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Abstract
The tunnel-structured Na0.44MnO2 is considered as a promising cathode material for sodium-ion batteries
because of its unique three-dimensional crystal structure. Multiangular rod-shaped Na0.44MnO2 have been
first synthesized via a reverse microemulsion method and investigated as high-rate and long-life cathode
materials for Na-ion batteries. The microstructure and composition of prepared Na0.44MnO2 is highly related
to the sintering temperature. This structure with suitable size increases the contact area between the material
and the electrolyte and guarantees fast sodium-ion diffusion. The rods prepared at 850 °C maintain specific
capacity of 72.8 mA h g−1 and capacity retention of 99.6% after 2000 cycles at a high current density of 1000
mA g−1 . The as-designed multiangular Na0.44MnO2 provides new insight into the development of tunnel-
type electrode materials and their application in rechargeable sodiumion batteries
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ABSTRACT: The tunnel-structured Na0.44MnO2 is considered as a promising cathode 

material for sodium ion batteries due to its unique three-dimensional (3D) crystal structure. 

Multi-angular rod-shape Na0.44MnO2 have been firstly synthesized via a reverse 

microemulsion method and investigated as high-rate and long-life cathode materials for Na-

ion batteries. The microstructure and composition of prepared Na0.44MnO2 is highly related to 

the sintering temperature. This structure with suitable size increases the contact area between 

the material and the electrolyte and guarantees fast sodium ion diffusion. The rods prepared at 

850℃ maintain specific capacity of 72.8 mAh g
-1

 and capacity retention of 99.6% after 2000 

cycles at a high current density of 1000 mA g
-1

. The as-designed multi-angular Na0.44MnO2 
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provides new insight into the development of tunnel-type electrode materials and their 

application in rechargeable sodium-ion batteries. 

1. INTRODUTION 

    The demand for large-scale energy storage devices has been growing significantly due to 

the continuous depletion of energy resources.
1
 Sodium ion batteries (SIBs), a new generation 

of large-scale rechargeable energy storage devices, are attracting more and more attention 

because of the low cost and abundant availability of sodium resources. Nevertheless, the 

sluggish electrochemical reaction kinetics resulting from the large diameter of the Na
+
 ion 

makes it very difficult to find suitable host materials for rapid and reversible Na
+
 insertion and 

extraction.
2-4

 Therefore, it is highly desirable to develop effective Na-host materials for high 

performance SIBs with high specific capacity, high rate capability, and long-term cycling 

stability.
2-8

 

     Considering the cost factor, the sodium manganese oxides (NaxMnO2), such as NaMnO2, 

Na0.60MnO2 and Na0.44MnO2, have been studied as promising cathode materials for SIBs since 

they were reported by Parant et al. in 1971.
9
 For NaxMnO2, a tunnel-type structure is formed 

at 0.22 ≤ x ≤ 0.44, a mixture of tunnel and layered structures is formed at 0.44 < x ≤ 0.66, and 

a fully layered structure is formed at 0.66 < x ≤ 1.
10

 Among these structures, the tunnel-

structured Na0.44MnO2 is particularly attractive due to its unique three-dimensional (3D) 

crystal structure, which is made up of MnO5 pyramids and MnO6 octahedra, and is able to 
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tolerate some stress during structural change.
10-15

 Na0.44MnO2, with a theoretical discharge 

capacity of 121 mAh g
-1

 (1 C = 121 mA g
-1

),  has a framework containing large S tunnels and 

small tunnels, and among them, the S tunnels can provide an abundance of vacancies, where 

0.22 Na
+
 can be reversibly extracted along the c-axis.

16-18
 The crystal structure of Na0.44MnO2 

is shown in Figure S1 in the supporting information. It is difficult, however, for the 

Na0.44MnO2 lattice to well accommodate the structural changes during the insertion/extraction 

of Na
+
, leading to poor rate capability, which severely restricts its practical applications. 

Sauvage et al. prepared Na0.44MnO2 with an initial capacity of 80 mAh g
-1

 at 0.1 C.
19

 The 

capacity faded rapidly, however, with only half of the initial capacity retained after 50 cycles. 

