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A DEGREE THEORY FOR SECOND ORDER NONLINEAR ELLIPTIC

OPERATORS WITH NONLINEAR OBLIQUE BOUNDARY CONDITIONS

YANYAN LI, JIAKUN LIU, AND LUC NGUYEN

Dedicated to Paul H. Rabinowitz on his 75th birthday with admiration

Abstract. In this paper we introduce an integer-valued degree for second order fully nonlinear
elliptic operators with nonlinear oblique boundary conditions. We also give some applications
to the existence of solutions of certain nonlinear elliptic equations arising from a Yamabe
problem with boundary and reflector problems.

1. Introduction

Degree theories are very useful in the study of partial differential equations, for example, in

the study of existence and multiplicities of solutions, eigenvalue and bifurcation problems. See

for example [4, 13, 21, 22, 23].

In [14], the first named author introduced a degree theory for second order nonlinear elliptic

operators with Dirichlet boundary conditions. It is natural to ask for a degree theory for

other boundary operators. Problems with nonlinear oblique boundary conditions have been

considered in the literature for some time, see e.g. [3, 9, 10, 15, 16, 17, 18, 19, 20, 24, 25].

For example, in the study of boundary Yamabe problems [3, 10, 15, 16], one considers the

boundary condition

(1.1) h
u

4
n−2 g

:= u−
n
n−2

[
∂u

∂ν
+
n− 2

2
hgu

]
= c on ∂M,

where ∂M is the boundary of a smooth Riemannian manifold (M, g) of dimension n ≥ 3, ν

is the outer unit normal to ∂M and hg is the mean curvature of ∂M . (1.1) is a semi-linear

Neumann boundary condition.

More recently, in the study of a near field reflector problem [19] one has the boundary

condition

(1.2) Tu(Ω) = Ω∗,
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2 Y.Y. LI, J. LIU, AND L. NGUYEN

where Ω,Ω∗ are two bounded domains in Rn, and Tu is the reflection mapping given by

Tu(x) =
2Du

|Du|2 − (u−Du · x)2
, x ∈ Ω.

The boundary condition (1.2) is fully nonlinear, and in [19] it was shown that (1.2) is oblique

for any admissible solution u.

The equations associated with (1.1) and (1.2) are Hessian and Monge-Ampère types, respec-

tively.

The main goal of the present paper is to define a degree theory, along the line of [14, 15] for

fully nonlinear elliptic operators with fully nonlinear oblique boundary conditions. See Section

2 for the statement and Sections 3-6 for its proof. As applications, in Section 7, we outline

how our degree theory can be used to prove the existence of solutions of the boundary Yamabe

problem and the near-field reflector problem. In the Appendix, we collect some properties of

the Laplace operator ∆ : Hs → Hs−2 for s ∈ [0, 2] on a compact Riemannian manifold, which

are needed in the body of the paper.

2. Statement of the main result

In this section we introduce a degree theory for second order fully nonlinear elliptic operators

with nonlinear oblique boundary conditions of general form,

F [u] = f(·, u,Du,D2u), in Ω,(2.1)

G[u] = g(·, u,Du), on ∂Ω,(2.2)

where Ω is a bounded smooth domain in Euclidean n-space, Rn, and f ∈ C3,α(Ω×R×Rn×Sn)

and g ∈ C4,α(Ω×R×Rn) are real valued functions, 0 < α < 1. Here Sn denotes the n(n+ 1)/2

dimensional linear space of n× n real symmetric matrices, and Du = (Diu) and D2u = [Diju]

denote the gradient vector and Hessian matrix of the real valued function u.

Letting (x, z, p, r) denote points in Ω×R×Rn×Sn, we shall adopt the following definitions

of ellipticity and obliqueness for operators F and G [7]. An operator F : C4,α(Ω)→ C2,α(Ω) is

uniformly elliptic on some bounded open subset O of C4,α(Ω) if there exists a constant λ > 0

such that for all u ∈ O, x ∈ Ω and ξ ∈ Rn there holds

(2.3)
∂f

∂rij
(x, u,Du,D2u)ξiξj ≥ λ|ξ|2.

An operator G : C4,α(Ω)→ C3,α(∂Ω) is uniformly oblique on O if there exists a constant χ > 0

such that for all u ∈ O and x ∈ ∂Ω

(2.4)
∂g

∂p
(x, u,Du) · γ(x) ≥ χ,

where γ(x) denotes the outer unit normal of ∂Ω at x.
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Let O ⊂ C4,α(Ω) be a bounded open set with ∂O ∩ (F,G)−1(0) = ∅. Suppose that F is

uniformly elliptic on O and G is uniformly oblique on O. We will define an integer-valued

degree for (F,G) on O at 0 along the line of [14, 15].

Theorem 1. There exists a unique integer-valued degree

deg :
{

((F,G),O, 0) : (F,G) and O are as above
}
→ Z

which satisfies the following three properties:

(p1) deg((F,G),O, 0) = deg((F,G),O1, 0) + deg((F,G),O2, 0) whenever O1 and O2 are open

disjoint subsets of O satisfying (F,G)−1(0) ∩ (O \ (O1 ∪ O2)) = ∅.
(p2) Homotopy invariance property: If t 7→ (ft, gt) is continuous from [0, 1] to C3,α(Ω × R ×

Rn × Sn) × C4,α(Ω × R × Rn), Ft is elliptic on O, Gt is oblique on O (both uniformly

in t ∈ [0, 1]), and ∂O ∩ (Ft, Gt)
−1(0) = ∅ for all t ∈ [0, 1], then deg((Ft, Gt),O, 0) is

independent of t.

(p3) Compatibility with Leray-Schauder degree: If (F,G) is an invertible linear operator and

O is a neighborhood of 0, then

deg((F,G),O, 0) = (−1)dimE−(F,G)

where

(2.5) E−(F,G) =
⊕
λi<0

{
u ∈ C4,α(Ω̄) : −(F [u], G[u]) = (λiu, 0)

}
.

As usual, the basic properties (p1)–(p3) imply immediate consequences which we list below.

Corollary 2.1. (a) If deg((F,G),O, 0) 6= 0, then there exists u ∈ O such that (F [u], G[u]) = 0.

(b) If U ⊂ O and U ∩ (F,G)−1(0) = ∅, then deg((F,G),O, 0) = deg((F,G),O \ U , 0).

(c) If (F1, G1)|∂O = (F2, G2)|∂O, then deg((F1, G1),O, 0) = deg((F2, G2),O, 0).

(d) If (F,G)(u0) = 0, (F,G) is Fréchet differentiable at u0 and (F ′, G′)(u0) is invertible. Then

deg((F,G),O, 0) = deg((F ′, G′),B, 0), where O is a neighborhood of u0 in C4,α(Ω) which

does not contain any other points of (F,G)−1(0) and B is any bounded open set containing

the origin.

The next property is a mild extension of property (p3).

Corollary 2.2. (e) Assume (F,G) has linear leading terms, (F,G) = (F1, G1) + (F2, G2) such

that

(F1, G1)[u] = (aij(x)uij + bi(x)ui + c(x)u, (βi(x)ui + `(x)u)|∂Ω)

(F2, G2)[u] = (f∗(x, u,Du), b∗(x, u)|∂Ω) ,
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where aij , bi, c ∈ C3,α(Ω), βi, ` ∈ C4,α(∂Ω), f∗ ∈ C3,α(Ω×R×Rn), and b∗ ∈ C4,α(∂Ω×R).

