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Abstract 
 

The bead-based immunoassay requires not only efficient mixing but also good control of 

bead-surface-area-to-sample-volume ratio to realize accurate and reproducible detection of 

low concentration samples. This paper reports the development of a microfluidic platform 

with the reproducible and efficient bubble-induced micromixing for bead disaggregation and 

immunoassay of prostate specific antigen (PSA). The platform consists of a microfluidic chip 

with a microchamber and rectangular traps for capturing air bubbles and a home-made 

controller to generate sound wave using an external piezo transducer. Methods for 

reproducible bubble formation and bubble size control during mixing are explored. The 

influence of driving voltage, PDMS thickness and the substrate material on the mixing 

efficiency is characterised by mixing a fluorescence dye and a buffer solution. The optimised 

acoustic microstreaming is able to break clusters with hundreds of beads and homogenize 

individual beads over the microchamber. Immunoassay with efficient micromixing has been 

applied to PSA immunoassay with greatly reduced detection time. This study provides a 

practical guide for the design and development of the bubble-induced acoustic micromixers 

for bead disaggregation and on-chip immunoassays. 

Key words 
Bubble, acoustic, mixing, piezo, microstreaming, immunoassay, PSA, lifetime, 

disaggregation 
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1. Introduction 

Magnetic bead-based immunoassays are the current gold standard for many biochemical tests 

in clinics and the discovery of new biomarkers in pharmaceutical and biological applications. 

However, conventional immunoassays are of limitations, such as consumption of large 

volume of sample and reagents, high cost, long analysis time and need for experienced 

personnel to perform the assays. This has prompted the development of microfluidics-based 

immunoassays(Veetil et al. 2010), since microfluidic devices have the advantages of low 

reagent consumption, faster reaction, lower cost and a much higher degree of automation. 

Additionally, these devices offer the possibility of integrating physical phenomena, such as 

magnetics, acoustics, and electrokinetics, with hydrodynamics for sample processing(Veetil 

et al. 2010). For example, magnetic forces have been extensively employed for trapping, 

separation, actuation (Pamme 2012; van Reenen et al. 2014) and micromixing (Riahi and 

Alizadeh 2012; Rida and Gijs 2004; Wang et al. 2008; Zolgharni et al. 2007) in bead-based 

immunoassay. 

To increase the assay sensitivity and reproducibility of the magnetic bead-based 

immunoassay in microfluidics, aggregation of beads should be avoided and bead-surface-

area-to-sample-volume ratio is required to be well controlled. Magnetic beads tend to form 

chains or clusters following the introduction of the magnetic field. The number of beads in a 

chain or a cluster is uncontrollable, so the accessibility of bead surface can be dramatically 

reduced. Therefore, the reproducibility and sensitivity of the assay can be significantly 

affected by the uncontrollable bead-surface-area-to-sample-volume ratio, especially when the 

concentration of target analyte is low. To overcome this problem and acquire individual 

beads, Gao et.al (Silvestre et al. 2013) proposed a magnetic force based disaggregation 
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technique using time-dependent magnetic fields generated by eight external electromagnets. 

This technique can successfully disperse several tens of particles within about one minute, 

but the complexity limits its application and miniaturization. 

When low concentration analyte is of interest, efficient and reproducible mixing of beads and 

reagents in the microfluidics is critical for reducing the detection time and increasing the 

sensitivity. A number of techniques have been developed to enhance sample mixing in 

microfluidics in the past two decades. These techniques can be classified into passive mixing, 

such as staggered herringbone mixers (Stroock et al. 2002), and active mixing, such as 

electrokinetic (Oddy et al. 2001), magnetic (Bau et al. 2001; Kitenbergs et al. 2015) and 

acoustic (Gao et al. 2015; Petkovic-Duran et al. 2009) mixers. These mixers have been 

reviewed in previous literature (Capretto et al. 2011; Kevin and Fan 2015; Lee et al. 2011). 

Among the active mixing techniques, acoustic micromixing has attracted considerable 

interests (Ahmed et al. 2009a; Liu et al. 2002), since a) its efficiency is high and reagents can 

be fully mixed in seconds or even milliseconds (Ahmed et al. 2009a), and b) the mixing is 

non-invasive (no micro magnetic beads are required in comparison with magnetic mixing).  

The acoustic micromixing can be implemented either with or without bubbles in the mixing 

channels or chambers. For non-bubble acoustic mixing, a high driving frequency in the range 

of megahertz is usually required. For example, micro or miniaturized transducers were 

integrated inside or on both sides of a microchannel to mix two parallel laminar-flow streams 

(Guo et al. 2008; Yaralioglu et al. 2004). In addition, microelectrodes were used to generate 

surface acoustic wave to achieve mixing in a microchannel (Jo and Guldiken 2013) or a 

microwell (Shilton et al. 2011). Bubbles were firstly employed in microfluidics to enhance 

acoustic mixing by Liu et al. (Liu et al. 2002). In the last decade, it has been extensively 

applied in various applications, such as cancer biomarker detection (Lin et al. 2014), PCR 

(Liu et al. 2004), as well as particle and cell separation (Patel et al. 2014; Patel et al. 2012). 
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Huang et al. reported the ultra-fast mixing of two liquid streams flowing side-by-side in a 

microchannel using staggered and pre-trapped air bubbles along the side walls of the channel 

and a piezo transducer glued in the vicinity of the channel (Ahmed et al. 2009a). In another 

report (Ahmed et al. 2009b), in-line ultrafast mixing was achieved by a single bubble retained 

in a horse-shoe shaped trap in the midplane of a microchannel. Additionally, an array of 

bubbles was employed to generate microstreaming, which significantly reduces the mixing 

time from hours to seconds for a DNA microarray hybridization (Liu et al. 2003). 