Many strategies, such as nanosizing and metal substitution, have been tried to alleviate this 

disadvantage. Cao et al. reported Na0.44MnO2 nanowires with a discharge capacity of 84.2 

mAh g
-1 

over 1000 cycles at 0.5 C.
20

 Wang et al. prepared Ti-substituted Na0.44MnO2 with 

capacity retention higher than 96% after 1100 cycles at 0.1 C.
21

 There is no report, to the best 

of our knowledge, on Na0.44MnO2 with both excellent high-rate (more than 5 C) capacity and 

long cycling life for sodium storage. 

     Na0.44MnO2 can be prepared via facile synthetic methods such as hydrothermal,
22

 solid-

state,
19

 sol-gel,
23

 polymer-pyrolysis,
6
 and reverse microemulsion method

16
 etc. The 

preparation methods and electrochemical performance of the Na0.44MnO2 as cathode for SIBs 

are summarized in Table 1. The products obtained by different methods display different 
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electrochemical performance. Among those methods, the reverse microemulsion process 

involves thoroughly dispersing a water phase into an oil phase consisting of a surfactant and a 

co-surfactant, to form thermodynamically stable microemulsion droplets (reverse micelles), in 

which each droplet acts as an independent microreactor to help produce the desired 

compound.
24

 It can help to synthesize small particles with a narrow size distribution.
25

  

     In this work, we have prepared monophasic Na0.44MnO2 with multi-angular shaped rods by 

a modified reverse microemulsion method.
16

 To the best of our knowledge, this is the first 

time that Na0.44MnO2 with multi-angular images has been reported. This structure with 

suitable size increases the contact area between the material and the electrolyte, guarantees 

fast sodium ion diffusion and helps release strains resulting from de-insertion/insertion of Na
+
 

ions in multiple directions. When used as cathode material in SIBs, the as-prepared multi-

angular Na0.44MnO2 rods feature stable cycling performance, excellent high-rate capability, 

and long cycle life at 8.3 C.  

2. EXPERIMENTAL SECTION  

      Material Preparation. Multi-angular rod-shaped Na0.44MnO2 was synthesized through a 

reverse microemulsion method. All the chemicals were used as purchased. Sodium nitrate and 

manganese nitrate tetrahydrate with a Na/Mn ratio of 0.44 were dissolved successively in 9 

mL deionized water to form the water phase. 0.2 g polyethylene oxide-polypropylene oxide-

polyethylene oxide (PEO20-PPO70-PEO20, Pluronic P123, surfactant) was dissolved in 3 g 
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absolute ethanol with 20 mL ethylene glycol (EG, cosurfactant) added later to form the oil 

phase. After stirring for 30 minutes, the water phase was gradually dropped into the oil phase 

under continuous stirring. Then, the obtained microemulsion was heated at 80°C to vaporize 

the water. The obtained gel precursor was then heated in a muffle furnace at 700°C 

(NMO700), 750°C (NMO750), 800°C (NMO800), 850°C (NMO850), or 900°C (NMO900) 

for 20 h in air to obtain the final products.  

     Structural Characterization. The morphologies of the as-prepared samples were 

investigated by field-emission scanning electron microscopy (FESEM, JEOL JSM-7500) and 

transmission electron microscopy (TEM, JEOL ARM 200F). TEM samples were prepared 

after sonication treatment. The microstructures of the as-prepared powders were characterized 

on a synchrotron X-ray diffraction beamline with a wavelength (λ) of 0.6885 Å calibrated 

with the National Institute of Standards and Technology (NIST) LaB6 660b standard reference 

material and laboratory X-ray diffraction (XRD, GBC MMA diffractometer) with Cu Kα 

radiation. The thermal property of the precursor before calcination was characterized by a 

Mettler−Toledo thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) 

STARe System under air over a temperature range of 40–1000 °C with a ramp rate of 5°C 

min
-1

.  

