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Abstract: This paper presents an application of multivariate state estimation technique (MSET),
sequential probability ratio test (SPRT) and kernel regression for low speed slew bearing condition
monitoring and prognosis. The method is applied in two steps. Step (1) is the detection of the
incipient slew bearing defect. In this step, combined MSET and SPRT is used with circular-domain
kurtosis, time-domain kurtosis, wavelet decomposition (WD) kurtosis, empirical mode decomposition
(EMD) kurtosis and the largest Lyapunov exponent (LLE) feature. Step (2) is the prediction of the
selected features’ trends and the estimation of the remaining useful life (RUL) of the slew bearing.
In this step, kernel regression is used with time-domain kurtosis, WD kurtosis and the LLE feature.
The application of the method is demonstrated with laboratory slew bearing acceleration data.

Keywords: condition monitoring; kernel regression; low speed slew bearing; multivariate state
estimation technique; prognosis; sequential probability ratio test

1. Introduction

Steelmaking industry has many critical processes which rely on low rotating slew bearings.
These bearings are often used in harsh conditions and have high replacement cost with long delivery
lead time. Therefore, it is important to monitor their condition at all times. Typical maintenance
schedule is replace the bearings which have been in operation of set number of hours. However,
due to their low speeds, the bearings run to failure without appropriate condition monitoring method.
These can lead to a high level of risk and sub-utilization of the actual bearing useful life. To reduce the
risk of sudden bearing failure and optimise the use of the bearing, integrated condition monitoring
and prognosis method for low speed slew bearings is needed.

In order to monitor the condition of slew bearings, a method that able to extract the trends related
to degradation condition is necessary. Henao et al. [1] presents a review of diagnostic techniques
for electrical machines. The summary of recently proposed methods for performing diagnostics
in nonstationary conditions were categorised into four: (1) Frequency domain approach using the
rotational invariance technique; (2) Time domain analysis-based DWT; (3) Slip-frequency approach
based on the description of the instantaneous frequency of an extracted fault component against
slip; (4) Diagnosis in the time-frequency domain using STFT, CWT, WVD, Choi-Willians distribution
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(CWD), and Zhao-Atlas-Marks distribution. Currently, artificial intteligent (AI) techniques remain
a priority tool to support the condition monitoring and fault diagnosis methods especially in the
decision process [1,2]. These techniques have been widely developed in recent years, even though they
are not yet applied in the industrial practice [1].

A condition monitoring method for slew bearings using kurtosis extracted from vibration and
acoustic emission signals as condition parameters was proposed by Rodgers [3]. A recent slew bearing
condition monitoring and fault diagnosis study [4] combined ensemble empirical mode decomposition
(EEMD) and multiscale principal component analysis (MSPCA). The method successfully predicted
defect frequency of artificially damaged inner race which matched with the ball pass frequency inner
race (BPFI). However, the practical challenge is how to detect the incipient defect of slew bearing
from low energy vibration of naturally induced defect and predict RUL based on the observation
parameters. To date, prognosis methods have been mainly applied in typical rolling element bearings
with rotational speed greater than 1000 rpm [5–7]. Lei et al. [8] proposed the application of particle
filtering (PF) to estimate model parameters from real-time measured data. The model parameters
were updated adaptively, which eventually were used to predict the remaining useful life (RUL)
of machineries. The operation conditions of tested bearings are 1500, rpm 1650 rpm and 1800 rpm.
Subsequently, Li et al. [9] highlighted the main shortcoming of traditional PF that is attributed to the
subjective selection of the first predicting time (FPT), i.e., the triggered time to start the prediction
process. The authors, thereafter, improved the methodology by means of adaptive FPT selection via
stochastic approach. The bearing was naturally degraded during the experiment with rotational speed
of 1800 rpm. The prognosis of low speed bearings with naturally induced defects has not been explored.
Prognosis method has not been applied in the study of low rotational speed slew bearing [4,10,11].
This paper present both condition monitoring and prognosis method.

The method employs a multivariate state estimation technique (MSET) and a sequential
probability ratio test (SPRT) to identify subtle changes in bearing condition, and kernel regression to
predict the trend of the change and to estimate the RUL of the slew bearing. MSET was first introduced
by Singer [12] and developed further by the Argonne National Laboratory [13,14]. Over the years,
the technique has been applied successfully in many applications such as in the analysis of nuclear
power reactor signals [12–15]. Recently, MSET has been used in prognosis and fault diagnosis studies
e.g., the estimation of the remaining useful life of electronic products [16], the monitoring of lithium-ion
battery performance [17] and early fault diagnosis of wind turbines [18]. The previous study used
MSET to correlate the features of vibration signal acquired from low speed slew bearing [19].

