modelled in 

subcritical conditions [1] and also, mixtures of CO2/epoxide have been studied under 

supercritical conditions [2].  

Several authors have proposed different procedures for measuring the solubility such as 

the cloud point or the gravimetric extraction [3, 4]. Techniques such as Fourier Transform 

Infrared Spectroscopy (FTIR) can be used to determine the amount of the components in 

each phase, using styrene oxide and cyclohexene oxide as epoxides and observing the 

variation in the concentration as a function of temperature and pressure  [2]. 

Mantor et al. studied the system CO2-PC in a huge range of temperatures from 27 to 104 

ºC and system pressures from 20-70 barg  [5]. Murrieta-Guevara et al. [6] and Williams 

et al. [7], considered the same system studying the equilibrium phases of the system CO2-

PC within the same range of temperatures (25-100 ºC) but higher pressures than Mantor 

et al., raising more than 200 barg. Hongling et al maintain the study at the same 

temperatures but pressures raised 130 barg [8]. 

Other investigations such as the one made by Wang et al., concern the equilibrium of CO2 

in an epoxide (PO, propylene oxide) within a range of temperatures between 30-80 ºC 

and pressures under 100 barg [9]. The research of Fonseca et al., considered several 

systems to calculate the phases equilibrium [10]. They studied systems with two and three 

components under different conditions. Similar systems were studied by B. M. de 

Almeida [11] but at lower equilibrium pressures than Fonseca et al. Finally, Langanke et 

al., reported solubility data of CO2 and also important information for modelling the 

copolymerization process [12]. 
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Table 1 summarizes in detail all the experimental work about the equilibrium data of CO2 

in propylene oxide (PO), cyclic carbonate (PC) and polyether polycarbonate polyols 

(PPP) made by several authors. 

 

Table 1. Review of equilibrium phases data among CO2-OP-PC-PPP mixtures. 

Reference System T (⁰C) P (barg) 

[2] CO2-PO 40-100 20-140 

[5] CO2-PC 27-104 20-70 

[6] CO2-PC 25-100 5-220 

[7] CO2-PC 25-100 40-210 

[8] CO2-PC 40-100 20-130 

[9] CO2-PO 30-80 6-90 

[10] CO2-PPP 90-140 15-100 

CO2-PPP-PC 110 15-100 

PO-PPP 90-140 0.6-3 

PO-PPP-PC 110 10-15 

[11] CO2-PPP 100-120 10-70 

CO2-PPP-PC 100 10-70 

PO-PPP 100-120 0-1 

PO-PPP-PC 100 0-1 

 

In this appendix, the authors focused on the solubility of CO2 in a PO/CO2 copolymer 

obtained using a synthesized DMC catalyst (DMC A in Chapter 3). 
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2. OBJECTIVES 

 

The main goal was to determine the temperature effect on the solubility of CO2 in a 

PO/CO2 copolymer and to find a possible system where the experiments can be carried 

out successfully. 

 

3. MATERIALS  

 

A stainless steel reactor with a volume of 15 ml, a PO/CO2 copolymer obtained after a 

copolymerization reaction and a chromatograph oven to maintain the different 

temperatures were used  in all the experiments. 

 

4. RESULTS 

 

Several experiments were carried on at different temperatures to observe the effect of 

temperature on the solubility of CO2 in different polymers. The experiments were done 

at 18 ºC, 75 ºC, 90 ºC, 105 ºC and 120 ºC. Taking into account the initial and the final 

number of the CO2 moles, it was possible to determine the value of the solubility at any 

temperature. 
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Table 2. Solubility data for the experiment at 18 ºC 

Pressure 

(bara) 

Solubility 

(g CO2 / g Polymer) 

4.80 0.0218 

6.57 0.0262 

14.78 0.0386 

19.21 0.0813 

27.21 0.1419 

36.59 0.2296 

50.03 0.1145 

51.85 0.1317 

 

The reactor was filled with the amount of polymer desired (1 g) and then it was pressurized with 

CO2 until, in this case, 52 bara. 

The solubility is reported in Table 2 and Figure 1. An increase of the solubility at around 36 bara 

with a subsequent decrease on it was observed.   

 

 

Figure 1. CO2 solubility profile for a temperature of 18 ºC 
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As the temperature was increased from 18 ºC to 75 ºC, the results were the following 

listed in Table 3. 

Table 3. Solubility data for the experiment at 75 ºC 

Pressure 

(bara) 

Solubility 

(g CO2 / g Polymer) 

6.36 0.0110 

8.30 0.0188 

18.41 0.0345 

25.17 0.0571 

36.06 0.1078 

50.07 0.2052 

65.56 0.4232 

69.88 0.3939 

 

Here it is shown that at 65 bara, the solubility of CO2 obtained the maximum value for 

the experiment. 

 

Figure 2. CO2 solubility profile for a temperature of 75 ºC 

 

The tendency seems a little more linear than in the first experiment but it is not clear yet. 

Fonseca et al. [10] established that the variation of the solubility with pressure follows a 

linear correlation. 
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For another increase on temperature, the results became as listed in Table 4. 

Table 4. Solubility data for the experiment at 90 ºC 

Pressure 

(bara) 

Solubility  

(g CO2 / g Polymer) 

6.61 0.0117 

8.61 0.0202 

19.22 0.0366 

26.39 0.0591 

37.94 0.1117 

52.90 0.2145 

68.55 0.4740 

72.93 0.4655 

 

At 68 bara, the solubility of CO2 is higher than at other pressures at 90 ºC. Both values, 

the pressure and the solubility are close enough to the last experience. 

 

Figure 3. CO2 solubility profile for a temperature of 90 ºC 

 

If the temperature increased to 105 ºC, the solubility profile was the following one listed 

in Table 4. 
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Table 4. Solubility data for the experiment at 105 ºC 

Pressure 

(bara) 

Solubility 

 (g CO2 / g Polymer) 

6.85 0.0126 

9.00 0.0199 

20.05 0.0381 

27.51 0.0629 

39.89 0.1130 

55.53 0.2265 

70.87 0.5307 

75.30 0.5398 

 

 

Figure 4. CO2 solubility profile for a temperature of 105 ºC 

 

Changing the temperature to 120 ºC, the solubility profile became as reported in Table 4. 
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Table 4. Solubility data for the experiment at 120 ºC 

Pressure 

(bara) 

Solubility 

 (g CO2 / g Polymer) 

7.16 0.0121 

9.39 0.0197 

20.90 0.0389 

28.52 0.0685 

41.96 0.1111 

58.04 0.2391 

73.30 0.5741 

76.23 0.6368 

 

 

Figure 5. CO2 solubility profile for a temperature of 120 ºC 

 

 

To summarize the effect of all the temperatures: 
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The results of Bien Tan et al. [4] suggest that it is difficult to give an exact description of 

the solubility profiles for these polymers using cloud points alone, particularly in case of 

a broad distribution of molecular weights. 

 

5. CONCLUSIONS 

 

It was not easy to give a clear tendency on the solubility with temperature. For some 

authors the tendency is linear but our results did not follow the same tendency. The 

solubility of CO2 in several different PPC produced at different conditions was measured 

to be from 0.022 g CO2/g PPC at 4.8 bara and 18ºC to 0.637 g CO2/g PPC at 76.2 bara 

and 120ºC. The solubility increased with increasing pressure and temperature. 
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