     Electrochemical Measurements. The electrodes were prepared by mixing 80 wt% active 

materials, 10 wt% Super P, and 10 wt% polyvinylidene fluoride (PVDF) binder to form a 



  

6 

 

slurry, which was then coated on an aluminium foil. Next, the aluminium foil was dried in a 

vacuum oven overnight at 120°C. After that, the working electrodes were cut out and pressed 

under a pressure of 20 MPa. The electrolyte used was 1.0 mol L
−1

 NaClO4 in an ethylene 

carbonate (EC) – diethyl carbonate (DEC) solution (1:1 v/v) with 5 vol.% of fluoroethylene 

carbonate (FEC). Sodium foil was cut from a sodium bulk stored in mineral oil and used as 

both the counter and reference electrode. The cells were assembled in an argon-filled glove 

box. The electrochemical performances were tested on a Land Test System in the voltage 

range of 3.8-2.0 V (vs. Na
+
/Na) at different current densities. Cyclic voltammetry (CV) at a 

scan rate of 0.1 mV s
-1

 and electrochemical impedance spectroscopy (EIS) from 100 kHz to 

100 mHz were performed using a CHI 660b electrochemistry workstation between 4.0-2.0 V. 

In situ synchrotron XRD data were collected at the Australian Synchrotron with a wavelength 

(λ) of 0.6885 Å, calibrated with the NIST LaB6 660b standard reference material. The cell 

used was charged at a current density of 12.1 mA g
-1 

(0.1 C), and the cutoff voltage was 3.8-

2.0 V. The diffusion coefficient of Na
+
 ions was studied using the galvanostatic intermittent 

titration technique (GITT) and EIS. For the GITT measurement, the cells were charged and 

discharged at 0.1 C for 360 s followed by an open circuit relaxation for 1 h. The procedure 

was maintained until the voltage reached 3.8 V or 2.0 V. All the electrochemical testings were 

conducted at room temperature. 

3. RESULTS AND DISCUSSION 
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     The shape-defined cathode material, Na0.44MnO2, was synthesized via a reverse 

microemulsion method from the mixed solution of P123, EG, ethanol and water. A gel 

precursor was formed after removing the water from the precursor solution by heating at 80°C, 

and then the targeted material could be obtained by further heating the precursor at a higher 

temperature in air. The TGA/DSC test was employed to study the chemical reactions and 

crystallization behaviours of the gel precursor during calcination. Figure 1a is the TGA curve 

of the gel precursor between 40 and 1000°C. Two distinct weight losses were observed during 

heated to 370°C (Zone 1 and Zone 2), which can be attributed to the removal of remnant 

water and ethylene glycol, respectively. Further heating to 1000°C, as shown in the magnified 

image of Zone 3 (~1% weight loss), slight weight variations occurred at around 750°C and 

850°C were monitored. Figure 1b presents synchrotron XRD spectra of the powders calcined 

at different temperatures, which indicates the change on the compositions and crystal 

structures of the products after heating. At 700°C, Na0.44MnO2 (Na4Mn9O18) together with 

Na0.4MnO2 (Na2Mn5O10) was obtained due to a slight loss of Na during the preparation 

process. It was reported that the psilomelane Na0.4MnO2 decomposes at temperatures above 

750°C based on the equation below:
9
  

 0.44 Na0.4MnO2  →  0.40 Na0.44MnO2  +  0.02 Mn2O3  +  0.01O2 ↑                                       (1)  

which caused a small change in the weight loss at 750°C in the TGA curve. There were still 

Na0.4MnO2 residues detected for NMO800. Another phase transformation took place from 
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800 to 850°C, and the Na0.4MnO2 phase almost disappeared in NMO850. Meanwhile, traces 

of unknown phases were detected in NMO850 and became less in NMO900. Those 

transformations are in accordance with the change in the weight loss at and after 850°C in the 

TGA curve. No other phases apart from Na4Mn9O18 and Na2Mn5O10 could be detected in the 

XRD patterns shown in Figure S2, indicating that the content of impurities was less than 5 

mol%. All the Na0.44MnO2 peaks can be indexed to the orthorhombic phase with space group 

Pbam (JCPDS No. 27-750, a = 9.100 Å, b = 26.340 Å, and c = 2.821 Å). The intensities of 

the Na0.44MnO2 peaks become stronger with increasing temperature, indicating the better 

crystallinity and larger crystallite size of the sample. The (3 5 0) reflection of all the 

Na0.44MnO2 samples split into two Bragg peaks for (0 10 0) and (3 5 0) with changing relative 

intensity for samples calcined at different temperatures in both patterns. Rietveld refinement 

was performed on the synchrotron XRD pattern collected from NMO850 as a single phse,
13, 26

 

and is shown in Figure S3. The structural formula is fitted to Na4.34Mn9O18, indicating more 

sodium existing in the composite than Na4Mn9O18. Since the impurity phase is very little, we 

can not get the exact phase through the Rietveld refinment. 