Assume that F is elliptic, i.e. (aij) > 0 in Ω, and G is oblique, i.e. β · γ > 0 on ∂Ω, where

γ denotes the unit outer normal of ∂Ω.

If (F1, G1) is invertible, then for any open bounded O ∈ C4,α(Ω) such that ∂O∩(F,G)−1(0) =

∅, there holds

deg((F,G),O, 0) = (−1)dimE−(F1,G1) degL.S.(Id+ (F1, G1)−1 ◦ (F2, G2),O, 0),

where E−(F1, G1) is defined as in (2.5).

Added in proof. We would like to thank Tim Healey who brought to our attention the

monograph of Fitzpatrick and Pejsachowicz [5], and informed us that the degree defined in our

paper can be derived from the very general theory for quasilinear Fredholm mappings therein.

3. Definition of the degree

Consider

S : C2,α(Ω)→ Cα(Ω)× C1,α(∂Ω)

u 7→ (4u, (γiDiu+ u)|∂Ω) ,(3.1)

where γ is the outer unit normal of ∂Ω, and

T : C3,α(∂Ω)→ C1,α(∂Ω)

u 7→ 4Tu− u,(3.2)

where 4T denotes the tangential Laplacian over ∂Ω. It is well-known that S, T are isomor-

phisms.

Let F̃ , G̃ be the composite maps as follows,

F̃ =
(
F̃(1), F̃(2)

)
= S ◦ F : C4,α(Ω)→ Cα(Ω)× C1,α(∂Ω)(3.3)

G̃ = T ◦G : C4,α(Ω)→ C1,α(∂Ω).(3.4)

Since S and T are isomorphisms, (F,G) = 0 is equivalent to (F̃ , G̃) = 0. We are going to

define a degree for (F,G) by defining a degree for (F̃ , G̃).

As in [14], we write

F̃(1)[u] = ast(x, u,Du,D
2u)Diistu+ C∗(x, u,Du,D

2u,D3u),(3.5)

F̃(2)[u] =
(
ast(x, u,Du,D

2u)Dstiuγi + E∗(x, u,Du,D
2u)
)∣∣
∂Ω
,(3.6)

G̃[u] =
(
bi(x, u,Du)4T (Diu) +H∗(x, u,Du,D

2u)
)∣∣
∂Ω
,(3.7)
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where

ast(x, u,Du,D
2u) =

∂f

∂rst
(x, u,Du,D2u),

bi(x, u,Du) =
∂g

∂pi
(x, u,Du).

To freeze coefficients in (3.5)–(3.7), we make use of the following result, whose proof is

postpone until Section 6.

Theorem 2. Let ast ∈ C1,α(Ω), bi ∈ C1,α(∂Ω), where 1 ≤ i, s, t ≤ n. Assume that (ast) is

symmetric and there exists λ > 0 such that ast(x)ξiξj ≥ λ|ξ|2 for all ξ ∈ Rn and x ∈ Ω, and

there exists χ > 0 such that bi(x)γi(x) ≥ χ for all x ∈ ∂Ω. For a constant N , define

LN : C4,α(Ω)→ Cα(Ω)× C1,α(∂Ω)× C1,α(∂Ω)

w 7→
(
LN(1)w, L

N
(2)w, L

N
(3)w

)
,

where

LN(1)w = astDiistw −NastDstw,

LN(2)w = (astDstiwγi)|∂Ω ,

LN(3)w = (bi4T (Diw)−NbiDiw −Nw)|∂Ω .

Then there exists some constant N0, depending only on ‖ast‖C1,α , ‖bi‖C1,α , n, λ, χ such that

LN is an isomorphism for all N > N0. Furthermore, LN depends continuously on ast, bi with

respect to the corresponding topologies.

We are in a position to define an integer-valued degree for (F,G) : O → C2,α(Ω)×C3,α(∂Ω).

Note that F̃ , G̃ in (9)–(11) can be represented as

(3.8) (F̃ [u], G̃[u]) = Lu,N [u] +Ru,N [u],

where Lu,N = (Lu,N(1) , L
u,N
(2) , L

u,N
(3) ) and Ru,N = (Ru,N(1) , R

u,N
(2) , R

u,N
(3) ) are

Lu,N(1) w = ast(x, u,Du,D
2u)Diistw −Nast(x, u,Du,D2u)Dstw,

Lu,N(2) w =
(
ast(x, u,Du,D

2u)Dstiwγi
)∣∣
∂Ω
,

Lu,N(3) w = (bi(x, u,Du)4T (Diw)−Nbi(x, u,Du)Diw −Nw)|∂Ω ,

Ru,N(1) w = Nast(x, u,Du,D
2u)Dstw + C∗(x, u,Du,D

2u,D3u),

Ru,N(2) w = E∗(x, u,Du,D
2u)|∂Ω,

Ru,N(3) w = Nbi(x, u,Du)Diw +Nw +H∗(x, u,Du,D
2u)|∂Ω.

One can see that Ru,N [u] maps C4,α(Ω) into C1,α(Ω)× C2,α(∂Ω)× C2,α(∂Ω). According to

Theorem 2, there exists some positive number N0 such that Lu,N is an isomorphism for any

N > N0. By [1, Theorem 7.3], (Lu,N )−1 maps C1,α(Ω) × C2,α(∂Ω) × C2,α(∂Ω) into C5,α(Ω),
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and its norm as a linear map between these spaces is bounded by a constant depends only on

‖ast‖C2,α , ‖bi‖C3,α , λ and χ. It follows that

u 7→ (Lu,N )−1Ru,N [u]

is a compact operator from O to C4,α(Ω).

Moreover, (F̃ , G̃)[u] = 0 is the same as u+ (Lu,N )−1Ru,N [u] = 0, i.e.,

∂O ∩ (Id+ (Lu,N )−1Ru,N )−1(0) = ∂O ∩ (F,G)−1(0) = ∅.

Therefore, we can define the degree of (F,G) as the Leray-Schauder degree of the map u 7→
u + (Lu,N )−1Ru,N [u]. (See e.g. [21] for the definition of the Leray-Schauder degree.) More

precisely we have the following definition.

Definition 1. Let (F,G) and O be as in Theorem 1. We define a degree of (F,G) on O at 0

by

(3.9) deg ((F,G),O, 0) = degL.S.(Id+ (Lu,N )−1Ru,N ,O, 0),

where N > N0 and N0 is the constant in Theorem 2.

Note that, by the homotopy invariance of the Leray-Schauder degree, the degree above is

independent of N > N0. In Sections 4 and 5 below, we shall prove Theorem 2 and verify the

above defined degree (3.9) satisfies the required properties (p1)–(p3) in Theorem 1.

4. Some boundary estimates

We start with some boundary estimates for linear elliptic systems with oblique boundary

conditions. We use B+
r to denote {x ∈ Rn : |x| < r, xn > 0} and let Γ = {xn = 0} ∩ B1. Fix

some integers m ≥ 1 and n ≥ 2. In the sequel, repeated Roman indices are summed from 1 to

n and repeated Greek indices are summed from 1 to m. Consider the system

aαβst Dstu
β + dαβs Dsu

β + cαβ uβ = fα in B+
1 ,(4.1)

bαβi Diu
β = gα on Γ.(4.2)

We assume that aαβst is uniformly strongly elliptic in B+
1 , i.e. there exists λ > 0 such that

aαβst (x) ξαs ξ
β
t ≥ λ|ξ|2 for all x ∈ B+

1 and ξ ∈ Rn×m,

and bαβi is uniformly oblique along Γ, i.e. there exists χ > 0 such that

−bαβn (x)ηα ηβ ≥ χ|η|2 for all x ∈ Γ and η ∈ Rm.