In addition to the inherent advantages of the acoustic mixing, the bubble-induced acoustic 

mixing device is simple in fabrication due to the application of the piezo transducer. 

Additionally, the presence of air/liquid interface not only allows fast mixing at low driving 

frequencies but also provides the flexibility of predefining the location for mixing at the 

microscale. Low frequency is favorable for the miniaturization of the system, since it can be 

generated using a piezo transducer driven by a simple electronic board instead of a function 

generator which is indispensable for the non-bubble acoustic mixing. Furthermore, the air 

bubbles can be trapped either in the inlet channel of two fluid streams (Ahmed et al. 2009b) 

or around the edge of mixing chambers (Liu et al. 2003) to confine the locations of the 

mixing. This is particularly important for lab-on-a-chip platforms integrating multiple 

components  and functions (Liu et al. 2003). 

Several factors may affect bubble-induced mixing activated by a piezo transducer. Mixing 

reproducibility and efficiency are dependent on bubble size, which affects the resonance 

frequency of bubbles. Fan et al. (Huang et al. 2015) reported that bubbles captured by 

multiple traps around a chamber can differ by 15% in size. In order to achieve reproducible 

mixing, trapping bubbles with consistent size and controlling their size during the whole 

mixing period are critical. In addition to bubble size, other factors such as the driving 

frequency, the location of the piezo, and the chip materials are also important to maximize 
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mixing efficiency. However, there have been no detailed studies on these factors. 

The main objective of this study is to develop a microfluidic platform which utilizes bubble-

induced microstreaming for bead disaggregation and on-chip immunoassays. The bubble size, 

driving voltage and frequency of the piezo, thickness of the PDMS chip, and the substrate 

material are evaluated in order to determine optimal conditions to achieve reproducible 

microstreaming. The microstreaming is then employed to break and homogenize clusters with 

hundreds of magnetic microbeads over the microchamber. The microstreaming is 

demonstrated to significantly reduce the detection time of the bead-based immunoassay for 

prostate specific antigen. This study provides a practical guide for the design and application 

of the reproducible bubble-induced acoustic microstreaming in immunoassay within 

microfluidics. 

2 Materials and methods 

2.1 Microfluidic chip design 

Microfluidic chips (Figure 1A) with a microchamber and bubble traps are developed to mix 

nanolitres of fluids using bubble-induced acoustic microstreaming. The microstreaming is 

induced by the sound field generated by a piezo transducer (referred to as piezo hereafter) 

attached to the microfluidic chip. The microfluidic chip consists of a PMDS layer with 

microchannels, a mixing microchamber and bubble traps (Figure 1B and C). The mixing 

microchamber is 1 mm in diameter. It is linked with either two rectangular bubble traps with 

both the length and the width of 400 µm (referred to as the two-bubble device, Figure 1B) or 

three traps with the length of 400 µm and the width of 100, 200 and 400 µm (referred to as 

the three-bubble device, Figure 1C). The traps are evenly placed around the microchamber 

edge. A glass or PDMS capping layer is used to seal the top PDMS layer. The depth of the 

channels, microchamber and bubble traps is 100 µm. The volume of the microchamber is 
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approximately 78.5 nL. The bubble traps retain air bubbles with defined volumes, when 

phosphate buffer solution (PBS) is injected into the empty microchamber. A piezo is placed 

on top of the PDMS layer (above the microchamber). A home-made controller drives the 

piezo at the desired frequency to induce acoustic microstreaming near the bubble interfaces. 

The resonance frequencies of rectangular air bubbles in water are given by the equation 

reported by Chindam et al. (Chindam et al. 2013), and are found to be 12.6, 8.9 and 7.9 kHz 

for bubbles with the width of 100, 200 and 400 µm, respectively.  

2.2 Microchip fabrication 

The microfluidic chips were manufactured at the Microfluidics Laboratory at CSIRO and the 

Melbourne Centre for Nanofabrication. The moulds (Figure 1D) were fabricated using 

standard photolithography of SU-8 as described elsewhere (Chen et al. 2011; Chen et al. 2012; 

Hai et al. 2009). A ‘clamp casting’ technique was applied to produce PDMS layers with the 

thickness of 0.5 mm, 1 mm and 2 mm between a glass slide and a silicon wafer (Figure 1D-

