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Abstract  

This paper demonstrates a system to discriminate real from fake smiles with high accuracy by sensing 
observers’ galvanic skin response (GSR). GSR signals are recorded from 10 observers, while they are 
watching 5 real and 5 posed or acted smile video stimuli. We investigate the effect of various feature 
selection methods on processed GSR signals (recorded features) and computed features (extracted 
features) from the processed GSR signals, by measuring classification performance using three 
different classifiers. A leave-one-observer-out process is implemented to reliably measure 
classification accuracy. It is found that simple neural network (NN) using random subset feature 
selection (RSFS) based on extracted features outperforms all other cases, with 96.5% classification 
accuracy on our two classes of smiles (real vs. fake). The high accuracy highlights the potential of this 
system for use in the future for discriminating observers’ reactions to authentic emotional stimuli in 
information systems settings such as advertising and tutoring systems.  
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1 Introduction  

A smile is a complex and multi-purpose facial display that conveys not only the meaning of happiness 
(Ekman et al. 1990), but can also be identified as frustration, depression, empathetic, surprise, polite 
disagreement, pain and even more (Hoque et al. 2011). We refer to these latter acted, posed and non-
happy smiles as fake smiles, and refer to smiles related to happiness as real smiles. In this scenario, it 
is important to accurately discriminate real from fake smiles to understand the affective state 
underlying the meaning of smiles. In the past, researchers measured displayers’ smiling characteristics 
to discriminate real from fake smiles (Ambadar et al. 2009; Hoque et al. 2011), rather than using 
observers’ reactions. In our work, we analyse an observer’s galvanic skin response (GSR) while they 
watch a (video of a) displayer’s smile.  

A GSR signal indicates electrical changes measured at the surface of human skin that varies with the 
changes in skin moisture level (sweating) and reflects the changes in their sympathetic nervous system 
(Nourbakhsh et al. 2012). It is an automatic reaction which cannot be controlled by the user and is 
considered one of the strongest signals that can be used for emotion detection (Geo et. al. 2013; 
Nakasone et al. 2005). GSR signals can also be used for stress or cognitive load detection to improve 
mental health (Engstrom et al. 2005). To the best of our knowledge, no one has previously investigated 
observers’ GSR signals to discriminate real from fake smiles. In this paper, we perform a preliminary 
study on 10 observers’ GSR signals, while they are watching fake and real smiling video stimuli. 

Due to the nature of human bodies, the raw GSR signals are affected by noise, such as body 
movements, small fluctuations etc. (Geo et al. 2013). To remove the noise, raw GSR signals are 
normalized and filtered; we refer to these as recorded features. On the other hand, feature extraction is 
an important technique before measuring accuracy (Picard et al. 2001). Thus, seven features are 
extracted from each processed GSR signal; we refer to these as extracted features. We found that all 
recorded and extracted features are not equally important for discriminating real from fake smiles. 
Thus feature selection methods are applied to find important features by removing unreliable and 
noisy features, while still achieving comparable and even better performance. In this case, five feature 
selection methods (MI = Mutual Information, SD = Statistical Dependency, RSFS = Random Subset 
Feature Selection, SFS = Sequential Forward Selection, and SFFS = Sequential Floating Forward 
Selection) are employed to select important and informative features from recorded and extracted 
features respectively (Jouni et al. 2015). Finally, three separate classifiers (KNN = K-nearest 
Neighbour, SVM = Support Vector Machine, and NN = Neural Network) are implemented to compute 
the classification performance on data from one observer, while the features from other observers are 
used to train the classifier. Thus, a leave-one-observer-out process is performed and results are 
reported as average values over all observers.  A sketch of the process is in Figure 1. 

 

Figure 1: Research methodology. FS = Feature Selection, MI = Mutual Information, SD = Statistical 
Dependency, RSFS = Random Subset Feature Selection, SFS = Sequential Forward Selection, SFFS = 
Sequential Floating Forward Selection, KNN = K-nearest Neighbours, SVM = Support Vector 
Machine, and NN = Neural Network. 
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Information Systems are influenced by studies on user behaviour intention, psychology, affect 
detection, and so on (Sun and Zhang 2006; Willis and Jones 2012). This research focuses on 
determining how an observer’s GSR reflects their understanding of a displayer’s smile information, to 
discriminate real from fake smiles. It motivates objective understanding of how individuals’ GSR 
responds to fake vs. real smiles that they observe in typical environments. Recording GSR from 
observers could be used for purposes beyond our study. For example, clinicians use observable 
nonverbal and other uncontrollable behaviours to assess patient’s affective state (Kasl and Mahl 1965). 
Police use GSR and other relatively uncontrollable physiological responses for lie detection (Lykkenn 
1974). It may also be possible to detect from a Customs’ officer’s GSR whether the person at passport 
control appears suspicious or not.  