Lemma 1. For m ≥ 1, assume that aαβst ∈ W 1,∞(B̄+
1 ) is uniformly elliptic and symmetric,

dαβs ∈ L∞(B+
1 ), cαβ ∈ L∞(B+

1 ) and bαβi ∈ W 1,∞(Γ) is uniformly oblique along Γ. Let F =
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(fα)mα=1 ∈ L2(B+
1 ), G = (gα)mα=1 ∈ L2(Γ), and U = (uα)mα=1 ∈ H2(B+

1 ) be a solution of the

oblique boundary value problem (4.1)-(4.2). Then we have the estimate

(4.3) ‖DU‖L2(B+
1/2

) + ‖DU‖L2(Γ∩B1/2) ≤ C
[
‖F‖L2(B+

1 ) + ‖G‖L2(Γ) + ‖U‖L2(B+
1 )

]
,

where C depends only on ‖aαβst ‖W 1,∞(B̄+
1 ), ‖d

αβ
s ‖L∞(B+

1 ), ‖c
αβ‖L∞(B+

1 ), ‖b
αβ
i ‖W 1,∞(Γ) and the

ellipticity and obliqueness constants λ and χ.

Proof. We adapt the proof of the well-known Rellich identity for harmonic functions.

Fix 0 < r1 < r2 < 1. In the sequel, C will denote some positive constant that may very from

line to line and depends only on the coefficients of the equation.

Select a smooth cutoff function ϕ satisfying
ϕ ≡ 1 in Br1(0),
ϕ ≡ 0 on Rn −B(r1+r2)/2(0),

0 ≤ ϕ ≤ 1, |Dkϕ| ≤ C Ak,
where

A =
1

r2 − r1
> 1.

1. Testing (4.1) against ϕ2U , we have

(4.4)

∫
B+
r1

|DU |2 ≤ C

∫
B+
r2

|F |2 + C A2

∫
B+
r2

|U |2 + C K

∫
Γ∩Br2

|U |2 +K−1

∫
Γ∩Br2

|DU |2

for large K > 0.

2. Testing (4.1) against ϕ2DnU , we have

−
∫
B+

1

ϕ2 fαDnu
α ≤

∫
Γ
ϕ2Dnu

αDsu
βaαβsn +

∫
B+

1

ϕ2aαβst Dsu
βDntu

α

+ C A

∫
B+

1

ϕ|DU |2 + C

∫
B+

1

ϕ2 |U |2

≤
∫

Γ
ϕ2Dnu

αDsu
βaαβsn +

∫
B+

1

ϕ2Dn(
1

2
aαβst Dsu

βDtu
α)

+ C A

∫
B+

1

ϕ|DU |2 + C

∫
B+

1

ϕ2 |U |2

≤
∫

Γ
ϕ2Dnu

αDsu
βaαβsn −

1

C

∫
Γ
ϕ2|DU |2 + C A

∫
B+

1

ϕ|DU |2 + C

∫
B+

1

ϕ2 |U |2,

thus,

∫
Γ∩Br1

|DU |2 ≤C max
{

0,

∫
Γ
ϕ2Dnu

αDsu
βaαβsn

}
+ C

∫
B+
r2

|F |2 + C A

∫
B+
r2

|DU |2 + C

∫
B+
r2

|U |2.

(4.5)

3. Let b̃βαn be the inverse of bαβn , i.e. b̃βαn bαγn = δβγ . Set vα = b̃αγn
∑n−1

i=1 b
γµ
i Diu

µ. Then

Dnu
α = b̃αβn gβ − vα.
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Testing (4.1) against ϕ2V = (ϕ2vα)mα=1, we have

−
∫
B+

1

ϕ2 fα vα =−
∫
B+

1

(ϕ2vαaαβst )Dstu
β −

∫
B+

1

ϕ2vα dαβk Dku
β

=

∫
Γ
ϕ2Dsu

βvαaαβsn +

∫
B+

1

ϕ2aαβst Dtv
αDsu

β

+O
(
A

∫
B+
r2

|DU |2 dx+

∫
B+
r2

|U |2 dx
)

Noting that

aαβst Dtv
αDsu

β =
n−1∑
i=1

aαβst Dt(b̃
αγ
n bγ µi Diu

µ)Dsu
β

This implies that∣∣∣∣∫
Γ
ϕ2Dsu

αvαasn

∣∣∣∣ ≤ CA−1

∫
B+
r2

|F |2 + C A

∫
B+

(r1+r2)/2

|DU |2.

Hence, by the uniform obliqueness we obtain in case the integral on the left hand side below is

positive that∫
Γ
ϕ2Dsu

αDnu
αasn ≤ C

∫
Γ
ϕ2Dsu

α(−bn)Dnu
αasn = −C

∫
Γ
ϕ2Dsu

α
(
gα − vα

)
asn

≤ ε
∫

Γ
ϕ2|DU |2 + Cε

∫
Γ∩Br2

|G|2

+ CA−1

∫
B+
r2

|F |2 + C A

∫
B+

(r1+r2)/2

|DU |2

for any ε > 0 small. Recalling (4.5) we obtain∫
Γ∩Br1

|DU |2 ≤CA−1

∫
B+
r2

|F |2 + C

∫
Γ∩Br2

|G|2 + C A

∫
B+

(r1+r2)/2

|DU |2.(4.6)

Recalling (4.4) with K = ε−1A for some small ε > 0, we obtain∫
Γ∩Br1

|DU |2 ≤CA−1

∫
B+
r2

|F |2 + C

∫
Γ∩Br2

|G|2

+ C A3

∫
B+
r2

|U |2 + C ε−1A2

∫
Γ∩Br2

|U |2 + ε

∫
Γ∩Br2

|DU |2.
(4.7)

4. Let

Φ(r) =

∫
Γ∩Br

|DU |2.
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Then by (4.7) with ε = 1
2 ,

Φ(r1) ≤1

2
Φ(r2) + C

∫
B+

1

|F |2 + C

∫
Γ
|G|2 + C A3

∫
B+

1

|U |2 + C A2

∫
Γ
|U |2

≤1

2
Φ(r2) +

C

(r2 − r1)3

[ ∫
B+

1

|F |2 + C

∫
Γ
|G|2 +

∫
B+

1

|U |2 +

∫
Γ
|U |2

]
=:

1

2
Φ(r2) +

C

(r2 − r1)3
X.

(4.8)

A standard iteration (see e.g. [6, Lemma 1.1]) leads to

Φ(
1

2
) ≤ CX.

In other words,

∫
Γ∩B1/2

|DU |2 ≤ C
∫
B+

1

|F |2 + C

∫
Γ
|G|2 + C

∫
B+

1

|U |2 + C

∫
Γ
|U |2.

Combining with (4.4) we conclude the proof. �

As a consequence, we obtain the following boundary estimate for scalar oblique boundary

value problems.

Lemma 2. Assume that ast ∈W 1,∞(Ω) is uniformly elliptic and symmetric and bi ∈W 1,∞(∂Ω)

is uniformly oblique along ∂Ω. Let g ∈ L2(∂Ω) and let w ∈ H3(Ω) be a solution of the oblique

boundary value problem

astDstw = 0 in Ω,(4.9)

biDiw + w = g on ∂Ω.(4.10)

Then we have the estimates

‖w‖L2(∂Ω) + ‖Dw‖L2(∂Ω) ≤ C‖g‖L2(∂Ω),(4.11)

‖D2w‖L2(∂Ω) ≤ C‖g‖H1(∂Ω),(4.12)

where the constant C depends only on ‖ast‖W 1,∞(Ω), ‖bi‖W 1,∞(∂Ω) and the ellipticity and oblique-

ness constants λ and χ.