G). Firstly, Sylgard® 184 base and the curing agent (PDMS, Dow Corning) were mixed with 

the weight ratio of 10:1 and cast against the SU-8 mould (Figure 1E). Following degassing, a 

glass slide (75 × 50 x 1 mm, see Figure 1F) attached with four spacers (measuring 8 × 8 mm, 

the thickness of 0.5, 1 or 2 mm) was pressed into the uncured PDMS till the spacer formed 

conformal contact with the wafer. Then the top glass slide and the bottom silicon wafer were 

clamped together (Figure 1G). After baking at 60°C for 2 h, the PDMS replica was cut off 

from the mould, punched with inlet and outlet ports, and bonded to either a glass slide or a 1-

mm thick blank PDMS layer following 2-min air plasma etching. Finally, the device was 

connected to microbore PTFE tubing (Cole-Parmer®, inner diameter: 300 µm) and baked 

overnight at 60°C before further use. 
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Figure 1 A schematic drawing of the experiment setup and the fabrication process of the microchip. A) The schematic 
drawing of the experiment system. B) The two-bubble device with a piezo placed above the microchamber. Both length and 
width of the traps are 400 µm. C) The three-bubble device. The length of all traps was 400 µm. The width of trap 1, 2 and 3 
was 100, 200 and 400 µm, respectively. D) The SU-8 mould on the silicon wafer. E) Uncured PDMS was casted on the 
mould.  F) A glass slide was attached with four spacers (either 0.5, 1 or 2 mm thick). G) The glass slide with spacers was 
pressurised into uncured PDMS. 

 

2.3 Piezo controller 

An electronic controller based on an Arduino ELEVEN R3 v2.0 (Freetronics) board was 

developed to activate the piezo with desired frequency and voltage. The digital output of the 

pulse width modulation on the board was used to generate the square-shaped wave with the 
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duty cycle of 70% and the driving frequency ranging from 0 to 30 kHz. An external DC 

power supply provided the voltage up to 30 V across the piezo. The piezo (element 14) with 

the resonance frequency of 9 kHz was connected to the controller and attached to the PDMS 

layer using the ultrasound gel (see Figure 1A).  

2.4 Bubble formation study 

Both two-bubble and three-bubble devices (Figure 1B and C) were employed. Phosphate 

buffer solution (PBS) was injected into the empty microchamber at the flow rate of 0.01, 0.1, 

1, 5, 10, 15 or 25 µL/sec. The air bubbles formed at various flow rates were imaged using a 

PCO Sensicam digital camera and measured using MATLAB image processing code. 

2.5 Bubble size study 

The variation of bubble size in one hour after formation was studied in the three-bubble 

device either with or without acoustic mixing. After bubble trapping at the flow rate of 1 

µL/sec, the fluorescent polystyrene beads (Fluoro-MaxTM, 1 µm in diameter, 1% solid) were 

diluted 200 fold in PBS solution and manually injected into the microchamber for visualising 

the mixing flow. The outlet tubing was either open to the atmosphere or connected to a water 

container raised for 0-75 cm to generate hydraulic pressure of 0-735 Pa. The piezo was then 

activated at 12 V and 8 kHz to induce streaming flow in the microchamber. The bubbles and 

the acoustic streaming patterns were imaged using a 4× objective lens every 1 min for 60 min.  

2.6 Parametric study of mixing 

Following the formation of bubbles at the flow rate of 1 µL/sec, the diluted beads (Fluoro-

MaxTM) were injected into the microchamber using a micropipette. When the liquid flow was 

stopped and beads were free of flow-induced motion, the piezo was activated at frequencies 

from 2 to14 kHz with the increment of 1 kHz. The acoustic-induced flow of microbeads at 

each frequency was imaged with the exposure time of 3 seconds. 
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Mixing in the two-bubble device was characterised when the driving voltage, the thickness of 

the top PDMS layer and the substrate material (PDMS vs glass) were varied. After the bubble 

formation at the injection flow rate of 1 µL/sec, the fluorescent dye (Alexa Fluor® 488) and 

the PBS with 0.1% Triton X-100 (PBST) were simultaneously injected into the 

microchamber from the two inlet ports at the flow rate of 0.02 µL/sec. After the flow became 

stable, the injection was stopped and the piezo was activated immediately at the defined 

frequency and voltage. The mixing process was imaged every 2 seconds with the exposure 

time of 800 milliseconds. 

2.7 Disaggregation of beads 

Disaggregation of magnetic microbeads in the microchamber was studied to demonstrate the 

ability of acoustic microstreaming to break bead clumps into individual beads. A two-bubble 

device with 1-mm thick PDMS top layer on a glass bottom was employed. The SPHERO™ 

carboxyl magnetic microbeads (Spherotech, Inc., 5-5.9 µm) were diluted in PBST solution 

with the volume ratio of 1:20. Following the formation of air bubbles at the flow rate of 1 

µL/sec, the bead solution was injected into the microchamber using a micropipette. Then 

magnets were placed on the side of one trap. After most beads migrated to the vicinity of the 

bubble/air interface due to the external magnetic field, the magnets were removed. Then 

acoustic induced flow was activated at the driving voltage of 30V and the frequency of 5 kHz. 

The disaggregation process was imaged every 1 second with a 4× objective lens.  

