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Abstract

This paper studies duopoly in which two-sided platforms compete in differentiated

products in a two-sided market. Direct competition on both sides leads to results that

depart from much of the current literature. Under some conditions the unique equilib-

rium in pure strategies can be computed. It features discounts on one side and muted

differentiation as the cross-market externality intensifies competition. Less standard,

that equilibrium fails to exist when the externality is too powerful (that side becomes

too lucrative). A mixed-strategy equilibrium always exists and is characterized. These

results are robust to variations in the extensive form. The model may find applications

in the media, internet trading platforms, search engine competition or even health

insurance (HMO/PPO).

Keywords: two-sided market, vertical differentiation, industrial organization, plat-

form competition. JEL Classification: C72, D43, D62, L13, L15.

“The only thing advertisers care about is circulation, circulation, circulation.”

Edward J. Atorino, analyst Fulcrum Global Partners, New York

June 17, 2004 (The Boston Globe).
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1 Introduction

In many markets, firms must satisfy two constituencies: consumers on one side and adver-

tisers on the other in the case of media, policyholders and service providers for HMOs and

PPOs, search engine users and advertisers, or application developers and users of software

platforms. This paper analyzes platform competition when these firms engage in vertical dif-

ferentiation. The model herein departs from much of the current literature in that platforms

compete directly on both sides. Doing so qualitatively alters equilibria the understanding of

which is important in practice.

The game considered has three stages: quality setting on one side (B) then price setting

on the same side, and price setting on the other side (A). The dominant platform on side

B is the higher-quality one for A-side agents, so vertical differentiation arises endogenously

on side A. The insights of this paper are robust to alterations of the extensive form, and so

may be applied to several markets like newsprint, operating systems or video game consoles,

and even healthcare and education (see Bardey and Rochet, 2010 and Bardey et al, 2010).

The results also extend where prices are zero on one side, such as media broadcasting, many

internet trading platforms, and search engine competition.

A unique pure-strategy equilibrium exists only when the A-side revenue is not too lu-

crative. Then the optimal quality level of the top firm is lower than in a well-established

benchmark. In this equilibrium, B-side quality and A-side revenue become substitutes. We

know differentiation is a means of extracting consumer surplus whose cost is surrendering

market share to the competition. But here every B agent allows the platform to extract

surplus from side A as well, and so is more valuable. Thus B agents receive a discount

commensurate with the profits that can be extracted from side A; then a lesser quality is

necessary to attract the marginal B consumer.

Beyond a well-defined threshold, the quality-adjusted price of the high-quality firm is so

low that it preempts market B, and consequently side A as well. But then the excluded firm

possesses a non-local deviation and can monopolize the market too. Equilibrium distributions

of the mixed-strategy equilibrium are characterized. The market may be preempted ex post,
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which is a distinct feature of two-sided markets in practice; for example, there is a single

eBay, a single Google and a single newspaper in any U.S. city (except for New York City).

In this model it owes not to a contraction of market B but rather to an expansion of the A

market, which induces more aggressive competition for B-side consumers. Capturing these

phenomena requires there to be competition on both sides, a claim that I now further clarify.

Competition with differentiation has been studied, among others, in two papers by Gab-

szewicz, Laussel and Sonnac (2001) (hereafter GLS) and Dukes and Gal-Or (2003) (now

DGO). In both, platforms act as monopolists in the advertising market (A), by each becom-

ing the sole conduit to their consumers (B). Irrespective of the exact construction, turning

platforms into local monopolies (bottlenecks) substantively affects the equilibrium precisely

because price competition on side A vanishes. In contrast, if the model is such that direct

(price) competition is preserved on the A market, a pure-strategy equilibrium may not exist

at all. If it does exist, even in an inherently symmetric environment such as Hotelling’s, a

pure-strategy equilibrium cannot be symmetric.