Remark 1. Later on, we will use the following consequence of (4.12):

‖∇Twi‖L2(∂Ω) ≤ C
(
‖
∑
j

bj∇Twj‖L2(∂Ω) + ‖g‖L2(∂Ω)

)
(4.13)

for all i = 1, . . . , n, where ∇T denotes the covariant derivative along ∂Ω.

Proof. The proof is based on the local boundary estimate in Lemma 1.

For every point x0 ∈ ∂Ω, we can find some sufficiently small r > 0 and a diffeomorphism

Φ : Ω ∩Br(x0)→ B+
1 (0).
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Define

(4.14) w̃(y) := w
(
Φ−1(y)

)
, (y ∈ B+

1 ).

It is straightforward to check that w̃ satisfies

(4.15)

{
ãstDstw̃ + d̃sDsw̃ = 0 in B+

1 ,

b̃iDiw̃ + w̃ = g̃ on Γ = {yn = 0} ∩B1.

where ã = (DΦ)T aDΦ is uniformly elliptic, b̃ = (DΦ)T b is uniformly oblique, and d̃ = ast∂stΦ.

Proof of (4.11): Apply Lemma 1 to (4.15) by setting m = 1, F = 0 and G = g − w̃, we have∫
Γ∩B1/2

|Dw̃|2 +

∫
B+

1/2

|Dw̃|2 ≤ C

(∫
Γ
|g|2 +

∫
Γ
|w̃|2 +

∫
B+

1

|w̃|2
)
.

Consequently

(4.16)

∫
∂Ω∩Br/2

|Dw|2 +

∫
Ω∩Br/2

|Dw|2 ≤ C
(∫

∂Ω∩Br
|g|2 +

∫
∂Ω∩Br

|w|2 +

∫
Ω∩Br

|w|2
)
.

Since ∂Ω is compact, we can cover ∂Ω with finitely many small balls Br(xi), xi ∈ ∂Ω,

i = 1, · · · , N . Summing the estimates for i from 1 to N , we obtain that∫
∂Ω
|Dw|2 +

∫
Ωr

|Dw|2 ≤ C
(∫

∂Ω
|g|2 +

∫
∂Ω
|w|2 +

∫
Ωr

|w|2
)
,

for a small constant r > 0, where Ωr = {x ∈ Ω : dist(x, ∂Ω) < r}. Together with interior L2

gradient estimates for (4.9), we arrive at

(4.17)

∫
∂Ω
|Dw|2 +

∫
Ω
|Dw|2 ≤ C

(∫
∂Ω
|g|2 +

∫
∂Ω
|w|2 +

∫
Ω
|w|2

)
.

We can then apply a standard argument using compactness and the uniqueness of the problem

(4.9)–(4.10) to simplify estimate (4.17) to

(4.18)

∫
∂Ω
|Dw|2 +

∫
Ω
|Dw|2 ≤ C

∫
∂Ω
|g|2.

This finishes the proof of (4.11).

Proof of (4.12): As before, we first investigate (4.15). Fix some τ = 1, . . . , n− 1. By differenti-

ating equation (4.15) with respect to xτ , one has

(4.19) ãstDst(Dτ w̃) + d̃kDk(Dτ w̃) = −Dτ (ãst)Dstw̃ − (Dτ d̃k)Dkw̃.

Also, from (4.15), we can write Dnnw̃ as a combination of {Dstw̃ : (s, t) 6= (n, n)} and {Dkw̃ :

1 ≤ k ≤ n}. Thus, W = (Dτ w̃)n−1
τ=1 satisfies

(4.20) ãstDstW
τ + d̃ττ

′
k DkW

τ ′ = f τ

for some smooth dττ
′

k and F = (f τ )n−1
τ=1 satisfying |F | ≤ C|Dw̃|.
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Applying Lemma 1 to (4.20), we have

‖DW‖L2(Γ∩B1/2) ≤ C
[
‖F‖L2(B+

1 ) + ‖biDiW‖L2(Γ) + ‖W‖L2(B+
1 ) + ‖W‖L2(Γ)

]
.

Returning to w and using the compactness of ∂Ω and estimate (4.18), we obtain that∫
∂Ω
|D∇Tw|2 ≤ C

∫
∂Ω
|
∑
j

bj∇Twj |2 +

∫
∂Ω
|g|2
 .

By the equation, Dγγw is also under control. (4.12) is proved. �

5. Proof of Theorem 1

We assume for now the correctness of Theorem 2, whose proof will be carried out in the next

section. Then the degree deg((F,G),O, 0) in Definition 1 is well-defined. Properties (p1)–(p2)

follow from the properties of the Leray-Schauder degree. For (p3), we prove the more general

statement in Corollary 2.2. To this end we use the following lemma on the semi-finiteness of a

linear operator.

Lemma 3. Assume aij ∈ W 1,∞(Ω), bi, c ∈ L∞(Ω), βi ∈ W 1,∞(∂Ω) and ` ∈ L∞(∂Ω). Assume

furthermore that (aij) > λI in Ω̄ and β ·γ > χ on ∂Ω for some positive constants λ and χ. Then

there exists µ∗ depending on ‖aij‖W 1,∞(Ω), ‖bi‖L∞(Ω), ‖c+‖L∞(Ω), ‖βi‖W 1,∞(∂Ω), ‖`−‖L∞(∂Ω), λ

and χ such that for any µ > µ∗, the problem

(5.1)

{
aij(x)uij + bi(x)ui + c(x)u = µu in Ω,
βi(x)ui + `(x)u = 0 on ∂Ω

has no non-trivial solution in H2(Ω).

Remark 2. If ` ≥ 0 on ∂Ω and the coefficients are smooth, the result follows directly from the

maximum principle. In fact, µ∗ can then be taken to be ‖c+‖C0(Ω̄).

Proof. We use energy method. Assume that u ∈ H1(Ω) is a solution to (5.1). We will use

C to denote some positive constant which may vary from lines to lines and depends only on

‖aij‖W 1,∞(Ω), ‖bi‖L∞(Ω), ‖c+‖L∞(Ω), ‖βi‖W 1,∞(∂Ω), ‖`−‖L∞(∂Ω), λ and χ. In particular, C is

always independent of µ.

Multiplying the first equation in (5.1) by u then integrating over Ω, we get

µ

∫
Ω
u2 dx ≤ −C−1

∫
Ω
|Du|2 dx+ C

∫
Ω
u2 dx+

∫
∂Ω
u aij ui γj dσ(x).

To proceed, we write

aijγj = pβi +Xi
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where p =
aijγiγj
β·γ and X ·γ = 0. Note that p > 0 is bounded thanks to ellipticity and obliqueness.

It follows that

C−1

∫
Ω
|Du|2 dx+ (µ− C)

∫
Ω
u2 dx ≤

∫
∂Ω
u
[
p βiui +Xi ui

]
dσ(x)

=

∫
∂Ω
u [−p ` u+X(u)] dσ(x).(5.2)

Note that, by Stoke’s theorem, we have∫
∂Ω
uX(u) dσ(x) =

1

2

∫
∂Ω
X(u2) dσ(x) ≤ C

∫
∂Ω
u2 dσ(x).