2.8 On-chip immunoassay 

The magnetic beads  were conjugated to a prostate specific antigen (PSA) capture antibody 

using EDC/NHS chemistry and the PSA detection antibody was conjugated to the lightning-

Link R-PE conjugation kit (R-PE label) (Wang et al. 2014).  
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The micromixing at optimised conditions was applied to demonstrate its ability to enhance 

biomarker detection using immunoassay. The two-bubble device with 1-mm thick PDMS top 

layer on a glass bottom was applied in this study. Following the formation of air bubbles at 

the flow rate of 1 µL/sec, 1 µL magnetic beads (conjugated to the PSA capturing antibody) 

were injected into the microchamber using a micropipette and retained in situ by magnets 

placed 1 mm above the top PDMS layer. PSA solution (either 100 ng/mL or 5 ng/mL) was 

injected into the microchamber at 0.05 µL/sec for 30 seconds. Afterwards, the solution in the 

microchamber was either kept static (referred to as ‘Static incubation’) or mixed (referred to 

as ‘Mixing’) at 5 kHz and 12V for 5, 15 or 30 minutes after the magnets had been removed. 

Then beads were retained in the microchamber by magnetic field and washed using PBST for 

2 minutes at the flow rate of 0.05 µL/sec. The R-PE label was then injected into the 

microchamber at the same flow rate for 30 seconds, before being incubated statically or 

mixed using the microstreaming for 5 minutes without external magnetic field. Finally, the 

beads were retained by the magnets, washed as above and imaged using a 20× objective lens. 

2.9 Image processing and data analysis 

The images were analysed using the MATLAB Image Processing Toolbox and the Image J 

(Schneider et al. 2012). The standard deviation of the fluorescence intensity (SDFI) of pixels 

in the microchamber from the dye mixing study was used to characterise the mixing 

efficiency. The data were analysed using the one-way ANOVA with the significance level of 

0.05. The results presented in this study are the mean (± standard deviation) of three 

independent replicates. 
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3 Results and discussion 

3.1 Bubble formation study 

Figure 2A shows the formation of bubbles in three traps at the flow rate of 0.01 µL/sec (see 

Supplementary video 1 for details). When the PBS was pumped into the empty microchamber, 

the air/liquid interface was pushed downstream. When the liquid reached the second corner of 

a trap, a pocket of air (air bubble) was captured. Figure 2B shows the micrograph of bubbles 

formed immediately after the injection of PBS at the flow rate of 25 µL/sec. It is obvious that 

the bubbles are much bigger than the relevant traps and cover large area of the microchamber, 

which is unfavourable for the mixing and following immunoassay (discussed below). 

 
Figure 2 Micrographs of air bubbles. A) Formation of air bubbles when PBS was injected into the empty microchamber at 
the flow rate of 0.01 µL/sec. B) The bubbles formed immediately at the flow rate of 25 µL/sec. 

Reproducible bubble length is critical for achieving stable bubble-induced microstreaming. 

Bubble length refers to the maximal distance from the end of the bubble trap to the air/liquid 

interface as shown by the white double-headed arrow in Figure 2A. Bubble length is a 

function of the device geometry and fluid properties: 

 (1) 
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where L is the bubble length, w is the width of the trap, a  and b are the width and height of 

the inlet channel, respectively, d is the diameter of the microchamber,  and  are the density 

and the surface tension of the fluid at room temperature, and  is the mean velocity at the 

inlet channel. For the current study, PBS and air are the liquid and gas phase, respectively. 

Equation (1) can be non-dimensionalised to: 

 
(2) 

Therefore, the relevant dimensionless parameters are ,  ,  and 

. Since the interface between the PBS and air dictates the bubble formation 

process, the Weber number (We), which is the ratio of the inertia force to the surface tension, 

is an important factor here. The density ( ) of PBS is approximately 1000 kg/m3. It is 

assumed that the surface tension ( ) of PBS solution is the same as that (7.197 × 10-2 N/m) of 

water in air at room temperature. The width (a) and height (b) of the inlet channel are 200 µm 

and 100 µm, respectively, while the width (w) of the trap is 100 µm, 200 µm and 400 µm, 

respectively. The diameter of the microchamer is 1 mm. The mean velocity at the inlet 

channel is in the range of 5×10-4-1.25 m/sec. For the current experimental conditions, We 

varies from 3.47 ×10-7 to 2.17. In this large range of We, the inertial force contributes 

differently to the bubble formation. 

Figure 3A-C show the dimensionless length of the bubbles captured in the three traps at 

various Weber numbers. Although the width of the bubbles is always equal to the trap width, 

their length is greatly affected by the Weber number. The bubble length remains almost 

constant and is close to the trap length at very low Weber numbers (between 3.5 × 10-7 and 

0.35) (p=0.53, 0.7, 0.83 for the 100, 200, and 400 µm wide trap, respectively). This is not 

surprising, since at low Weber numbers, the surface tension instead of the flow velocity 

dictates the size of the bubble. On the other hand, at high Weber numbers (i.e. 0.78 and 2.17), 
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the flow rate contributes to the formation of the bubbles. Due to the fast-moving liquid, more 

air is trapped, so the bubbles longer than the traps. The large bubbles in neighbouring traps 

may merge together within one hour after bubble formation. Therefore, bubbles larger than 

their traps should be avoided.   

 

Figure 3 Effect of Weber number and trap width on the bubble size. The dimensionless length ( ) of bubbles in 
traps with the dimensionless width ( ) of 1 (A), 2 (B) and 4 (C) in devices with either glass or PDMS bottom. 

The surface property of the substrate material also affects the bubble formation due to their 

wettability difference. When the Weber number is larger than 0.35, the size of bubbles on 

glass substrates is significantly bigger than that on PDMS substrates (p≈0.005-0.046).  