We use observers and record their signals to allow for some general use of our approach in 
social/emotional settings. We are interested in the perception of observers (Kraut 1978) when 
observing people (e.g. smiles) or their data on a screen. This has wide potential applicability to 
Information System research.  

2 Experiment 

2.1 Aim  

The goal of the present study is to find a classifier and a feature selection method to best use an 
observer’s GSR features to predict the hidden mental state of the person in the video (displayer), 
discriminating between happy smiles and other kind of smiles. This is important for information 
systems to support emotion communication (Willis and Jones 2012).  

2.2 Observers  

Ten graduate students, 25 to 39 years old, participated as observers (participants) in this experiment. 
They signed an informed consent form prior to their voluntary participation. The experiment was 
approved by the Australian National University’s Human Research Ethics Committee.  

2.3 Video Stimuli  

Twenty-five smiling video clips are selected from three benchmark databases (10 from AFEW (Dhall et 
al. 2014), 5 from MMI (Pantic et al. 2005) and 10 from MAHNOB (HCI and Laughter) (Petridisa et al. 
2013; Soleymani et al. 2012)) to use as stimuli. The AFEW stimuli are from a collection of acted smiles 
by professional actors. The MMI stimuli are identified as fake smiles, because displayers were asked 
and instructed to display a smile (Valstar and Pantic 2010). On the other hand, in the case of 
MAHNOB, the displayers’ smiles were elicited by watching a sequence of funny or pleasant video clip 
(Soleymani et al. 2012) stimuli and treated here as genuine/real smiles. The collected smiling video 
stimuli are cropped to keep the face portion only, and processed using MATLAB R2015a to make them 
identical in size, format and duration. These were: grey scale, mp4 format and lasting 10 seconds each. 
This paper is based on analysing observers’ GSR features, while watching 10 smiling stimuli (5 of MMI 
and 5 of MAHNOB_HCI); the others are not considered due to technical problems, avoiding famous 
actors’ smiles (perhaps they are famous because they can do realistic fakes?), and lack of explanation 
of the stimuli in the source.  

2.4 Data Acquisition   

To collect GSR signals, a Neulog (https://neulog.com/) sensor is attached to the observers’ index and 
middle finger of the left hand. The sampling frequency was 10 Hz. A 17.1” LCD monitor and a usual 
computer mouse are peripherals for interaction between observer and a PC running the web-based 
smiling video stimuli. Each stimulus is followed by a five point (-2 to +2) Likert Scale where negative 
and positive ends of the scale allow selection of the video stimuli as fake and real smiles respectively, 
with higher or lower confidence. The middle point represents confusion.  

2.5 GSR Signal Processing    

To reduce the between-observer differences, a normalization technique is applied on the collected raw 
GSR signals (Nourbakhsh et al. 2012). Each value of a particular observer’s GSR signal is divided by 
the maximum value of that observer’s GSR signal. Generally, the GSR signal is affected by small signal 
fluctuations due to the nature of human bodies, physical movements and so on. To remove the 
undesired noise from normalized GSR signal, a 20 point median filter is applied (Guo et al. 2013). 
Although recorded features are in the range of [0, 1] at all times, extracted features deviated from this 
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range when we calculated derived values. For reducing data differences the extracted features are 
rescaled to [0, 1] (if required) (Guo et al. 2013) by dividing by the extracted maximum value.  

3 Features  

3.1 Recorded Features    

In this case, each time point of processed GSR signals were treated as features. Thus, there were 100 
recorded features for a stimulus and 500 recorded features for all fake smiling stimuli and 500 for all 
real smiling stimuli, for a particular observer. During training, only 9,000 features (10 stimuli x 100 
features x 9 observers; i.e., from the other 9 observers) are used, with 1,000 for testing.  