Returning to (5.2) we hence get

C−1

∫
Ω
|Du|2 dx+ (µ− C)

∫
Ω
u2 dx ≤ C

∫
∂Ω
u2 dσ(x)

≤ ε
∫

Ω
|Du|2 dx+ Cε

∫
Ω
u2 dx

for any small ε > 0. Here we have used the compactness of the embedding H1(Ω) ↪→ L2(∂Ω).

The assertion follows by choosing ε = 1
2C . �

Proof of Corollary 2.2. As before, set (F̃ , G̃) = (S ◦F, T ◦G) : C4,α(Ω̄)→ Cα(Ω̄)×C1,α(∂Ω)×
C3,α(∂Ω), where S and T are given by (3.1) and (3.2).

In case (F,G) has the above special form, the operator L = Lu,N : C4,α(Ω̄) → Cα(Ω̄) ×
C1,α(∂Ω)× C1,α(∂Ω) defined in (3.8) takes the form

Lw =
(
astDiistw −NastDstw, (astDistw γi)

∣∣∣
∂Ω
, (bi ∆T (Diw)−N biDiw −Nw)

∣∣∣
∂Ω

)
.

By Theorem 2, we can select N sufficiently large such that L is invertible, L−1 ◦ (F̃ , G̃) :

C4,α(Ω̄)→ C4,α(Ω̄) is of the form Id + Compact and

deg((F,G),O, 0) = degL.S.(L
−1 ◦ (F̃ , G̃),O, 0).

Set (F̃1, G̃1) = (S◦F1, T ◦G1) : C4,α(Ω̄)→ Cα(Ω̄)×C1,α(∂Ω)×C3,α(∂Ω). By our hypotheses,

(F̃1, G̃1) is invertible. Thus, by the product rule of the Leray-Schauder degree,

deg((F,G),O, 0) =
∑
U

degL.S.(L
−1 ◦ (F̃1, G̃1),U , 0) degL.S.((F̃1, G̃1)−1 ◦ (F̃ , G̃),O,U),

where the summation is made over the connected components of C4,α(Ω̄)\(F1, G1)−1◦(F,G)(∂O).

It is evident that degL.S.(L
−1 ◦ (F̃1, G̃1),U , 0) = 0 if 0 /∈ U . Hence

deg((F,G),O, 0) = degL.S.(L
−1 ◦ (F̃1, G̃1), Õ, 0) degL.S.((F̃1, G̃1)−1 ◦ (F̃ , G̃),O, 0),

where Õ is the connected component of C4,α(Ω̄) \ (F1, G1)−1 ◦ (F,G)(∂O) containing 0. As

(F̃1, G̃1)−1 ◦ (F̃ , G̃) = (F1, G1)−1 ◦ (F,G) = Id+ (F1, G1)−1 ◦ (F2, G2), it remains to show that

(5.3) d := degL.S.(L
−1 ◦ (F̃1, G̃1), Õ, 0) = (−1)dimE−(F1,G1).
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Define (F3, G3) : C4,α(Ω̄) → C2,α(Ω̄)× C1,α(∂Ω) by

(F3[w], G3[w]) =
(
aij wij , (βiwi + w)

∣∣∣
∂Ω

)
.

For 0 ≤ t ≤ 1, define Lt : C4,α(Ω̄) → Cα(Ω̄)× C1,α(∂Ω)× C1,α(∂Ω) by

Ltw =
(

(1− t) astwiist + t∆F3[w]−N F3[w],
(

(1− t)astwsti γi + t
∂F3[w]

∂γ

)∣∣∣
∂Ω
,(

(1− t)bi∆T (Diw) + t∆TG3[w]−NG3[w]
)∣∣∣
∂Ω

)
.

We can then apply the proof of Theorem 2 to see that, for sufficiently large N , Lt is an

isomorphism for each t ∈ [0, 1]. Furthermore, as Lt−(F̃1, G̃1) : C4,α(Ω̄)→ C1,α(Ω̄)×C2,α(∂Ω)×
C2,α(∂Ω), L−1

t ◦G is a legitimate homotopy for the Leray-Schauder degree. It follows that

(5.4) d = degL.S.(L
−1 ◦ (F̃1, G̃1), Õ, 0) = degL.S.(L

−1
1 ◦ (F̃1, G̃1), Õ, 0).

Next, set

L̃tw =
(

∆F3[w]− (1− t)N F3[w],
(∂F̃ [w]

∂γ
+ t F̃ [w]

)∣∣∣
∂Ω
,
(

∆TG3[w]− ((1− t)N + t)G3[w]
)∣∣∣
∂Ω

)
.

Arguing as before, we have L̃t is invertible and

(5.5)

degL.S.(L
−1
1 ◦ (F̃1, G̃1), Õ, 0) = degL.S.(L̃

−1
0 ◦ (F̃1, G̃1), Õ, 0) = degL.S.(L̃

−1
1 ◦ (F̃1, G̃1), Õ, 0).

Note that L̃1 = (S ◦ F3, T ◦ G3) and so L̃−1
1 ◦ (F̃1, G̃1) = (F3, G3)−1 ◦ (F1, G1). Hence, by

(5.4) and (5.5)

d = degL.S.((F3, G3)−1 ◦ (F1, G1),O, 0) = degL.S.((F1, G1)−1 ◦ (F3, G3),O, 0).

Set

At = (F1, G1)−1 ◦
[
(1− t)(F3, G3)− t(Id, 0)

]
,

where (Id, 0) is considered as an operator from C4,α(Ω̄) into C2,α(Ω̄) × C1,α(∂Ω). By the

maximum principle and obliqueness, At is a continuous family of invertible linear operators

acting on C4,α(Ω̄). Moreover, for t ∈ [0, 1), (1 − t)−1At is of the form Id + Compact. Hence,

by the homotopy invariance property of the Leray-Schauder degree,

d = deg((1− t)−1At, Õ, 0) for any t ∈ [0, 1),

which implies

d = (−1)dimE−(At) for any t ∈ [0, 1),

where

E−(At) =
⊕

λi(t)<0

{
u ∈ C4,α(Ω̄) : At u = λi(t)u

}
.
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To proceed, we claim that there exists some C > 0 and δ ∈ (0, 1) such that, for any t ∈
(1− δ, 1]

(5.6) − C < λ < − 1

C
for any negative eigenvalue λ of At.

Indeed, let λ be an eigenvalue of some At and u be a corresponding eigenfunction. Since At is

invertible, {
aij uij + bi ui + c u = 1

λ

[
(1− t)aij uij − tu

]
in Ω,

βi ui + γ u = 1
λ (1− t)(βi ui + u) on ∂Ω,

which is equivalent to{
aij uij + λ

λ−(1−t) bi ui + λ
λ−(1−t) c u+ t

λ−(1−t)u = 0 in Ω,

βi ui + λ
λ−(1−t)γ u−

1−t
λ−(1−t) u = on ∂Ω,

It is readily seen that the first inequality in (5.6) follows from the invertability of (F1, G1) while

the second follows from Lemma 3 for δ sufficiently small.

By (5.6) and the compactness of A1, we can pick a (simply connected) neighborhood N of

[−C,− 1
C ] in the complex plane such that in the set of eigenvalues of A1 lying in N consists of

all negative real eigenvalues of A1. Furthermore, we can assume that N is symmetric about

the real axis. Set

E(At,N ) =
⊕

λi(t)∈N

{
u ∈ C4,α(Ω̄) : At u = λi(t)u

}
,

E∗(At,N ) =
⊕

λi(t)∈N\R

{
u ∈ C4,α(Ω̄) : At u = λi(t)u

}
By the continuity of a finite system of eigenvalues (see e.g. [12, pp. 213-214]), for δ > 0

sufficiently small,

dimE(At,N ) is independent of t ∈ (1− δ, 1].