However, this effect is not observed at lower Weber number (3.5 × 10-7-0.087) (p>0.05). This 

may be related to the combination of Weber number and the contact angle of the substrate. 

Since PDMS is more hydrophobic than the glass. When the flow rate is high, the fluid cannot 

have enough time to wet or fill the whole microchamber. As a result, although the Weber 

number on both substrates is the same (see Figure 3), the bubble on PDMS is slightly larger 

than that on glass. 

Since the acoustic streaming patterns are significantly affected by the shape and the position 

of the air/bubble interface, a reliable control for the formation of bubbles is crucial. When a 

bubble is much shorter than the trap, the acoustic streaming may not be strong or big enough 

to mix the samples in the microchamber (see details in Section 3.2). However, if a bubble is 

significantly longer than the trap, there are at least two drawbacks: a) the bubble width cannot 
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be defined by the trap, so the resonance frequency may vary significantly. Thus the mixing 

efficiency at a predefined driving frequency may not be optimal; b) the bubbles occupy 

excessively large regions of the microchamber, which may greatly affect the assay by 

changing the sample volume. The optimal Weber numbers for trapping bubbles with 

reproducible sizes are suggested in the range of 3.5 × 10-7 to 0.087, regardless of the trap 

width and the substrate materials. For all the remaining studies, the Weber number of 3.5 × 

10-3 (the flow rate of 1 µL/sec) was employed to generate air bubbles. 

3.2 Bubble size study 

This study aims to i) ascertain the influence of bubble size on acoustic streaming and ii) 

determine the optimal trap width and hydraulic pressure range to keep the bubble size as 

stable as possible for at least one hour (see Supplementary video 2). This time window is 

long enough for reproducibility and accuracy of the on-chip immunoassay. After formation, 

the bubbles were monitored for 60 minutes while various hydraulic pressures were applied to 

the outlet port. Figure 4A-D show the micrographs of both bubbles (the dark regions between 

the boundary of the trap and the green pathlines) and the acoustic streaming patterns (green 

pathlines) either 1 or 60 minutes following the bubble formation when the hydraulic pressure 

was set to either 0 (Figure 4 A and B) or 294 Pa (Figure 4 C and D). The acoustic streaming 

was driven at 8 kHz and 12 V. At zero hydraulic pressure (Figure 4A and B), all bubbles 

were observed to expand in 60 minutes after formation. As a consequence, the 

microstreaming significantly decreased as indicated by the much smaller and less intense 

circulating flow patterns. At a hydraulic pressure of 294 Pa (Figure 4 C and D), the bubble 

size remained almost unchanged for the 200 µm and 400 µm traps during the 1-hour 

observation period. However, for the 100 µm trap, the bubble shrunk into the trap as a result 

of the hydraulic pressure. The microstreaming gradually faded during this period. 
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Figure 4 Micrographs of acoustic streaming patterns and bubble size variation. Acoustic streaming and air 
bubbles 1 and 60 minutes after bubble formation with the hydraulic pressure of 0 (A and B) and 294 (C and D) 
Pa. The white lines highlight the boundary of bubble traps. The flow in all images was driven at the frequency of 
8 kHz and voltage of 12V. (E) Variation of bubble area in one hour after formation when the hydraulic pressure 
varied. (F) A schematic drawing showing the pressure balance of a trapped bubble. (G) Variation of bubble 
area as a function of time. 

Figure 4E shows the variation of the bubble area in an hour after formation in the three traps 

when the hydraulic pressure is 0, 294 and 735 Pa, respectively. The variation is quantified by 

, where  is the bubble area at the time t, and  is the bubble area immediately 
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after bubble formation (t=0). When the hydraulic pressure was zero, no matter if the mixing 

was present or not, the area of the 100, 200 and 400 µm wide bubbles expanded by 

approximately 31%, 22% and 17%, respectively. At the hydraulic pressure of 294 Pa, the 100 

µm bubble decreased by 40%, while the 200 µm and 400 µm bubbles decreased by only 

5.8% and 1.7%, respectively. When the hydraulic pressure was further increased to 735 Pa, 

the area of the 100 µm wide bubble decreased by 48%, while the area of the 200 µm and 400 

µm bubbles did not change significantly. From this study, it can be concluded that a) the 100 

µm bubble is sensitive to the positive pressure and difficult to be controlled; and b) the 200 

µm and 400 µm wide bubbles are reliably controlled by hydraulic pressure in the range from 

294 to 735 Pa. Therefore, the two-bubble devices were selected for the on-chip immunoassay.  

The expansion and the shrinkage of a trapped air bubble are related to both pressures 

subjected by the air bubble and air mass transfer between bulk PDMS and the bubble (Volk et 

al. 2015). Kang et al. applied an exponential decay model to describe the air bubble 

elimination in a microfluidic device (Kang et al. 2008). As shown in Figure 4F, after PBS 

injection, the pressure inside and outside the bubble is in equilibrium. The pressure balance 

for the bubble is given below 

  (3) 

where  is the air pressure in the bubble;  is the capillary pressure and  

is the hydrostatic pressure of the PBS. Capillary pressure ( ) is given below 

(Delamarche et al. 1998): 

 
 

(4) 

where  is the interfacial tension between PBST and air;  is the contact angle for the left, 

right and top wall (PDMS substrate);  is the contact angle for the floor (either PDMS or 



18 
 

glass); and  and  are the width and height of the bubble. For devices with the PDMS 

bottom, = . 