SPRT was initially introduced by Wald [20,21] as a sequential statistical method. This method has
been shown to work well either as a stand-alone decision-making method [22–26] or as an integrated
method together with MSET [14,27]. When integrated with MSET, SPRT can be used to analyze the
MSET result. SPRT can also be combined with auto-associative kernel regression algorithm [28].
Traditionally, kernel regression has been applied in image processing studies such as in image
de-noising and enhancement [29] and image reconstruction [30]. It is an appropriate prediction
method [31] and adopted in this paper.

This paper is organized as follows. Section 2 describes how features such as circular-domain
kurtosis, time-domain kurtosis, WD kurtosis, EMD kurtosis and LLE feature are computed and
monitored using MSET and SPRT to detect the incipient slew bearing defect and used in the kernel
regression computation to predict the trends of these features. Section 3 describes the experimental
set-up. Section 4 presents the results and discusses the proposed integrated condition monitoring and
prognosis method including the estimation of the RUL. Finally, Section 5 presents the conclusions of
the current work.
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2. Integrated Condition Monitoring and Prognosis Method for Low Speed Slew Bearings

The proposed integrated condition-monitoring and prognosis method is implemented as follows:
Step (1) is the detection of the incipient slew bearing defect where combined MSET and SPRT is used to
process circular-domain kurtosis [32], time-domain kurtosis [32], WD kurtosis [32], EMD kurtosis [32]
and LLE feature [33]. Step (2) predicts the trends of the selected features and estimates the RUL of the
slew bearing. In this step, kernel regression is used to predict the trend of the time-domain kurtosis,
WD kurtosis and the LLE features. Step (2) is initiated when the incipient bearing defect from Step (1)
is registered. Figure 1 illustrates the computational implementation of the method.
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Figure 1. The integrated condition monitoring and prognosis method for low speed slew bearing.

Examples of features extracted from slew bearing acceleration data are shown in Figure 2.
How these features were extracted has been described in Refs. [32,33]. It is apparent that the features
do not display any clear trend. In this paper, circular kurtosis, time-domain kurtosis, WD kurtosis and
EMD kurtosis are employed to obtain the bearing degradation parameter for prognosis method.
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Figure 2. (a) circular kurtosis [32]; (b) time-domain kurtosis [32]; (c) wavelet kurtosis [32]; (d) EMD
kurtosis [32]; (e) the LLE feature [33]. Note: t = dayth.
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2.1. Step (1) Detection of the Incipient Slew Bearing Defect Using MSET and SPRT

2.1.1. The Multivariate State Estimation Technique (MSET)

MSET is a technique that typically used to analyse anomalous process based on sensor reading
and input parameters during the online condition monitoring. This technique has been applied in
process monitoring, signal validation and surveillance applications [12–19,27]. The previous study
used MSET to correlate the features of vibration signal acquired from low speed slew bearing such as
largest Lyapunov exponent, approximate entropy, margin factor and impulse factor. In the present
study, MSET is employed for different features i.e., circular-domain kurtosis, time-domain kurtosis,
wavelet decomposition-kurtosis and empirical mode decomposition-kurtosis.

The MSET algorithm is applied systematically in 5 steps [16] as shown in Figure 3 in the first and
second blocks. First, data matrix P is created where the row elements of P are the extracted features
and the columns are the measurement time i.e., days. Data matrix P of size m features × n days is
defined in Equation (1).

day 1 day 2 day 3 day n

P =


f1(1) f1(2) f1(3) . . . f1(n)
f2(1) f2(2) f2(3) . . . f2(n)
f3(1) f3(2) f3(3) . . . f3(n)

...
...

...
. . .

...
fm(1) fm(2) fm(3) . . . fm(n)



f eature 1
f eature 2

f eature m

(1)

Second, data matrix P is subdivided into two matrices: training matrix T and observation matrix
Pobs. T is further divided into memory matrix D and remaining training matrix L. It should be noted
that T holds data from the normal state while Pobs holds the monitored state, as shown in Equation (2).

P =


f1(1) f1(2) . . . f1(nD) f1(nD + 1) . . . f1(nL) f1(nL + 1) f1(nL + 2) . . . f1(n)
f2(1) f2(2) . . . f2(nD) f2(nD + 1) . . . f2(nL) f2(nL + 1) f2(nL + 2) . . . f2(n)
f3(1) f3(2) . . . f3(nD) f3(nD + 1) . . . f3(nL) f3(nL + 1) f3(nL + 2) . . . f3(n)

...
...

...
...

...
...