From a practical standpoint, restoring direct competition on both sides is important on

three accounts. First, the mere observation of a market gives no a priori indication whether

platforms should be modeled as bottlenecks. Second, casual observation of some two-sided

markets makes it plain that not all outcomes are symmetric (even if the model is). The

New York Times is sizeably larger than is closest competitor. According to this paper, this

asymmetry necessarily follows in many setups when direct competition exists on both sides.

Third, the bottleneck assumption understates the full extent of the competition between

firms. This is especially acute where prices are relevant on one side only. Search-engines,

for example, do not charge their users (B) for their services.

In this paper direct competition is re-introduced in the form of a ‘single-homing’ as-

sumption: both sides have unit demand. From Caillaud and Jullien (2003) we know that

single-homing amplifies competition directly on the side that single-homes, and therefore

indirectly on the other side.1 So too here, where direct competition for A-side consumers

1What is important for the characteristics of an equilibrium is whether there exists competition on both
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generates a premium to being the dominant platform on side B. When it is large enough,

this “premium effect” induces payoffs that are not quasiconcave; it is this lack of quasicon-

cavity that leads to a breakdown of the pure-strategy equilibrium. None of this arises absent

direct competition on the A side. Single-homing also finds empirical support in Kaiser and

Wright (2006) in the context of German magazines, in Argentesi and Filistrucchi (2007) in

Italian newspapers and in Jin and Rysman (2010), who study sportscard conventions.

The works closest to this paper are GLS and DGO, which both study a media duopoly.

GLS allows advertisers to place at most one ad on each platform; this is what creates the

bottleneck. For a small externality the location equilibrium displays maximal differentiation;

if the externality is large enough firms co-locate. In DGO the payoff function is additive

over advertisers; this linear separability induces the bottleneck. The equilibrium exhibits

minimal differentiation.2 In the present model there cannot be a pure-strategy equilibrium

with co-location nor minimal differentiation. The reason is that such a configuration dis-

sipates A-side profits precisely because both firms compete in prices (i.e. directly) in that

market too. Armstrong and Wright (2007) study a model of bottlenecks that shares the

essential features of GLS and generates results similar in spirit. Ferrando et al (2008) take

the locations as fixed. Prices are set simultaneously on both sides and Nash equilibria in

prices can be computed. They resemble coordination equilibria in which the market may be

preempted by one platform. Gabszewicz and Wauthy (2004) consider endogenous costless

quality. Under single-homing, three mutually exclusive equilibria may arise: a symmetric,

Bertrand equilibrium; a preemption equilibrium and an interior (asymmetric) equilibrium.

This multiplicity owes to the extensive form: agents have to form expectations that are

fulfilled in equilibrium. In the present model instead, subgame perfection leads to a unique

equilibrium. In the context of health care, Bardey and Rochet (2010) allow insurance com-

panies to compete for patients (through premia) and service providers (through rebates).

Patients are heterogenous in their health risk and thus may value health services differently.

sides, not whether agents single-home or multi-home. Supplement available from the author.
2In GLS, the revenue function at the advertising pricing stage of the game is independent of the competi-

tor’s price. In DGO the bargaining stage is independent across platforms.
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This affects health plans’ payments to physicians and hospitals, but there is no direct com-

petition. The authors assert that little changes with direct competition on both sides. This

suggestion should be weighed with some caution in light of our results. Reisinger (2012)

allows for direct competition for homogenous advertisers, while differentiated consumers do

not pay for the platforms. Advertisers do not care for the relative size of a platform’s (the

better platform), but for the number of consumers, hence there is no premium effect.

The next Section introduces the model. Section 3 covers the characterization and some

implications. Section 4 presents an extensive discussion in which robustness checks are

performed. All proofs are sent to the Appendix, as well as some additional technical material.

2 Model

There are two platforms, identified with the subscripts 1 and 2, that market a good (for

example, news) to a continuum of B-side consumers of mass 1. Simultaneously it also sells

another commodity (such as advertising) on the A side.