3.2 Extracted Features    

The extracted GSR features include six temporal features and one spectral feature for each stimulus. 
The six temporal features include mean and standard deviations of the normalized signals, means of 
the absolute values of the first and second differences of the normalized signals and the filtered 
signals. These features can be computed in a cost-effective way and cover the typical range, gradient 
and variation of the signals (Picard et al. 2001). The periodic excitation is another important 
characteristic of the GSR signal, which can be represented by spectral features (Guo et al. 2013). We 
examined different variations of power spectrum using Welch power spectrum density in the MATLAB 
platform. The processed GSR signal of each stimulus is examined to find the frequency contents in that 
signal. Each stimulus related GSR signal shows about similar variation as shown in Figure 2. It is clear 
from Figure 2 that the power feature has non-zero values in frequencies less than 1 Hz, and mostly less 
than 0.5 Hz. In this situation, important features can be found within a 16-datapoint-length 
(Nourbakhsh et al. 2012). In this regard, the first 16 data-points are used to compute the spectral mean 
from each stimulus processed GSR signal. Finally, there are 7 extracted features for a stimulus and 35 
extracted features for either all fake smiling stimuli or real smiling stimuli for a particular observer. 
During training, only 630 features (10 stimuli x 7 features x 9 observers; i.e., from the other 9 
observers) are used, with 70 for testing.  

 

Figure 2: Welch’s power spectral density spectrum of first MMI stimulus, Observer 1.  

4 Feature Selection     

We use MATLAB feature selection code (Jouni et al. 2015) to select important and informative features 
from recorded and extracted features, respectively. There are five feature selection algorithms as 
follows. 

i. MRMR (Minimal-Redundancy-Maximum-Relevance) - finds features by estimating mutual 
information (MI) between features and associated class labels with maximizing feature 
relevance and minimizing redundancy, 

ii. SD (Statistical Dependency) - finds features according to measuring the statistical dependency 
between features and associated class labels, 

iii. RSFS (Random Subset Feature Selection) - choses features from the entire feature pool by 
comparing their relevance values, 

iv. SFS (Sequential Forward Selection) - fills empty feature set according to their best scores by 
removing redundant features, and 
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v. SFFS (Sequential Floating Forward Selection) - uses backward steps (if required) after each 
forward step to find better features than previously selected. 

In the case of MI and SD, 12 quantization labels are used to select features. Also, the unweighted 
average recall (UAR) performance criterion and KNN classifier are implemented for relevance update 
and measuring scores, respectively, in the case of RSFS, SFS and SFFS. We used the feature selection 
code only on training features (i.e. on nine observers’ data) by default KNN classifier as in (Jouni et al. 
2015), with 10 fold cross validation to compute the scores of the features. The final feature set is 
formed by those features that are common to score higher in the maximum number of folded outcome.  

5 Results and Discussion   

The performance of five feature selection methods on discriminating real from fake smiles are 
evaluated with three, two class (fake and real smile) binary classifiers, being k-nearest neighbour 
(KNN), support vector machine (SVM) and simple neural network (NN). The performance parameters 
are 3 nearest neighbours, least square method with quadratic kernel function, scaled conjugate 
gradient training function with mean square error performance function and 5 hidden nodes for KNN, 
SVM and NN respectively. The program is performed with an Intel(R) Core™ i5-5200U with 2.20 
GHz, 8.00 GB of RAM, Operating System 64-bit computer using MATLAB R2015a. A leave-one-
observer-out process is implemented to test the classification performance. The features of one 
observer are taken as a test set and rest of the observers’ features are used to train the classifier. To 
remove the effect of biasing on test set, features are selected from training set only. This process is 
repeated for each observer. For that reason, the number of selected features is varied according to 
observer as shown in Table 1. It is notable from Table 1, that a higher percentage of features are 
selected in the case of extracted features (example - 10 out of 35, 28% selected) than recorded features 
(example - 36.3 out of 500, 7% selected). 