...
...

fm(1) fm(2) . . . fm(nD) fm(nD + 1) . . . fm(nL) fm(nL + 1) fm(nL + 2) . . . fm(n)

 (2)

where nD is the number of days in D matrix and nL is the number of days in L matrix.
Third, the weight vector for the normal state (w1) is calculated as follows [16]

w1 = (DT ⊗D)
−1•(DT ⊗ L) (3)

and the weight vector for the observation state (w2) is calculated as follows [16]

w2 = (DT ⊗D)
−1•(DT ⊗ Pobs) (4)

Operator ⊗ is a non-linear operator. Several non-linear operators can be selected for MSET [34].
The most popular operator is the Euclidean distance, which is the one adopted in this paper.

Fourth, the normal estimate matrix (Lest) is computed by Equation (5)

Lest = D•w1 (5)

and the estimate matrix of monitored state (Pest) is calculated by Equation (6)

Pest = D•w2 (6)
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Fifth, the normal residual matrix (RN) is the difference between Lest and L and calculated by
Equation (7).

RN = Lest − L (7)

And the residual matrix of monitored state (RM) is the difference between Pest and Pobs and
calculated by Equation (8).

RM = Pest − Pobs (8)

2.1.2. The Sequential Probability Ratio Test (SPRT)

SPRT is a sequential statistical binary hypothesis technique [20,21] that has been used as a simple
and effective stand-alone decision-making technique for engineering systems such as the surveillance
of nuclear power plant components [23], statistical damage classification of an automotive system [24],
long-term radiation monitoring [25], and multiple fault recognition in gearboxes [26]. SPRT has
been integrated with MSET to analyse the output of the MSET and digitally assess the condition of
the system being monitored [14,27]. With this capability SPRT is a potential early warning method
embeddable in online monitoring systems.

To detect the incipient slew bearing defect, SPRT utilizes the outputs of MSET, the normal residual
matrix (RN) and the residual matrix of monitored state (RM) as shown in Figure 3. The MSET outputs
are then subjected to binary hypothesis test, where the objective is to assess whether the bearing is still
in normal condition or already in defective condition. The decision making process is based on a set of
hypotheses: normal condition denoted by a null hypothesis (H0) and defect condition denoted by (H).
In practice, there could be more than one hypothesis (H), i.e., H1, H2, . . . , Hz (see Table 1). It should be
noted that with more hypotheses used, the greater the accuracy of the decision making will be.

Table 1. Hypotheses for SPRT.

Hypothesis Statistical Properties

Mean (M) Standard Deviation (σ)

1. Normal condition (H0) Mnormal (Table 5) σnormal = 0.439 (Table 6)
2. Abnormal condition 1 (H1) Mmonitored > Mmax σ

3. Abnormal condition 2 (H2) Mmonitored < Mmin σ

4. Abnormal condition 3 (H3) Mmin < Mmonitored < Mmax σmonitored > σnormal
5. Abnormal condition 4 (H4) Mmin < Mmonitored < Mmax σmonitored < σnormal

Note: Mmin < Mnormal < Mmax

In SPRT analysis (see Figure 3), Li the ratio of the probability of H0 and the probability of H is
calculated. The decision is then made based on the SPRT index calculated as follows [35]:

SPRTindex = ln(Li) (9)

where Li is given by

Li =
probability of statistical properties {Si} given H is true
probability of statistical properties {Si} given H0 is true

(10)

where Si are the statistical properties e.g., mean, M and standard deviation, σ of observation features
at the monitored measurement day.
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Figure 3. Flowchart of the proposed combined MSET and SPRT method in step (1).

2.2. Step (2) Prediction of the Future State of Monitored Parameters Using Modified Kernel Regression

Kernel regression [36–38] is a non-parametric regression technique used to estimate regression
function f (x, y) that best fit non-linear data set (Xj, Yj). Xj in this paper refers to the measurement
day and Yj is the value of the extracted feature. Unlike linear regression or polynomial regression,
kernel regression does not assume any underlying distribution to estimate the regression function [39].
The kernel regression uses a set of identical weighted function called local kernels to each observation
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data point. The kernel basis function depends only on the kernel width from local data point X to a set
of neighboring locations x. The procedures of the proposed kernel regression-based prognostic are
implemented in three systematic steps.

Firstly, three of the five features presented in Figure 2 are selected based on the evaluation criteria
(described in Section 4.2). Once Step (1) has triggered the incipient defect, initial threshold is set-up.
The initial threshold is set at four 4 times the kurtosis value of the normal bearing condition. In Step (2),
the data point that exceeds the predetermined initial threshold of each selected feature is saved and
used for prediction. From the laboratory slew bearing data, it was found that the minimum number
of data points used for prediction is 3. Time-domain kurtosis is used as an illustration in Figure 4.
The measurement day and the kurtosis level of the first three non-linear data points which exceed
the threshold are presented in Table 2. We refer these points as ‘non-linear’ data because the interval
between one point and the next is not equal and the level of kurtosis does not always increase linearly.
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Figure 4. Kurtosis extracted from the original vibration signal. The well-known kurtosis value for
normal bearing is 3 [40]. The alarm threshold is set at 4 × 3 = 12.