Also, since At has real coefficients,

dimE∗(At,N ) is even.

Therefore, by (5.6),

d = lim
t→1

(−1)dimE−(At) = lim
t→1

(−1)dimE(At,N ) = (−1)dimE(A1,N ) = (−1)dimE−(A1).

As A1 = −(F1, G1)−1 ◦ (Id, 0), (5.3) follows. The proof of Corollary 2.2 is complete. �

Finally, we prove the uniqueness of the degree under properties (p1)–(p3). We will only sketch

the argument since it is standard. Let d((F,G),O, 0) be a degree which satisfies (p1)–(p3).

We will show that d((F,G),O, 0) = deg((F,G),O, 0). First, by Smale’s infinite dimensional

version of Sard’s theorem, there exists f0 ∈ C2,α(Ω̄) and g0 ∈ C3,α(∂Ω) such that all zeroes of

(F − f0, G − g0) are non-degenerate and ‖F [u] − tf0‖C2,α(Ω̄) + ‖G[u] − tg0‖C3,α(∂Ω) ≥ c0 > 0

for all u ∈ ∂O, all t ∈ (0, 1) and some c0 > 0. By the homotopy invariance property (p2),

d((F,G),O, 0) = d((F − f0, G − g0),O, 0) and deg((F,G),O, 0) = deg((F − f0, G − g0),O, 0).
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Thus, we may assume from the beginning that all the zeroes of (F,G) in O are non-degenerate.

The uniqueness then follows from the addition property (p1), Corollary 2.1(d), and the degree

counting formula (p3) for linear operators.

We have finished the proof of Theorem 1. �

6. Proof of Theorem 2

We start with the injectivity of LN :

Proposition 6.1. Under the hypothesis of Theorem 2, there exists some constant N0, depending

only on ‖ast‖C1,α , ‖bi‖C1,α , n, λ, χ such that for all N > N0, LN is injective.

Proof. Step 1. If astwst = 0 in Ω and LN(3)w = 0 on ∂Ω simultaneously for someN > 0 sufficiently

large, then V := biDiw + w = 0 on ∂Ω, hence w ≡ 0.

Integrating by parts, we have

0 =−
∫
∂Ω

(
LN(3)w

)
V

=−
∫
∂Ω

(bi∆Twi)
(∑

j

bjDjw + w
)

+N

∫
∂Ω
|V |2

≥
∫
∂Ω
|
∑
i

bi∇Twi|2 +N

∫
∂Ω
|V |2

− ε‖∇TDw‖2L2(∂Ω) − Cε
(
‖Dw‖2L2(∂Ω) + ‖w‖2L2(∂Ω)

)
,

(6.1)

for any positive constant ε, where the constant Cε > 0 depends on ε and ‖bi‖C1,α . Here ∇T
denotes the covariant gradient operator on ∂Ω.

By Lemma 2, we have ∫
∂Ω
|Dw|2 ≤ C

∫
∂Ω
|V |2,∫

∂Ω
|∇Twi|2 ≤ C

∫
∂Ω

(∑
j

bj∇Twj
)2

+ |V |2.

Thus, by choosing ε > 0 sufficiently small in (6.11), we deduce that

(6.2) 0 ≥ 1

2

∫
∂Ω

∑
τ

(biDτwi)
2 +

N

2

∫
∂Ω

(biDiw + w)2 .

This implies that biDiw+w = 0. Since astDstw = 0 in Ω, we obtain w ≡ 0 from the maximum

principle. Step 1 is proved.

Step 2. For any w satisfying LN(3)w = 0, there holds

‖w‖H2(Ω) ≤ C
(
‖astwst‖L2(Ω) + ‖w‖L2(Ω)

)
,(6.3)

‖w‖H3(Ω) ≤ C
(
‖astwst‖H1(Ω) + ‖w‖L2(Ω)

)
,(6.4)
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where C depends on ‖ast‖C1,α , ‖bi‖C0,α , n, λ and χ.

Indeed, LN(3)w = 0 implies that

(6.5) LTV := −4TV +NV = g on ∂Ω,

where V = biwi + w as in Step 1 and g = (4T bi)wi + 2∇T bi · ∇Twi + 4Tw. The inverse

operator L−1
T : Hs−2(∂Ω)→ Hs(∂Ω) is a bounded operator and ‖L−1

T ‖ ≤ C for some constant

C independent of N (see Lemma 5 in the appendix). When s = 1/2, by the trace theorem and

interpolation we have

‖V ‖H1/2(∂Ω) ≤ C‖g‖H−3/2(∂Ω)

≤ C[‖w‖H1/2(∂Ω) + ‖Dw‖H−1/2(∂Ω)]

≤ C[‖w‖H1/2(∂Ω) + ‖Dw‖H1/4(∂Ω)]

≤ C‖w‖H7/4(Ω) ≤ ε‖w‖H2(Ω) + Cε‖w‖L2(Ω),

(6.6)

for any small ε > 0. Similarly, when s = 3/2 we have

(6.7) ‖V ‖H3/2(∂Ω) ≤ ε‖w‖H3(Ω) + Cε‖w‖L2(Ω).

From H2, H3 estimates for linear elliptic equation of second order with oblique derivative

boundary condition (see e.g. [1, Theorem 15.2]), we have

‖w‖H2(Ω) ≤ C
(
‖astwst‖L2(Ω) + ‖V ‖H1/2(∂Ω) + ‖w‖L2(Ω)

)
,

‖w‖H3(Ω) ≤ C
(
‖astwst‖H1(Ω) + ‖V ‖H3/2(∂Ω) + ‖w‖L2(Ω)

)
.

Recalling (6.6) and (6.7) we arrive at (6.3) and (6.4).

Step 3. For any w satisfying LN(3)w = 0, there holds

‖w‖H2(Ω) ≤ C‖astwst‖L2(Ω),(6.8)

‖w‖H3(Ω) ≤ C‖astwst‖H1(Ω).(6.9)

We will only derive (6.8). The proof of (6.9) is similar.

By (6.3), it suffices to show that

‖w‖L2(Ω) ≤ C‖astwst‖L2(Ω) for all w ∈ Ker(LN(3)).

Otherwise, there is a sequence w(n) ∈ Ker(LN(3)) such that

‖w(n)‖L2(Ω) = 1 but ‖astw(n)
st ‖L2(Ω) ≤

1

n
.

By (6.3), ‖w(n)‖H2(Ω) ≤ C, thus w(n) converges weakly in H2 and strongly in L2 to some w∗. It

is straightforward to show that astw
∗
st = 0 in Ω and LN(3)w

∗ = 0 on ∂Ω. By Step 1, w∗ ≡ 0. This

contradicts ‖w(n)‖L2(Ω) = 1 and the strong convergence of w(n) to w∗ in L2. This concludes

Step 3.
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Step 4. LNw = 0 implies w ≡ 0.