When the air pressure ( ) in a bubble is smaller than the atmosphere pressure ( ) 

outside the PDMS layer, air permeates through PDMS layer into the bubble (Volk et al. 

2015), which results in the increase of the bubble volume. Since a) the bottom of the device is 

either a glass slid or a PDMS slab on a glass slide and b) PDMS on side walls of the bubble is 

much thicker than the top PDMS layer, it is a reasonable assumption that the air permeation 

through the bottom and side walls of the bubble is negligible. Therefore, the bubble volume 

variation rate is given by 

 
 

(5) 

where V is the bubble volume; t is time; J is the gas flux permeated from PDMS to the bubble; 

and A is the projected area of the bubble. The flux was given by  

 
 

(6) 

where P is the permeability coefficient,  and  are the pressure of the bubble and the 

atmosphere,  is the thickness of the PDMS layer. 

From Equations (5) and (6), the bubble area is given by the following exponential growth 

function of time (t): 

  ,  (7) 

where a,  and c are constants; t is time after bubble formation. Assuming the 

pressure difference ( ) between the air bubble and outside atmosphere is constant, 

the model becomes the first order exponential growth or decay model. It is able to predict 
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both the expansion (when ) and the shrinkage (when ) of air 

bubbles in microfluidic devices. 

Figure 4G shows the variation of the area of 100, 200, and 400 µm bubbles as a function of 

time when the hydraulic pressure is zero and the acoustic mixing is absent. The area of all 

bubbles increased with time. The narrow bubbles have greater area increase rate in 

comparison to the wide bubbles. The area is well described by the exponential growth model 

(R2>0.9996) in Equation (7). The constants a, b, and c for the model of the 100 µm wide 

bubble are 1.309 × 104(±860), 0.01709 (±7 × 10-4) and 3.35 × 104 (±930), respectively. The 

constants a, b, and c for the model of 200 µm wide bubble are 5 × 104 (±3290), 8.862 × 10-3 

(±4.52 × 10-4) and 3.52 × 104 (±3370), respectively. The constants a, b, and c for the model of 

400 µm wide bubble are 7.908 × 104(±8430), 8.59 × 10-3 (±7.15 × 10-4) and 8.628 × 104 

(±8620), respectively.  

3.3 Parametric study of mixing 

In addition to the reproducibility of the bubble size, the acoustic mixing efficiency is another 

critical requirement for the application of bubble-induced microstreaming in immunoassay. 

The microstreaming was visualized by imaging the pathlines of fluorescent microbeads with 

the exposure time of 3 seconds. The acoustic streaming pattern (as indicated by the pathlines 

in Figure 4A-D) was used to qualitatively identify the optimal driving frequencies to acquire 

the fastest flow. For a given exposure time, the faster the acoustic-induced flow is, the bigger 

the acoustic streaming pattern is. It was confirmed that, for the given device and driving 

voltage, when the driving frequency was approaching 5-6 kHz, the acoustic streaming pattern 

became bigger and reached maximum at 5-6 kHz. Therefore the velocity of the acoustic-

induced flow was maximal when the driving frequency was 5-6 kHz. This frequency was 

smaller than the theoretical resonance frequency (7.9 kHz) of the 400 µm wide rectangular 
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bubble calculated using the equation in literature (Chindam et al. 2013). This might be related 

to the shape of the air/liquid interface. It was circular in this study but straight in the literature 

(Chindam et al. 2013). For the dye mixing characterisation and on-chip PSA immunoassay, 

the driving frequency of 5 kHz was used. 

The mixing of fluorescent dye and PBST in a two-bubble device was characterized to study 

the effect of the driving voltage, PDMS thickness and the substrate material on mixing 

efficiency. The injection of two liquids was stopped during mixing, which was different from 

the mixing characterisation of the two parallel-flowing streams in a microchannel in the 

literature (Ozcelik et al. 2014). The characterisation method of this study is more suitable for 

the application of mixing in bead-based immunoassay, where beads and samples were mixed 

without injection flow. Figure 5A shows the micrographs of the dye and PBST mixed at 5 

kHz and 28 V for 0, 2, 16 and 38 seconds (see Supplementary video 3). Before mixing, the 

dye and PBST approximately occupied each half of the microchamber (Figure 5A left). After 

the piezo was activated, the two liquids were quickly mixed. After 38 seconds of mixing, the 

fluorescence intensity of the mixture in the microchamber was uniform, which was an 

indication of through mixing. 

As shown in Figure 5B, during mixing, the standard deviation of fluorescence intensity 

(SDFI) in the microchamber becomes smaller over time and constant when the mixing is 

complete. Although the start values (t=0) of SDFI are greatly different among various mixing 

conditions, all curves fatten out at a certain value when the mixture is even. 