Table 2. Non-linear data points.

Data Point Measurement Day (Xj) Feature Level (Yj)

A 92 19
B 103 24.12
C 114 36.83

where j represents points A, B or C

Secondly, the non-linear regression model is built in 4 steps. (1) Calculate data point xj with
small step dx. dx equal to 0.2 is used throughout this paper. The result is the vector x; (2) Set the
kernel width α. α for time-domain kurtosis prediction is 6. dx and α are selected by trial and error
to get the optimum regression model; (3) Apply the Gaussian kernel to each data point Xj using the
following equation

Kj(x, Xj) = exp

(
−
(x− Xj)

2

2α2

)
(11)

where subscript j denotes non-linear data point. According to the example given in Table 2, Xj are
XA, XB and XC. (4) Compute the weight vector w = (w1, w2, . . . , wp) using the least square method by
minimizing the sum square error between predicted Ŷj and monitored Yj as follows:
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ε =
p

∑
j=1

(Ŷj −Yj) (12)

where p is the number of non-linear data points to be regressed and predicted. In this example,
p = 3. lsqcurvefit MATLAB function is used to obtain the weight vector w. The result of the non-linear
regression model is presented in Table 3 and shown in Figure 5.
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Table 3. Kernel regression model for 1 step-ahead prediction of time-domain kurtosis.

Data Point
(x-axis) x K1(x,XA) K2(x,XB) K3(x,XC) w1 K1 w2 K2 w3 K3

p
∑

j=1
wj Kj

p
∑

j=1
Kj

Data Point
(y-axis)

XA = 92 92 1 0.186 0.0012 18.354 4.158 0.047 22.560 1.187 YA = 18.998

92.2 0.999 0.197 0.0014 18.344 4.417 0.053 22.815 1.198 19.033
92.4 0.997 0.210 0.0015 18.313 4.688 0.060 23.062 1.209 19.070

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .
102.6 0.210 0.997 0.164 3.854 22.273 6.505 32.633 1.372 23.780
102.8 0.197 0.999 0.175 3.632 22.310 6.927 32.869 1.372 23.949

XB = 103 103 0.186 1 0.186 3.418 22.322 7.367 33.109 1.372 YB = 24.122

103.2 0.175 0.999 0.197 3.214 22.310 7.827 33.352 1.372 24.301
103.4 0.164 0.997 0.210 3.018 22.273 8.307 33.599 1.372 24.484

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .
113.6 0.0015 0.210 0.997 0.0282 4.688 39.466 44.183 1.209 36.535
113.8 0.0014 0.197 0.999 0.0250 4.417 39.532 43.975 1.198 36.685

XC = 114 114 0.0012 0.186 1 0.0221 4.158 39.554 43.734 1.187 YC = 36.830

114.2 0.0011 0.175 0.999 0.0195 3.909 39.532 43.461 1.175 36.968
114.4 0.0009 0.164 0.997 0.0173 3.671 39.466 43.155 1.163 37.100

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .
119.6 0.000025 0.021 0.646 0.00046 0.486 25.588 26.074 0.668 38.992
119.8 0.000021 0.019 0.626 0.0004 0.442 24.790 25.233 0.646 39.025

X̂D = 120 120 0.000018 0.018 0.606 0.00034 0.403 23.991 24.394 0.624 ŶD = 39.055

Note: w = [w1; w2; w3] = [18.35; 22.32; 39.55].
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Thirdly, the future value of the feature is predicted. The predicted value of Yj at future Xj is
given by the kernel regression formula (also called Nadaraya-Watson kernel weighted average) [39]
as follows:

Ŷj =

p
∑

j=1
wjKj

p
∑

j=1
Kj

(13)

The one-step-ahead prediction of time-domain kurtosis is presented in Figure 6.
The result shown in Figure 6 is one-step-ahead prediction of time-domain kurtosis based on

modified kernel regression method presented in Section 2.2. The modified kernel regression is
proposed to calculate a model based on 3 points and predict one-point-ahead. This method can
predict one-point-ahead of time-domain kurtosis feature based on 3 points with similar spacing
between the points as illustrated in Figure 4. The proposed method still works although the spacing
between 3 points is different.
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3. Experimental Set-Up