Using LN(1)w = 0, we have

0 =

∫
Ω

(
LN(1)w

)
(−aklwkl) dx

≥ c1

∫
Ω
|D(astwst)|2 dx+N

∫
Ω
|astwst|2 dx− c2‖w‖H3(Ω)‖w‖H2(Ω)

≥ c1

2

∫
Ω
|D(astwst)|2 dx+ (N − c3)

∫
Ω
|astwst|2 dx,

(6.10)

where the constants c1, c2, c3 depend only on ‖ast‖C1,α , ‖bi‖C1,α , n, λ and χ. In the above, the

first inequality follows from integration by parts, LN(2)w = 0, and Hölder’s inequality, while the

second inequality follows from the Cauchy-Schwarz inequality and (6.8)-(6.9). It follows from

(6.10) that for N sufficiently large, we must have astwst ≡ 0. By Step 1, this implies w ≡ 0,

which completes the proof. �

We now turn to proving the surjectivity of LN . Consider LN0 : C4,α(Ω)→ Cα(Ω)×C1,α(∂Ω)×
C1,α(∂Ω) defined by

LN0 w =
(
42w −N∆w, (γiDi∆w))|∂Ω , (γi4T (Diw)−NγiDiw −Nw)|∂Ω

)
.

Note that (1− t)LN0 +LN coincides with LN when ast and bi are replaced with (1− t)δst + tast

and (1 − t)γi + tbi, respectively. Therefore (1 − t)LN0 + LN is injective for all t ∈ [0, 1]. By

the continuity method [1, Theorem 12.5], LN is isomorphic if and only if LN0 is isomorphic. In

other words, it suffices to establish the surjectivity of LN0 .

Define L̃N0 : C4,α(Ω)→ Cα(Ω)× C1,α(∂Ω)× C1,α(∂Ω) defined by

L̃N0 w =
(
42w −N∆w, (γiDi∆w))|∂Ω , (4T (γiDiw + w)−N(γiDiw + w))|∂Ω

)
,

and let L̃Nt = (1− t)L̃N0 + tLN0 . It is easy to see that L̃N0 is bijective. By the continuity method

[1, Theorem 12.5], in order to show that LN0 is bijective, it suffices to show that L̃Nt is injective

for all 0 ≤ t ≤ 1. This is a consequence of the following lemma:

Lemma 4. If ∆w = 0 in Ω and if

Mtw := (1− t)4T (γiDiw + w) + t γi4T (Diw)−N(γiDiw + w) = 0 on ∂Ω

for some 0 ≤ t ≤ 1, then V := γiDiw + w = 0 on ∂Ω, hence w ≡ 0.
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To see this, we adapt the argument in Step 1 of the proof of Proposition 6.1. We compute

0 =−
∫
∂Ω
MtwV

=(1− t)
∫
∂Ω

|∇TV |2 − t
∫
∂Ω

(γi∆TDiw)V +N

∫
∂Ω
|V |2

≥
∫
∂Ω
|∇TV |2 +N

∫
∂Ω
|V |2

− ε‖∇TDw‖2L2(∂Ω) − Cε
(
‖Dw‖2L2(∂Ω) + ‖w‖2L2(∂Ω)

)
,

(6.11)

for any positive constant ε, where the constant Cε > 0 depends on ε and ‖γi‖C1,α . By Lemma

2, we have ∫
∂Ω
|Dw|2 ≤ C

∫
∂Ω
|V |2,∫

∂Ω
|∇TDw|2 ≤ C

∫
∂Ω
|∇TV |2 + |V |2.

Thus, by choosing ε > 0 sufficiently small in (6.11), we deduce that

(6.12) 0 ≥ 1

2

∫
∂Ω
|∇TV |2 +

N

2

∫
∂Ω
|V |2,

which implies that V = 0 as desired. This concludes the proof of the lemma and hence of

Theorem 2. �

7. Some applications

7.1. Boundary Yamabe problem. Let (M, g) be a smooth Riemannian manifold of dimen-

sion n ≥ 3 and with non-empty boundary ∂M . Define the Schouten tensor

Ag =
1

n− 2

(
Ricg −

1

2(n− 1)
Rg g

)
,

where Ricg and Rg are respectively the Ricci curvature and the scalar curvature of g. Let hg

denote the mean curvature of ∂M . In conformal geometry, one is interested in finding a positive

function u such that the metric gu := u
4

n−2 g such that

(7.1)

{
f(λ(Agu)) = 1, λ(Agu) ∈ Γ,
hgu = c,

where c is a given constant in R, Γ ⊂ Rn satisfies

Γ is an open, convex, symmetric cone with vertex at the origin,

Γ1 := {λ ∈ Rn :
∑

λi > 0} ⊃ Γ ⊃ Γn := {λ ∈ Rn : λi > 0},

and f ∈ C∞(Γ) ∩ C0(Γ̄) satisfies

f > 0 in Γ and f = 0 on ∂Γ,

fλi > 0 in Γ.

We refer readers to [15] for the literature on this problem.
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In [15], an existence theorem for (7.1) was established using a degree theory which is less

general than the one considered in the present paper. We outline some of the arguments here.

First, we restrict ourselves to the case where

g is locally conformally flat,

and

∂M is umbilic.

Under the assumption that

λ(Ag) ∈ Γ,

it was shown in [15] that all (positive) solutions of (7.1), if exist, satisfy

| lnu| ≤ C(M, g, f,Γ, c).

Under an additinal assumption that

f is concave and c ≥ 0,

one then appeals to known local C1 and C2 estimates, and Evans-Krylov’s theory to conclude

that all solutions of (7.1) satisfy

‖ lnu‖C4,α(M) ≤ C(M, g, f,Γ, c, α).

It should be noted that, when c < 0, C2 estimates fail at both local and global levels. See

[15, 16].

With the above a priori estimate, our degree is defined and independent along a homotopy

connecting (f,Γ) to (σ1,Γ1). Here σ1 is the first elementary symmetric function. By property

(e), the degree of (σ1,Γ1) is the same as the Leray-Schauder degree for (σ1,Γ1), which was

computed to be non-zero in [8]. The desired existence result is established.

7.2. Near-field reflector problem. Consider the Monge-Ampère type equation arising in a

near-field reflector problem [11, 19]

(7.2) ρ∗(Tu) detDTu = ρ(·) in Ω

with the boundary condition

(7.3) Tu(Ω) = Ω∗,

where ρ, ρ∗ are, respectively, the intensities of incident and reflected rays satisfying

(7.4)

∫
Ω
ρ =

∫
Ω∗
ρ∗,

Ω,Ω∗ are two bounded domains in Rn with Ω b B1(0), and Tu is the reflection mapping

(7.5) Tu(x) =
2Du

|Du|2 − (u−Du · x)2
, x ∈ Ω.
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In [19] we proved the existence of solution for (7.2) and (7.3) under some convexity assump-

tions on domains Ω and Ω∗ by using the degree theory established in Section 2. We outline the

main steps here and refer the readers to [19] for more details.

First we show the a priori estimate that under suitable convexity and smoothness assump-

tions, the boundary condition (7.3) is strictly oblique, and moreover, for any classical solution

u of (7.2)–(7.3), we have the a priori estimate ‖u‖C4,α(Ω) ≤ C for α ∈ (0, 1) and a positive

constant C depending on the given data.

To construct the homotopy family, we use the domain foliation, namely there exist an in-

creasing family of smooth domains {Ωt}, {Ω∗t }, such that Ω0 = Br(0), Ω∗0 = Tu0(Ω0); Ω1 = Ω,

Ω∗1 = Ω∗; and Ωt,Ω
∗
t are uniformly convex and Y ∗-convex, respectively, for all 0 ≤ t ≤ 1.