To further investigate the mixing progress, the SDFI (y) curve is fitted to a first-order decay 

model as below: 

 , (8) 
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where t is the mixing time; a and c are constants referred to as amplitude and offset, 

respectively; and b is a constant revealing the mixing ability. The amplitude (a) is related to i) 

the dye concentration, ii) ratio of dye and PBST in the microchamber, and iii) the exposure 

time.  These factors may vary significantly from experiment to experiment, so amplitudes of 

different curves (Figure 5B) are hardly equal to each other. The offset (c) is mostly related to 

the uneven illumination of the microchamber. Even when the mixture is homogeneous, the 

SDFI is not equal to zero if the illumination across the microchamber is not uniform. b is a 

constant reflects the mixing efficiency. It is dependent on PDMS thickness, driving frequency 

and voltage of the piezo, bubble size, and other factors that may affect the mixing. For 

example, when the dye and PBST were mixed in the device with 1-mm thick PDMS top layer 

on a glass bottom at 5 kHz and 28 V, the constants of the decay model were a=482.5±16.7, 

b=0.1401±0.006 and c=64.27±1.43. The R2 of this model is 0.991 (Figure 5C).  
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Figure 5 Mixing characterisation. A) Micrographs of dye and PBST mixed at the frequency of 5 kHz and the driving voltage 
of 28 V. B) Standard deviation of fluorescence intensity (SDFI) in the microchamber when dye and PBST were either not 
mixed (free diffusion) or mixed at 12, 20 and 28 V in the device with 1mm thick PDMS top layer on glass bottom. C) SDFI 
was fitted to a first-order decay model. D) Effect of driving voltage on mean lifetime. E) Effect of PDMS layer thickness on 
mean lifetime.  

For a standard first-order decay, the mean lifetime is given by: 

 
 

(9) 

where b is the mixing constant given in Equation (8). Since the SDFI during mixing can be 

perfectly described by the first-order decay model (Equation (8)), the mean lifetime of SDFI 

is proposed to characterise the mixing efficiency. The smaller the mean lifetime is, the higher 

the mixing efficiency is. 
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The mean lifetime when the dye and PBST were mixed at various driving voltages (12V-30V) 

in devices with either glass or PDMS bottom is shown in Figure 5D. It is inversely 

proportional to the driving voltage for both substrate materials. When the voltage is increased 

from 12V to 30V, the mean lifetime decreases from 58.8 seconds to 8.7 seconds and from 53 

seconds to 6.1 seconds for devices with glass and PDMS bottom, respectively. The mean 

lifetime of mixing in devices with PDMS bottom is slightly smaller than that in devices with 

glass bottom, regardless of the driving voltage. This difference may be related to the stiffness 

of the two substrates. In another word, the acoustic pressure in the bubble with PDMS bottom 

is probably bigger than that with a glass substrate. When the thickness of PDMS top layer (on 

glass bottom) varies from 2mm to 1mm, the mean lifetime at 12V and 30 V is reduced by 1/2 

and 1/4, respectively (Figure 5E). As the PDMS layer is decreased to 0.5 mm thick, the mean 

lifetime is further reduced to approximately two thirds of that with 1 mm thick PDMS layer.  

Therefore this study reveals that the mixing efficiency is i) proportional to the driving voltage, 

ii) inversely proportional to the PDMS top layer thickness, and iii) higher for the devices with 

PDMS bottom in comparison to those with glass bottom. 

The mean lifetime proposed in this study excludes the influence from both amplitude and the 

offset. It is able to better reflect the mixing efficiency compared to the mixing index, which 

has been widely applied to characterise the mixing efficiency (Huh et al. 2008; Lu et al. 2002; 

Ozcelik et al. 2014). The mixing index was defined by: 

 
 

(10) 

where  is the colour index of pixel k, and  is the average of the colour index over N pixel 

on a line or in a region. The mixing index is actually the coefficient of variation of N pixels. 

However, this method fails to eliminate the standard deviation of the colour of all pixels 
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caused by uneven illumination. Additionally, it can hardly compare the efficiency of mixing 

for different experiments when the imaging conditions (such as light intensity and the 

exposure time) and the ratio of dye/PBST vary. 

3.4 Disaggregation of beads 

Following the manual injection of the beads solution, approximately 800 individual beads 

(counted using ImageJ) were left in the microchamber. A magnetic field of 0.11T, generated 

from permanent magnets positioned in the proximity of the mixing chamber, activated the 

movement of the magnetic beads. Because of the magnetic field in the mixing chamber and 

the dipole-dipole interactions, the beads formed clusters on the edge of the mixing chamber 

(see Figure 6 A). After the activation of acoustic flow at 30V and 5 kHz, the beads clumps 

were broken into individual beads in less than 3 seconds (see supplementary video 4). Figure 

6 B and C show the dispersed single beads in the microchamber 30 and 55 seconds after the 

acoustic flow. Therefore, the acoustic microstreaming can not only disaggregate the bead 

clumps but homogeneously disperse the single beads in the microchamber, which is 

favourable for bead-based immunoassay in microfluidics. 
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Figure 6 Disaggregation of beads and the on-chip immunoassay enhanced by acoustic micromixing. Micrographs of (A) 
bead clumps before mixing, (B) individual beads after the acoustic flow for 30 seconds, and (C) single beads 55 seconds 
after the acoustic flow. D) Micrograph of the beads at the end of the on-chip assay. Fluorescence intensities of beads at 
different incubation/mixing time for PSA concentration of 100 ng/mL (E) and 5 ng/mL (F). The black and red dotted lines 
represent the exponential growth models for the data with and without mixing, respectively. 