The vibration data of the accelerated wear test used in this paper was acquired from a laboratory
slew bearing test rig shown in Figure 7. The schematic of the slew bearing test rig showing the main
drive reducer, the hydraulic load and how the bearing is attached is shown in Figure 7a. A 30 tonnes
axial load was hydraulically applied. The test rig was operated in continuous rotation at 1 rpm.
The slew bearing used was INA YRT260 type axial/radial bearing with inner and outer diameter of
260 mm and 385 mm, respectively. The vibration data was acquired from four accelerometers installed
on the inner radial surface at 90 degrees to each other (see Figure 7b) with 4880 Hz sampling rates.
The accelerometers were IMI608 A11 ICP type sensors. The accelerometers were connected to a high
speed Pico scope DAQ (PS3424). 139 days data were collected. In order to accelerate the damage and
reduce the bearing service life, coal dust was injected into the bearing. In practice, especially in steel
making companies, slew bearing is located in open air and exposed to dusty environment. To replicate
this condition, coal dust was inserted in day 58.
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4. Results and Discussion

4.1. Step (1) Detection of the Incipient Slew Bearing Defect Using MSET and SPRT

Twelve features were extracted from four different methods [31]. Not all features were sensitive
to the change of the bearing condition. Consequently, the method only uses five of the most sensitive
features as the input to the MSET. The five features were (1) kurtosis extracted from accelerometer
signal, f 1(t); (2) kurtosis extracted from the piecewise aggregate approximation (PAA) combined
with circular analysis, f 2(t); (3) kurtosis extracted from the wavelet decomposition, f 3(t); (4) kurtosis
extracted from the EMD, f 4(t); and (5) LLE feature obtained from the largest Lyapunov exponent
algorithm, f 5(t) [32]. The five features were extracted over the 139 days test period. The plot of the
aforementioned features has been shown in Figure 2. These features are used to establish data matrix
P. Thus, the dimension of data matrix P in Equation (1) is 5 by 139, where 5 is the number of features
and 139 is the number of days.

To detect the incipient slew bearing defect (Step 1), the MSET algorithm calculates the normal
residual matrix (RN) and the residual matrix of monitored state (RM) (see Figure 3). In Step (1),
the following inputs are required: training matrix T, memory matrix D, remaining training matrix L
and observation matrix Pobs. In this paper, T of 50 days was used. In the computation, the sizes of
matrices, D and L have to be half of T i.e., 25 days each. The reason why 50 days was used is because
coal dust was not injected until day 58. In other words, during the first 50 days, the vibration signal
had been acquired when the condition of the bearing was still normal. In practice, matrix Pobs is
obtained from daily observation or measurement. The number of measurement days from normal to
failure has been set as 139 days. Pobs is the matrix from day 51 to day 139.

After D and L have been determined, the weight of normal state vector (w1) is then calculated
using Equation (3) by employing the Euclidean distance as the non-linear operator. Vector w1

represents the weight of normal data points in the training data. w1 is used to calculate the normal
estimate matrix (Lest) using Equation (5). And the normal residual matrix (RN) is estimated by taking
the difference between Lest and L, as shown in Equation (7). It should be noted that prior to the
calculation of the statistical properties, matrix RN is normalized with a zero mean. This is necessary for
the next process in the SPRT method because under normal bearing conditions the mean value of the
normal residual matrix (RN) is expected to be ≈0. The result of normalized matrix (RN) is presented in
Table 4. A similar procedure is also employed to obtain the residual matrix of monitored state (RM).
Equation (4) is used to calculate the weight of monitored state vector (w2), Equation (6) is then used to
calculate the estimate matrix of monitored state (Lest) and Equation (8) to calculate the residual matrix
of monitored state (RM). Matrix RM is then normalized within a range between maximum value and
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minimum value of the normalized normal residual matrix (RN). The calculation of RN and RM is the
final step of MSET. Both results are then fed into the SPRT.

Table 4. Normalized RN matrix.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13

0.044 0.042 0.042 0.042 0.042 0.043 0.042 0.043 0.044 0.042 0.042 0.042 0.043
0.025 0.021 0.021 0.022 0.022 0.023 0.021 0.024 0.025 0.022 0.022 0.021 0.022
0.016 0.015 0.015 0.015 0.015 0.016 0.015 0.016 0.016 0.015 0.015 0.015 0.015
0.018 0.017 0.017 0.017 0.017 0.018 0.017 0.018 0.018 0.017 0.017 0.017 0.018
−0.955 −0.957 −0.957 −0.957 −0.957 −0.956 −0.957 −0.956 −0.955 −0.957 −0.957 −0.957 −0.957

Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 Day 21 Day 22 Day 23 Day 24 Day 25