      The morphologies of samples calcined at different temperatures are shown in Figure 2. 

All the samples presented well-distributed multi-angular rod-shape morphology with grooves 

on the surfaces. It can be seen that the rods of NMO750 were well-isolated with diameters in 

the range of 0.1-0.5 μm and lengths of 0.5-2.5 μm. With increasing sintering temperature, the 
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rods become bigger and longer and the grooves become more obvious. This growth is 

consistent with the increasing intensity of the XRD results. The multi-angular rods tend to 

fuse together to decrease the surface energy at 850 and 900°C. The edges of the grooves tend 

to be deeper and sharper for NMO850 but smoothened when calcined at 900°C.  

     To understand the effects of P123 and EG, we prepared samples without the addition of 

P123 or EG, while the other conditions were maintained as the same with NMO850. The 

XRD patterns and SEM morphologies of the samples obtained without the addition of P123 or 

EG are shown in Figure S4 and Figure S5, respectively. It can be clearly seen that the rods 

obtained from the solution without P123 formed with manganese oxide impurities, and are 

shorter and thicker comparing with those prepared with the addition of P123 as shown in 

Figure 2c. The grooves on the surfaces are far less obvious than those in Figure 2c, which 

may result from the lack of morphology controlling effect of surfactant P123 to form shape-

defined grooves.
27

 Moreover, without the addition of EG, the multi-angular rods are 

Na0.44MnO2 with Mn2O3 impurities, the content of which is much larger than 5 mol%, as 

shown in Figure S4. The rods are longer and thinner than those shown in Figure 2c and Figure 

S5a and S5b. EG helps to inhibit the formation of superabundant Mn2O3. Therefore, the 

addition of P123 and EG is essential for synthesizing pure-phase multi-angular Na0.44MnO2 

product. 
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     TEM investigations were also carried out to study the microstructures of samples calcined 

at different temperatures, as shown in Figure 3. It can be seen that the diameter is ~ 0.5 μm of 

one single rod for all samples. The image contrast observed on the rods in the TEM images 

and the corresponding high-resolution TEM images (HRTEM) is ascribed to the variations in 

the thickness of the samples resulting from the grooves on the surface. The rods of NMO850 

and NMO900 tightly fused together and remained adhesive after sonication, as shown in 

Figure 3b and 3c, which are consistent with the SEM results. All the rods calcined at different 

temperatures show clear lattices in the HRTEM images (Figure 3d-3f). All of the lattice 

fringes have a spacing of 0.455 nm, corresponding to the (200) planes of Na0.44MnO2. The 

selected area electron diffraction (SAED) pattern (inset of Figure 3e) of NMO850 reveals that 

the rods are single-crystalline Na0.44MnO2 with orientation along the [001] direction, which is 

consistent with other reports.
28, 29

 The impurity content is too low to be detected. Similar 

SAED patterns also exist for NMO800 and NMO900 (not shown). 

     The 𝑐 ([001]) direction, along which a Na0.44MnO2 crystal grows much faster than in other 

directions, is the main path for sodium diffusion of Na0.44MnO2.
30, 31

 Therefore, Na0.44MnO2 

tends to grow into rod- or wire-like shapes, as summarized in Table 1. To the best of our 

knowledge, this is the first time that multi-angular Na0.44MnO2 rods are reported. The multi-

angular structure is theoretically favourable for materials intended as electrodes for batteries. 

In this case, it can not only increase the contact area between the Na0.44MnO2 rods and the 
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electrolyte, but also accelerate the diffusion of sodium ions in the bulk of the material. The 

aligned grooves on the surface of the 1D rods can endorse the material enhanced wettability 

and directional diffusion of the electrolyte along the grooves.
32

 Also, the multi-angular 

structure can help release strains resulting from de-insertion/insertion of Na
+
 ions in multiple 

directions. The relatively large particle size is also good to improve the volumetric energy 

density. 