Previous reports have shown aggregation of beads along the direction of external magnetic 

field (Cao et al. 2014; Marmottant and Hilgenfeldt 2004). Preventing beads from forming 

clusters or chains is important for maintaining the sensitivity and reproducibility of 

immunoassay in microfluidics. The active surface area of beads is maximal when they are 

physically away from each other. However, it is greatly reduced when beads form clusters. 

Consequently, the bead-surface-area-to-sample-volume ratio varies between different 

experimental runs, which may greatly reduce the reproducibility of analysis. Gao et al, 

reported the disaggregation of clusters with up to 60 beads using eight external 

electromagnets (Silvestre et al. 2013). 75% of the clustered beads were reported to be 

dispersed in 50 seconds using this technique (Silvestre et al. 2013).  In contrast, the acoustic 

mixing in this study efficiently dispersed a cluster with around 800 beads into individual 

beads in less than 3 seconds. After 55 seconds, the beads were homogeneously scattered over 
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the whole microchamber by the acoustic microstreaming. The maximal surface area of the 

beads is able to increase the ability of capturing analyte, especially when the concentration of 

the analyte is low.  

3.5 On-chip immunoassay 

The PSA immunoassay was employed to demonstrate the capability of acoustic micromixing 

in reducing assay time. A concentration of 5 ng/ml was used for the PSA solution, which is 

clinically relevant since the normal range cut off value of PSA in human serum is 4 ng/mL 

(Brawer et al. 1992). For comparison, a higher concentration of 100 ng/ml was also studied. 

The PSA solutions were incubated with beads in the microfluidic device either at a static 

condition or with mixing for 5, 15 or 30 minutes, respectively. The subsequent mixing or 

static incubation of the beads with R-PE label was fixed at 5 minutes. The total assay time 

was 15-40 minutes including 1-minute sample/R-PE label injection, 4-minute washing, 5 to 

30-minute incubation of sample and 5-minute incubation of fluorescence label. 

Supplementary video 5 shows the mixing of 5 µm beads and PSA solution in the 

microchamber at 5 kHz and 12 V. The acoustic mixing is able to induce not only the flow of 

the liquid but also the movement of the beads. As a result of such motions, the beads gain 

more opportunity to actively capture PSA molecules in the solution. Figure 6D is the 

fluorescent micrograph of the beads dispersed homogeneously using the acoustic 

microstreaming. The fluorescence intensity of beads at the end of the assay is shown in 

Figures 6E and F. At least 300 beads (N>300) at each time point are analysed to acquire the 

statistical significance. From Figures 6E and 6F, for both PSA concentrations, the 

micromixing can effectively enhance the assay, as reflected by the increase of the 

fluorescence intensity with mixing in comparison to that obtained without mixing. However, 

the increase is less pronounced for the high concentration PSA solutions. This is due to the 
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more abundant PSA molecules in the solution and thus the active mixing is relatively less 

obvious.  

The change of the fluorescence intensity with reaction time can be described by an 

exponential growth model: , where a and b are constants, and t is the reaction 

time. For the PSA solution with a concentration of 100 ng/ml, a and b have the values of 598 

and 0.105 (R2=1) for the assay with mixing and 484.9 and 0.115 (R2=1) for the assay without 

mixing, respectively. For the PSA solution with a concentration of 5 ng/ml, a and b have the 

values of 53.87 and 0.158 (R2=1) for the assay with mixing and 48.94 and 0.07 (R2=0.97) for 

the assay without mixing, respectively. It can be seen from Figures 6E and F, when the 

acoustic micromixing is applied, the assays with 100 ng/ml and 5 ng/ml PSA solutions only 

take approximately 15 minutes and 12 minutes, respectively, to reach the same fluorescence 

intensity levels as those obtained with only static incubation for 35 minutes. The assay time 

was reduced by approximately 2.3 and 3.1 times for the high and low PSA concentrations, 

respectively. A similar finding has also been reported in previous publications (Gao et al. 

2015; Petkovic-Duran et al. 2009; Petkovic et al. 2017). Such a mixing technique has been 

demonstrated with the capability of significantly speeding up immunoassays and shows the 

potential in lab on a chip devices for rapid detection of analyte. 

4 Conclusions  

This paper studies a technique to generate bubble-induced acoustic streaming in a 

microfluidic device for applications with microbeads based immunoassay. The bubbles are 

generated using a trapping method and, when an acoustic field is applied, induce 

microstreaming of fluids in the assay chamber. Such a microstreaming can not only 

effectively disperse beads to prevent aggregation but also generate mixing to speed up assay 

process. It is found that the Weber number should be in the range of 3.5 × 10-7 to 0.087 to 
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generate bubbles with reproducible size. Wider traps are suggested since 200-μm and 400-μm 

wide bubbles can be reliably controlled by hydraulic pressure in the range of 294 to 735 Pa. 

The study also reveals that the mixing efficiency is proportional to the driving voltage and 

inversely proportional to the PDMS top layer thickness. The PDMS substrate slightly 

increases the mixing efficiency compared to the glass substrate. It has been demonstrated that 

the acoustic microstreaming can speed up the immunoassay by at least 2-3 times which 

shows great potential in application in lab on a chip devices for fast analysis of analytes. 
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