0.043 0.042 0.043 0.043 0.042 0.043 0.044 0.042 0.042 0.042 0.042 0.042
0.022 0.021 0.023 0.023 0.022 0.023 0.024 0.021 0.021 0.022 0.022 0.021
0.015 0.015 0.016 0.016 0.015 0.016 0.016 0.015 0.015 0.015 0.015 0.015
0.018 0.017 0.018 0.018 0.017 0.018 0.018 0.017 0.017 0.018 0.018 0.017
−0.957 −0.957 −0.956 −0.956 −0.957 −0.956 −0.955 −0.957 −0.957 −0.957 −0.957 −0.957

In SPRT, statistical characteristics such as mean value, standard deviation and the range
between maximum and minimum values are calculated from each column of normalized matrix
RN. These statistical properties belong to the normal condition of the bearing are used as the reference
normal data. These properties also form the set of hypotheses in SPRT. For the monitored state, prior to
the calculation of the mean value and the standard deviation, the matrix (RM) is normalized within the
range between maximum and minimum value of the normal state. The mean and standard deviation
values of the normal state (up to days 25) are presented in Tables 5 and 6, respectively. The detection of
the incipient slew bearing defects is obtained by comparing the statistical characteristics, the mean
value and the standard deviation) of the monitored state to the statistical characteristics of the
normal state.

Table 5. Mean (M) values of normal state.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13

−0.169 −0.172 −0.172 −0.171 −0.171 −0.171 −0.172 −0.170 −0.170 −0.171 −0.171 −0.172 −0.171

Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 Day 21 Day 22 Day 23 Day 24 Day 25

−0.171 −0.172 −0.170 −0.171 −0.171 −0.171 −0.170 −0.172 −0.172 −0.171 −0.171 −0.172

Note: Mmin = −0.172, Mmax = −0.169.

Table 6. Standard deviation (σnormal) values of normal state.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13

0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439

Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 Day 21 Day 22 Day 23 Day 24 Day 25

0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439 0.439

This comparison is repeated to the 51 to 139 columns of the Pobs matrix. If the mean value or
the standard deviation in each day lies outside the range of the reference mean values (Table 5) or
standard deviation values (Table 6), incipient defect is considered to have occurred. This step is part of
the SPRT procedure. To make a comparison, the list of hypotheses must be determined first including
the normal condition (H0) represented by mean value = Mnormal and the standard deviation = σnormal.
Alternatives hypotheses H1 to H4 indicate the abnormal conditions. The set of hypotheses is given in
Table 1.

To measure the comparison mathematically, the ratio of the probability of alternative hypotheses
(H1 to H4) and the probability of the null hypothesis (H0) is calculated, Equation (10). Once probability
ratio Li is obtained, the SPRT index can be calculated by taking the natural logarithm of probability
ratio Li. The result of Step (1) is presented in Figure 8. It can be seen from the monitored data of day 51
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to day 89 that the bearing is still in normal condition. The impending deterioration of the bearing is
identified on day 90. Note that the impending deterioration is needed in Step (2) to predict the future
state and to estimate the RUL estimation. A sample calculation of Li for a day (day 51 and day 90) is
presented in Table 7. When the condition of the bearing is still normal, the probability of statistical
properties {Si} that fall within the hypotheses H (p({Si}/H)) is much lower than the probability of
statistical properties {Si} of the null hypothesis H0 (p({Si}/H0)). To illustrate the normal condition
(i.e., day 50), the natural logarithmic of Li is given in Table 7 and shown in Figure 8. On the contrary,
on day 90 the condition of the bearing started to deteriorate, the probability of statistical properties {Si}
that fall within the hypotheses H (p({Si}/H)) will increase and the probability of statistical properties
{Si} that fall in the null hypothesis H0 (p({Si}/H0)) will decrease, the natural logarithmic is then given
in Table 7 and shown in Figure 8.
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Table 7. Example calculation of Li in one day observation.

Dayth Observation p({Si}/H) p({Si}/H0) Li (Equation 10)

day 51 0.04 0.99 −3.209
day 90 0.08 0.98 −2.506

Note: p({Si}/H) is probability of statistical properties {Si} given H is true and p({Si}/H) is probability of statistical
properties {Si} given H0 is true.