     NMO850 and NMO900 were chosen for further electrochemical testing since they are 

mainly composed of Na0.44MnO2 without Na0.4MnO2. Figure 4a shows CV curves of 

NMO850 and NMO900. For NMO850, the voltage peaks in the oxidation process for the 

initial cycle were centred at 3.09, 3.31, and 3.51 V, respectively. The cathodic scan shows six 

peaks at 3.37, 3.13, 2.93, 2.61, 2.36, and 2.15 V, which is consistent with the reported six 

biphasic transitions, implying a complex multiphase transition mechanism during Na-ion 

insertion and extraction processes.
19, 20

 Six highly reproducible redox processes can be clearly 

seen in the following cycles, as shown in Figure S6. There is little difference between the first 

cycle and the subsequent cycles, demonstrating the stable charge and discharge processes. 

This result is different from some other reports, in which the initial anodic scans are stronger 

than those in the subsequent cycles.
12, 15

 This can be attributed to the strain tolerance of the 

multi-angular structure for Na
+
 de-insertion/insertion. It can be seen that the CV curves of 

NMO900 shows similar transitions and same position of reduction peaks compared with 
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NMO850. The voltage peaks in the oxidation process, however, exhibit values higher than 

those of NMO850 and were observed at 3.13, 3.34, and 3.54 V respectively, indicating its 

more serious polarization. This may be responsible for the difference in the discharge capacity 

between them. 

     The charge-discharge curves (Figure 4b) of NMO850 and NMO900 at 0.1 C also display 

six plateaus, which are consistent with the CV results and could be attributed to the extraction 

of Na
+
 from different sites.

14, 33
 It was reported that the Na ions located in the S-shape tunnels 

can produce a theoretical capacity of 50 mAh g
-1

.
34

 In our work, the initial charge capacity of 

NMO850 at 0.1 C is 49.4 mAh g
-1

, corresponding to the extraction of 0.18 Na
+
 from the 

Na0.44MnO2 framework.  

    The cycling performances of NMO850 and NMO900 were investigated at the high current 

density of 8.3 C, as shown in Figure 4c. It can be seen that both the samples exhibit a stable 

cycling performance with negligible decay within 1000 cycles. In detail, NMO850 and 

NMO900 deliver initial discharge capacities of 73.1 and 27.9 mAh g
-1

, respectively. From the 

inset amplification image, it can be found that both the discharge capacity kept increasing 

during the first 200 cycles, arising from an activation process. The discharge capacities were 

82.1 and 39.8 mAh g
-1

 after about 1000 cycles for NMO850 and NMO900, respecively. In 

particular, NMO850 retained a discharge capacity of 72.8 mAh g
-1

 after 2000 cycles, 

corresponding to a high capacity retention of 99.6% of the initial capacity. Moreover, the 
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coulombic efficiency was 212% in the first cycle and remained stable at nearly 100% up to 

2000 cycles. The cycling performances of NMO850 and NMO900 at 0.1 C are shown in 

Figure S7. At both 8.3 C and 0.1 C, NMO850 exhibits high capacity and good cycling 

stability owing to its composition, unique morphology, and suitable particle size. NMO900, 

however, shows lower reversible specific capacity due to the greater strains resulting from its 

bigger particle size and smoother surface (Figure 2d and 3c). The capacity and stability 

related to the size of Na0.44MnO2 was also testified by  Zhan et al.
16

 and Cao et al.
 20

 

     The rate capacities of NMO850 and NMO900 are shown in Figure 4d. It was observed that 

NMO850 retained specific capacities of 101.3, 95.1, 90.2, 84.8, 78.6, 68.8, and 54.7 mAh g
-1

 

at 0.1, 0.2, 0.5, 1, 2, 5, and 10 C, respectively, and it can return back to 97.1 mAh g
-1

 at 0.1 C 

after cycling at 10 C. By contrast, NMO900 delivered much lower capacities. The good 

cycling and rate performance of NMO850 can also be ascribed to the well-defined 3D channel 

structure of the Na0.44MnO2, which effectively facilitates the extraction/ insertion of Na
+
 ions. 

To the best of our knowledge, this is the best cycling performance, with long cycle life and 

high cycling stability at a high current density of 8.3 C, compared with other reported results 

for Na0.44MnO2, as summarized in Table 1. 