 

Test 
Observer 

Extracted Features (EF) Recorded Features (RF) 
MI SD RSFS SFS SFFS MI SD RSFS SFS SFFS 

O1 10 10 8 3 3 50 20 34 4 4 
O2 10 10 11 2 2 32 50 18 4 6 
O3 10 10 6 3 3 34 34 26 2 4 
O4 10 10 11 3 5 50 50 12 4 5 
O5 10 10 11 2 3 9 9 62 3 5 
O6 10 10 8 3 3 32 32 25 6 8 
O7 10 10 9 3 4 38 38 10 4 5 
O8 10 10 11 4 3 50 50 30 4 5 
O9 10 10 11 5 5 34 34 11 6 7 
O10 10 10 9 3 6 34 34 26 4 4 
Average 10 10 9.5 3.1 3.7 36.3 35.1 25.4 4.1 5.3 
Table 1.  Number of selected features for each test observer 

The average classification accuracies over observers are reported in Figure 3. The error bars represent 
standard deviation. We see that, KNN shows higher accuracies in the case of recorded features than 
extracted features, and the opposite case is true for SVM and NN. We also observed that KNN shows 
higher accuracies for recorded features than SVM and vice versa for extracted features. This may 
depend on parameter tuning. We also check that accuracies are increased with decreasing ‘k’ values of 
KNN and vice versa. If k=1, then accuracies are increased about 5%. On the other hand, accuracies are 
decreased about 8-10% for linear kernel of SVM instead of quadratic kernel. 
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Figure 3: Average classification accuracies over observer, RF=Recorded Features & EF=Extracted 
Features. 

We can observe from Figure 3 that GSR is an effective physiological signal at discriminating real from 
fake smiles where accuracy is found as high as 96.5%. In this case, NN and RSFS are dominant 
classifier and feature selection method respectively when compared to others. We also observed that 
NN takes a long time (2.1 sec to 3.4 sec) to compute accuracy, when compared to SVM (about 0.24 sec) 
and KNN (0.09 sec to 0.1 sec). On the other hand, RSFS is costly compared to other feature selection 
methods as shown in Table 2. 

    MI     SD        RSFS            SFS  SFFS 

RF 0.6127   0.0577      10.8268       9.3705 9.3926   

EF 0.0124   0.0122      03.5272       0.5176 0.5565 

Table 2.  Elapsed time (in sec) during feature selection  

It is hard to compare our results with others in the literature. This is because, to the best of our 
knowledge, no previous research reports observers’ GSR signals (or other physiological signal) having 
been used to discriminate between displayers’ real from fake smiles. Palanisamy et al (Palanisamy et 
al. 2013) used GSR and other physiological signals for stress identification and showed that 
probabilistic neural networks and KNN were 70.0% and 70.8% correct respectively using only the GSR 
signal. Guo et al (Guo et al. 2013) used SFFS based GSR features to recognize four emotions using 
KNN and found 79.5% accuracy. Shangguan et al (Shangguan et al. 2014) employed a curve fitting 
model and found correct-recognition rate up to 91.4%. Sharma and Gedeon (Sharma and Gedeon 
2014) used observers’ physiological signals to predict displayer stress with 90% accuracy. These 
outcomes are not directly comparable with our results due to different scenarios; nevertheless our raw 
numbers are higher, even though we are arguably solving a harder smile recognition problem, 
measuring effects on the observer and not the displayer of the smile. 

6 Conclusion 

In this paper, we experimentally evaluated GSR signals to locate more dominant features for 
discriminating real from fake smiles from observers of the smiles. It is a pervasive, simple, 
nonintrusive and easily captured signal. The original GSR signals are smoothed and de-noised; 
features are extracted and selected, and normalization is applied to reduce the observer-dependency. 
We investigate both recorded and extracted features to compute classification accuracies using KNN, 
SVM and NN. Various feature selection methods and their outcomes are investigated. Finally, higher 
accuracy (96.5%) is found on RSFS based selected features using simple NN compared to others. These 
findings make it applicable in real world situations, perhaps using mobile applications to monitor the 
displayers’ smiles by observers to improve their emotional intelligence. Our future work will include 
assessing the other physiological signals by observing different emotional videos, using real world 

KNN SVM NN KNN SVM NN KNN SVM NN KNN SVM NN KNN SVM NN

SFS SFFS MI SD RSFS

RF 85.5 77.5 88.5 85 78.5 88 85 80 88 84.5 79.5 87 86 81 90

EF 71.5 79 93.5 72 79 91.5 81 93.5 94 81 93.5 94 77 95 96.5
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scenarios such as advertising websites (Gregor et al. 2014) to improve classification accuracies, and 
comparison to verbal response accuracy rate. 
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