4.2. Step (2) Prediction of the Future State of Selected Features Using Kernel Regression

Features extracted from slew bearing vibration signals have different characteristic to those
extracted from accelerometers signals of typical rolling element bearings. In typical rolling element
bearings, when the bearing condition deteriorates, the features values increase gradually. In slew
bearings, the changes of the slew bearing condition can be detected from a sharp increase of feature
value. However, this value does not increase steadily as it does in typical high speeds roller bearings.
The extracted features of the slew bearing signal usually revert to the normal level and rise again as the
condition has deteriorated significantly. This condition is referred as ‘self-healing’ characteristic [41].
This is one of the difficulties in defect prediction especially for data-driven prognosis methods [42–44].
In this paper, the problem has been overcome using kernel regression. Prior to the use of kernel
regression, all features have to be evaluated. Caesarendra et al. [32] presented four evaluation criteria
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to track the progressive bearing defect. In the present study, another evaluation criterion based
on exponential function is proposed. It is well known that as bearing deteriorates, certain features
will increase exponentially. Hence, an evaluation criterion (E) obtained from the coefficient of the
exponential curve fitting of the feature being evaluated is used as illustrated below. Suppose f (t) is the
monitored evaluation function.

f (t) = a e(Et) (14)

where a and E are the curve fitting exponential coefficients, and t is the measurement days.
The calculation of E for the time-domain kurtosis feature and the LLE feature is presented in Figure 9.
The two figures show clearly that the LLE feature shows a greater exponential increasing trend than
the time-domain kurtosis feature. The dotted line in Figure 9a,b is the exponential curve fitted from
day 80 to day 139.
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Figure 9. Evaluation criterion (E) calculation: (a) time domain kurtosis feature; (b) LLE feature.

In Step (2), kernel regression is employed to predict the future bearing condition and to estimate
the RUL of the slew bearing. This prediction starts when there is warning of impending deterioration
of the bearing condition. The basic kernel regression algorithm is improved by adding a k-step-ahead
subroutine. At each k-step, non-linear regression model and posterior (predicted) point is estimated
and updated. The purpose of this process is to estimate a one-step-ahead prediction of the kernel
regression model based on past non-linear data points.

Kernel regression is an effective method to build a model from non-linear data. The process is
done by taking the highest data point of the current kernel regression model and then using it as the
next data point (e.g., predict the 4th data point if the initial model is built from three data points).
The new data point is then used to build a new kernel regression model and estimate the next data
point. The process is repeated until the specified k-step-ahead prediction is reached. To illustrate the
process, a time domain kurtosis feature is used as the monitored parameter being predicted.

Kurtosis is selected as an input of kernel regression because it has a certain value for normal
bearing condition and the kurtosis value for defect condition. This is necessary for the detection of
incipient defect in Step (1), which is set with the predetermined warning threshold and for prediction
in Step (2), which is set with the damage bearing threshold. The kurtosis value for normal bearing
signals is approximately 3 [40]. The increase of this value indicates that the bearing condition has
changed. Some research mentioned that the kurtosis value will reach about 50 when high impact
occur [45]. Aye [46] studied the kurtosis of normal and faulty tapered bearings running at speed
between 409 RPM and 1200 RPM. It has been found that the kurtosis value for normal bearings is
2.89. Surprisingly, the kurtosis value for faulty bearings with 409 RPM increases significantly to about
30.26 and for 1200 RPM drops to 1.23. The same author [46] demonstrated that the kurtosis value
of bearing damage with low rotational speed (low RPM) can be much higher than the normal value.
Guo et al. [47] presented a method for recovering the bearing signal from large noisy signal using
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a hybrid method based on spectral kurtosis and ensemble EMD. It was found that the kurtosis value
of each bearing fault condition was recovered and identified more easily. For instance, the kurtosis
value of a bearing with an inner race defect and a ball defect is 18.35 and 41.20, respectively.

Supposed 3 points are available denoted as point 1, 2, and 3 as shown in Figure 10. Firstly,
the method predict one-step-ahead of degradation parameter denoted as point 4 (red triangle) based
on 3 points i.e., point 1, 2 and 3. Secondly, to predict next degradation parameter denoted as point 5,
the method used point 2, 3 and 4. Thirdly, to predict point 6 the method used point 3, 4 and 5.
According to the Figure 10, the plotted curve shows an increasing trend, it is due to the first 3 points
used has an increasing trend. Thus for next prediction the method employed both actual value and
predicted value to predict the next degradation parameter. In practice, when the kurtosis value
is acquired from online condition monitoring, the points can be replaced by actual kurtosis value.
The method will use 3 updated kurtosis values to do one-step-ahead prediction.
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Setting a threshold level are depends on the different situations and types of bearings.
The information can be obtained from the maintenance engineer or past condition monitoring (CM)
data with has similar type of bearing and load condition. As has been done in past works [45–47],
we have set the threshold kurtosis value of 45 for the time-domain kurtosis and the WD feature,
while the threshold for the LLE feature is set at 35. The proposed kernel regression method was applied
up to 120 days, as by day 120 the kurtosis value has exceeded 4 times the normal value and three data
points greater than the alarm threshold level have been detected. It should be noted that three data
points is the minimum requirement in the initial kernel regression model. Note that the levels of the
three selected features up to day 120 are still below the bearing damage threshold of 45. The predictions
of the kernel regression of the three features mentioned above are presented in Figure 11a–c. The four
step-ahead of kernel regression are used (k = 4) and thus the 4 step-ahead predicted data points are
shown with ‘∆’ symbol, while ‘o’ represents the actual value. It can be seen that the predicted future
values increases. When the data point exceeds the damage threshold level, the last predicted day
is noted and used to estimate the histogram of final failure. Once the histogram of final failure is
obtained, the RUL can be easily estimated by taking the difference between the predicted final failure
time and the last measurement day (the last measurement day is 120).