     Figure 5 show the GITT curves for the first cycle at 0.1 C of Na/NMO850 and 

Na/NMO900 cell and the corresponding sodium ion diffusion coefficent (DNa+). It can be 

calculated that the DNa+ values of electrodes are between 4.9  10
-16

 and 2.15  10
-14

 cm
2
 s

-1
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for NMO850, and between 1.0  10
-16

 and 1.76  10
-14

 cm
2
 s

-1
 for NMO900 in the range of 

2.2 to 3.5 V, respectively. Meanwhile, the sodium ion diffusion coefficients of different 

electrodes were also investigated by electrochemical impedance spectroscopy at open circuit 

potential (OCP). The Nyquist curves and the corresponding Zre vs. 
-1/2

 plots in the low-

frequency region are shown in Figure S8. The calculated DNa+ values are 2.40  10
-14

 and 1.90 

 10
-14

 cm
2
 s

-1
 at the OCP for NMO850 and NMO900, respectively. The high DNa+ values 

well explain the excellent cycling performance of the Na0.44MnO2 multi-angualr rods. The 

DNa+ of NMO850 is larger than that of NMO900, indicating its faster sodium ion diffusion, 

which results from its more suitable size and more distinct multi-angular structure than those 

of NMO900. 

      In-situ X-ray synchrotron diffraction was also conducted to investigate the Na
+
 de-

insertion/insertion behaviour during the first charge-discharge process at 0.5 C for NMO850, 

as shown in Figure 6a. Potential drops are related to single-phase domains in a narrow 

sodium content range and the sloping curves are the signature of solid-solution behaviour.
27

 

There is no evident formation of new phases or superstructures but solid-solution reaction 

during the Na extraction/insertion from/into the Na0.44MnO2 framework.
35

 It is clearly seen 

that all the peaks shift towards larger 2θ values during the charge process, indicating the 

extraction of Na
+
 from and contraction of the unit cell in the Na0.44MnO2 framework. During 

the discharge process, those shifted peaks move back to lower degree and the phase can go 
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back to the original one (the same as the XRD of initial Na0.44MnO2) at ~2.8 V. The intensity 

of (200) decreased, especially after the phase recovered to the primary one (~2.8 V). Upon 

further discharging, the NMO framework kept expanding, which would cause the decrease of 

structure ordering, resulting in the decrease of peak intensity. At the end of discharge process, 

all the peaks shifted to lower degrees relative to the original ones, resulting from the insertion 

of more Na
+
 into the Na0.44MnO2 framework during the discharge process than the extracted 

ones during the charge process. The two split peaks ((3 5 0) and (0 10 0)) around 34° merge 

into one peak when charged to 3.8 V, and the peak starts splitting again at the beginning of 

discharge. This could be caused by the changing amount of Na
+
 ions in the structure due to 

the de-insertion/insertion of Na
+
 ions.

36
 The corresponding change of cell parameters a, b, c 

and volume are shown in Figure 6b. The parameters a, b and c all become smaller during the 

charge process due to extraction of Na
+
 and turn to be larger during the discharge process. It 

can be seen that the charge process affects mainly the b parameter, while strong variation of a 

and c occur during the discharge process, in accordance with the changes in the (2 0 0) and (0 

10 0) peaks in Figure 6a. Similar trends on the crystal structure parameters change have also 

been observed by Sauvage et al.
19

 The volume change is calculated to be less than 2.53%, 

demonstrating the excellent structure stability and thus high cycling stability of this material 

during the charge and discharge processes.  
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      To clarify the stability of the electrode, TEM characterization was performed on NMO850 

electrode, which was discharged to 2.8 V after cycling for 100 times at 0.1 C. The same 

morphology of the bright field TEM image (Figure 7a) as for Figure 2c and Figure 3b 

demonstrates the stable structure of NMO850. The lattice spacing in the HRTEM image 

(Figure 7b) can be clearly seen with distances of 0.282 and 0.455 nm, corresponding to the 

(001) planes and (200) planes of Na0.44MnO2, respectively. The same structure of electrode 

discharged to 2.8 V with the original one is in accordance with the in-suit synchrtron XRD 

result, and further demonstrates the robust structure of NMO850. The corresponding SAED 

pattern (Figure 7c) indicates that the sample retains its single-crystalline nature in the [0-10] 

direction. The high stability of this robust multi-angular structure is crucial for the superior 

cycling performance of Na0.44MnO2. 