Consider the family of problems

Ft[ut] = det [DTut ]− eε(ut−u0)

{
tρ

ρ∗(Tut)
+ (1− t) det [DTu0 ]

}
= 0 in Ωt,(7.6)

Gt[ut] = ϕ∗t ◦ T (·, ut, Dut) = 0 on ∂Ωt,

where ε > 0 is small, and ϕ∗t is the defining function of Ω∗t . Let Φ := {Φt : Rn → Rn} be a

family of diffeomorphisms such that Φt(Ωt) = B1(0) for each t ∈ [0, 1] and Φt ∈ C5 uniformly

with respect to t. Define

F̃t[u] = Ft[u ◦ Φt] in B1(0),(7.7)

G̃t[u] = Gt[u ◦ Φt] on ∂B1(0),

for any u ∈ C4,α(B1).

Let O be a bounded open set in {u ∈ C4,α(B1) : ‖u‖C4,α(B1) ≤ C(Cε + 1)} such that F̃t is

elliptic and G̃t is oblique on O, and ∂O ∩ (F̃t, G̃t)
−1(0) = ∅ for all t ∈ [0, 1]. From the initial

construction, u0 is the unique solution of (F0, G0)[u] = 0. By the properties of the degree,

deg((F̃t, G̃t),O, 0) is defined for 0 ≤ t ≤ 1 and

deg((F̃1, G̃1),O, 0) = deg((F̃0, G̃0),O, 0)

= deg((F0, G0),O0, 0) 6= 0,
(7.8)

where O0 = {u ∈ C4,α(Ω0) : ‖u‖C4,α(Ω0) ≤ Cε + 1}. This implies that there exists a solution

ũε ∈ C4,α(B1) of the boundary value problem (7.7) at t = 1. Hence there exists a solution

uε ∈ C4,α(Ω) of the boundary value problem

det [DTu] = eε(u−u0) ρ

ρ∗(Tu)
,(7.9)

Tu(Ω) = Ω∗

for arbitrary small ε > 0. To complete the existence proof we now need to let ε → 0. Write

equation (7.9) in the form of

(7.10) ρ∗(Tu) detDTu = eε(u−u0)ρ(·) in Ω.
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Let {uε} be the family of solutions of the problems (7.10). From (7.4)∫
Ω
ρ =

∫
Ω∗
ρ∗ =

∫
Ω
eε(uε−u0)ρ,

we see that uε−u0 must be zero somewhere in Ω. Hence, from the a priori estimates ‖uε‖C4,α(Ω)

is bounded independently of ε. Thus a subsequence of {uε} converges in C4,β(Ω) for 0 < β < α

to a solution u solving (7.2)–(7.3), as required.

Appendix A. Some well-known properties of the Laplace operator on a

compact manifold

Let (M, g) be a compact Riemannian manifold and ∆ denote the Laplace operator of g. Let

Hs = Hs(M) denote the Sobolev space of some real exponent s. It is well-known that −∆

maps Hs into Hs−2. In this appendix, we collect some well-known properties on the spectrum

of −∆ : Hs → Hs−2 for s ∈ [0, 2] which are needed in the body of the paper.

For s = 0, H0 = L2. For s = 2, H2 is defined as the set of space of L2 functions whose first

and second derivatives also belong to L2. H−2 is defined as the dual of H2. For s ∈ (0, 2), Hs

can be defined as an interpolation space of H0 = L2 and H2 as follows (see e.g. [2]):

Hs =
{
u =

∞∑
i=−∞

ui ∈ L2
∣∣∣ui ∈ H2,

∞∑
i=−∞

(2−is‖ui‖2L2 + 2i(1−s)‖ui‖2H2) <∞
}
, 0 < s < 2.

For u ∈ Hs, its Hs-norm is defined by

‖u‖2Hs = inf
∞∑

i=−∞
(2−is‖ui‖2L2 + 2i(2−s)‖ui‖2H2),

where the infimum is taken over all possible represenation u =
∑
ui. For s ∈ (−2, 0), Hs is

defined as the dual of H |s|, which is the same as the following interpolation space of H−2 and

L2:

Hs =
{
u =

∞∑
i=−∞

ui ∈ H−2
∣∣∣ui ∈ L2,

∞∑
i=−∞

(2−i(2−|s|)‖ui‖2H−2+2i|s|‖ui‖2L2) <∞
}
, −2 < s < 0.

Its norm is defined similarly.

For u ∈ H2, ∆u ∈ L2 is defined by standard differentiation. For u ∈ L2, ∆u ∈ H−2 is defined

by

〈∆u, v〉H−2,H2 = 〈u,∆v〉L2,L2 for all v ∈ H2.

Clearly ∆ : H2 → L2 and ∆ : L2 → H−2 are bounded linear operator. Furthermore, it is easy

to check that ∆ maps Hs into Hs−2 for s ∈ (0, 2) and is a bounded linear operator between

these spaces. Furthermore, for ϕ ∈ C∞,

〈∆u, ϕ〉Hs−2,H2−s = 〈u,∆ϕ〉L2,L2 for all ϕ ∈ C∞(M).
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Next, fix some N ≥ 1 and s ∈ [0, 2]. Consider the operator −∆ + N : Hs → Hs−2. We

claim that this operator is an isomorphism. This is clear for s = 2. For s < 2, note that

−∆ + N : Hs → Hs−2 is injective. Indeed, if −∆u + Nu = 0 for some u ∈ Hs, then, for any

ψ ∈ C∞(M), there exists ϕ ∈ C∞ such that (−∆ + N)ϕ = ψ by standard elliptic regularity,

and so

〈u, ψ〉L2,L2 = 〈u, (−∆ +N)ϕ〉L2,L2 = 〈(−∆ +N)u, ϕ〉Hs−2,H2−s = 0

which implies that u ≡ 0. But as the formal adjoint of −∆ + N : Hs → Hs−2 is −∆ + N :

H2−s → H−s, which is injective, the Fredholm alternative implies that −∆ +N : Hs → Hs−2

is surjective. The claim is proved.

Lemma 5. There exists some constant C such that for any N ≥ 1 and s ∈ [0, 2], there holds

‖(−∆ +N)−1‖L(Hs−2,Hs) ≤ C.

Proof. Consider first s = 2. If (−∆ +N)v = u ∈ L2, then by integrating by parts and Cauchy-

Schwarz’s inequality

‖Dv‖2L2 +N‖v|2L2 = 〈u, v〉L2,L2 ≤
1

2N
‖u‖2L2 +

N

2
‖v‖2L2 ,

which implies

‖Dv‖2L2 +N‖v|2L2 ≤ 〈u, v〉L2,L2 ≤
C

N
‖u‖2L2 .

This together with standard elliptic theory leads to

‖D2v‖2L2 ≤ C(‖∆v‖2L2 + ‖v‖2L2) = C(‖Nv − u‖2L2 + ‖v‖2L2) ≤ C‖u‖2L2 .

We have thus shown that

‖(−∆ +N)−1‖L(L2,H2) ≤ C.

By duality, this gives

‖(−∆ +N)−1‖L(H−2,L2) ≤ C.

Now for a general s ∈ (0, 2) and u ∈ Hs−2, we write u =
∑
ui ∈ Hs−2 with ui ∈ L2. Then

(−∆ +N)−1u =
∑
vi ∈ Hs with vi = (−∆ +N)−1ui ∈ H2. We then have

‖(−∆ +N)−1u‖Hs ≤
∑

(2−is‖vi‖L2 + 2i(2−s)‖vi‖H2)

≤ C
∑

(2−is‖ui‖H−2 + 2i(2−s)‖ui‖L2).

Since this is true for all possible representations u =
∑
ui, we thus arrive at

‖(−∆ +N)−1u‖Hs ≤ C‖u‖Hs−2 ,

which is exactly the assertion. �
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