Based on this analysis, the predicted failure day of the bearing is shown to be dependent on the
features and summarized in Table 8. Detail information of the three non-linear data used to build the
initial model and the predicted data point of the modified kernel regression method for each feature
is shown in Tables 9–11 (point A–D). It is shown in Figure 11b,c is the WD kurtosis feature and LLE
feature, respectively. For WD kurtosis feature the spacing is different (day 104th − day 91th = 13 days
and day 107th − day 104th = 3 days). The LLE Feature also has different spacing (day 104th − day
92th = 12 days and day 114th − day 104th = 10 days). Points D–G are the predicted features values.
These points are estimated based on the 4-step-ahead prediction of the kernel regression. According to
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the results in Tables 9–11, the y-axis values of the fourth predicted points exceed the bearing damage
threshold. The day of each fourth predicted point (point G) is noted as the final failure of the slew
bearing. Three predicted days (point G) are then inputted to the histogram. The result of this is
presented in Figure 11d. It should be noted that with more features used, the more accurate the
distribution fit of the histogram will be. It can be seen from Figure 11d that the predicted final failure
is day 135. Further, the RUL of the bearing can be estimated by taking the difference between the
predicted failure day and the last measurement day i.e., 135 − 120 = 15 day. The final failure histogram
was calculated using a common MATLAB function ‘histfit’. The probability curve is plotted based on
the predicted final failure from three methods: (a) time-domain kurtosis at 137.6 day; (b) WD kurtosis
at 130.8 day; and (c) LLE feature at 137 day.

During the slew bearing lab experiment, complete failure is unpredictable. When a burst vibration
signal on day 141 was detected, the test-rig had to be shut down. To inspect the damage and verify the
result of the proposed prognosis method, the slew bearing was dismantled and inspected. Some of the
defective rollers and outer race can be clearly seen in Figure 12. The actual final failure day of lab slew
bearing is considered one day before the severe burst vibration signal i.e., day 140. The accuracy of
prediction is estimated as follows:

Ap =

(
1−

∣∣ta − tp
∣∣

ta

)
× 100% =

(
1− |140− 135|

140

)
× 100% = 96.43% (15)

where ta is actual final failure day and tp is predicted failure day.
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Table 8. The prediction of failure day.

Feature nth Day Failure (x-axis) Feature Level (y-axis) Threshold

Time-domain kurtosis 137.6 55 45
WD kurtosis 130.8 46 45
LLE feature 137 39 35

Table 9. Original non-linear data points and predicted data points of time domain kurtosis.

Data Point Measurement Day Feature Value

A 92 19
B 103 24.12
C 114 36.83
D 120 39
E 128.6 43
F 129.2 47
G 137.6 55

Table 10. Original non-linear data points and predicted data points of WD kurtosis.

Data Point Measurement Day Feature Value

A 91 7.24
B 104 8.84
C 107 14
D 116.4 13
E 122.2 32
F 125 46
G 130.8 50

Table 11. Original non-linear data points and predicted data points of LLE feature.

Data Point Measurement Day Feature Value

A 92 12.36
B 104 12.22
C 114 25.69
D 117.8 26
E 118.8 28
F 128 35
G 137 39
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5. Conclusions

An integrated condition monitoring and prognosis method of low speed slew bearing has been
presented. The method employs combined MSET and SPRT to detect the incipient bearing defect,
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and kernel regression to predict the future state and to estimate the RUL. The method has been
implemented in the monitoring and prediction of laboratory slew bearing condition, where the test
was run with new bearing condition until failure. Combined MSET and SPRT method was used
to analyse the vibration features calculated from the accelerometer data of 139 days measurement.
Based on the set of hypothesis in SPRT method, it was found that the incipient defect of slew bearing
occurred in day 90. After the incipient defect was detected, the kernel regression calculation started to
predict the future state. To validate the method, 120 measurement days were analysed. The predicted
of failure days were constructed and the final failure day (day 135) was predicted based on the peak of
the normal distribution fit of the histogram. The RUL was estimated by to be 15 days (135 − 120 days).
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