4. CONCLUSION 

      In summary, we synthesized multi-angular rod-shaped Na0.44MnO2 via a reverse 

microemulsion method and studied the electrochemical performance as cathode materials for 

sodium-ion batteries. With the benefits of multi-angular morphology, suitable size, and fast 

sodium ion diffusion, the as-prepared Na0.44MnO2 rods prepared at 850°C as a cathode 

material for SIBs possess stable cycling performance with capacity of 72.8 mAh g
-1

 and 

capacity retention of 99.6% after 2000 cycles at 8.3 C. The as-designed multi-angular 
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Na0.44MnO2 provides new insight into the development of tunnel-type electrode materials and 

their application in rechargeable sodium-ion batteries. 
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Figure 1.  (a) TGA curve of the gel precursor between 40 – 1000°C with a ramp rate of 5°C 

min
-1

 (inset is an enlargement of Zone 3); (b) synchrotron powder XRD spectra of samples  

calcined at different temperatures. The 2θ angle has been converted to values corresponding 

to the more common laboratory Cu Kα radiation.  

 



  

22 

 

 

Figure 2. SEM morphologies of samples calcined at (a) 750°C; (b) 800°C; (c) 850°C; and (d) 

900°C. 
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Figure 3. TEM images of samples calcined at (a) 800°C (inset: lower magnification); (b) 

850°C; and (c) 900°C; HRTEM images of samples calcined at (d) 800°C; (e) 850°C (inset: 

corresponding SAED pattern); and (f) 900°C. 

 

 

Figure 4. Electrochemical performances of NMO850 and NMO900: (a) cyclic 

voltammograms (CV) between 4.0-2.0 V; (b) charge-discharge profiles at 0.1 C; (c) cycling 

performance and coulombic efficiency of NMO850 and cycling performance of NMO900 at 

8.3 C (inset: amplication image up to 200 cycles); and (d) rate capacity between 3.8-2.0 V. 
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Figure 5.  (a) GITT curves for the charge and discharge states of the 1
st
 cycle and (b) 

corresponding sodium ion diffusion coefficent (DNa+) for Na/NMO850 cell cycling at 0.1 C 

between 3.8-2.0 V; (c) GITT curves for the charge and discharge states of the 1
st
 cycle and (d) 

corresponding DNa+ of Na/NMO900 cell cycling at 0.1 C between 3.8-2.0 V. 
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Figure 6. (a) In situ X-ray synchrotron diffraction patterns collected at 0.5 C between 3.8-2.0 

V during the first charge/discharge process forNMO850; (b) corresponding changes of cell 

parameters a, b, and c, and the unit cell volume. The 2θ angle has been converted to values 

corresponding to the more common laboratory Cu Kα radiation. 
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Figure 7. (a) TEM image, (b) HRTEM image, and (c) SAED pattern of NMO850 after 

cycling for 100 cycles at 0.1 C.  

 

 

Table 1. Summary of Na0.44MnO2 prepared by different methods as sodium-ion battery 

cathodes.  

Method 

Calcination 

temperature, 

time 

Morpholog

y 

Voltage (V 

vs. Na
+
/Na) 

Current 

density 

(rate) 

Specific 

capacity/cycles 

Pechini method 
14

 800°C for 9 h rod 2.0 – 3.8 V 
0.1 C 65 mAh g

-1
 

1 C 32 mAh g
-1

 

Sol-gel method 
23

 
450°C for 6 h; 

900°C for 15 h 
slab 2.0 – 4.0 V 0.1C ~ 110 mAh g

-1
/100  

Hydrothermal 

method
 22

 
205°C for 96 h nanowire 2.0 – 4.0 V 8.3 C ~ 90 mAh g

-1
/20  

Solid state method
 

19
 

300°C for 8 h; 

800°C for 9 h 
rod 2.0 – 3.8 V 0.1 C 

~ 40 mAh g
-1

/45  for 

Na0.44MnO2/C 

electrode 

Polymer-pyrolysis 

method 
20

 
750°C for 24 h nanowire 2.0 – 4.0 V 

0.5 C 84.2 mAh g
-1

/1000  

2 C 82 mAh g
-1

 

Reverse 

microemulsion 

method 
16

 

750°C for 24 h rod 2.0 – 3.8 V 0.83 C 80.2 mAh g
-1

/50  

Our work 850°C for 20 h 
multi-

angular rod 
2.0 – 3.8 V 

0.1 C 99.1 mAh g
-1

/100 

8.3 C 82.1 mAh g
-1

/1000 
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