B agents’ net utility function is expressed as u(b, θi, p
B
i ) = θib− pBi ; i = 1, 2 when facing

a price pBi . All B agents value quality in the sense of vertical differentiation – there is no

ambiguity as to what quality is. The benefit b is uniformly distributed on an interval
[
β, β

]
and θ ∈ Θ =

[
θ, θ
]
denotes the quality parameter of each good. Let pB =

(
pB1 , p

B
2

)
, θ =

(θ1, θ2). These consumers buy at most one unit (say, one newspaper). When θ1 > θ2, define

the measure D1

(
pB, θ

)
≡ Pr

(
θ1β − pB1 ≥ max

{
0, θ2β − pB2

})
. Hence they will purchase

from provider 1 over provider 2 as long as β ≥ β̂ ≡ pB1 −pB2
θ1−θ2

.

A agents may choose to purchase at most one unit at price pAi if eDia− pAi ≥ 0; i = 1, 2,

where e is a scaling parameter and a represents the marginal benefit of advertising. A-

side agents are heterogenous in this parameter, which is uniformly distributed on [α, α]

with mass 1. The more B agents any A agent can reach, the more they value this ser-

vice, so demand Di represent the quality of platform i. The ranking of the platforms’
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market shares on the B side defines their relative quality on the other side. Given prices

pA =
(
pA1 , p

A
2

)
and coverage D = (D1, D2), an A-side agent purchases from 1 over

2, only if eD1a − pA1 ≥ max
{
0, eD2a− pA2

}
. This decision rule generates the measure

Pr
(
eD1a− pA1 ≥ max

{
0, eD2a− pA2

})
≡ q1

(
pA,D

)
. There is no externality from the A to

the B side (see the discussion, Section 4). The one unit limit implies competition on the

A-side. It can also be interpreted as a tight liquidity constraint.

There is no capacity constraint and zero marginal cost.3 The first assumption rules out

the trivial case in which the low-quality platform necessarily faces zero demand in the price

subgames on both sides; it is also sufficient for market coverage.

Assumption 1 β − 2β > 0, α− 2α > 0 and θβ ≥ 1
3
(θ − θ)(β − 2β).

Quality θi is costly and is modeled as an investment with cost kθ2i , where we impose

Assumption 2 k > (2β − β)2/18θ.

to obtain an interior solution in the benchmark problem.

Game: Platforms first choose a quality level simultaneously. Given observed qualities,

they each set prices to B consumers, who make purchasing decisions. With D observed,

they set prices to A agents in a third stage. This extensive form captures some real-life

situations.4 An alternative timing is discussed in Section 4; the results are robust to it. The

equilibrium concept is Nash subgame-perfect. The three-stage game is denoted Γ. For any

platform i = 1, 2, the objective function reads

Πi = Di

(
pB, θ

)
pBi − kθ2i + qi

(
pA,D

)
pAi = Ri(p

A,pB, θ)− kθ2i (2.1)

3A capacity constraint is either trivially exogenous, or endogenous as in Kreps and Scheinkman (1983),

which may induce a quantity-setting game instead of the price game.
4For example, in the case of media, B-prices (cover prices or subscription rates) are more difficult to

change than A-prices (advertising rates), and the media format even more so. Also, readership is often

reported to advertisers, so known to them when they purchase.
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3 Equilibrium analysis

We proceed in three steps, starting with the A side where the platforms’ behavior is not

directly affected by B-side quality choices.

3.1 A-market subgame

This stage replicates the result of the classical analysis of vertical differentiation. Let e∆D =

e · (D1−D2) denote the scaled difference in the platforms’ quality. Then equilibrium payoffs

take a simple form, for which the proof is standard and therefore omitted (see Tirole, 1988).

Lemma 1 Suppose D1 ≥ D2 w.l.o.g. There may be three pure strategy equilibria in the A

market. When D1 > D2 > 0, the profit functions write Π
A

1 = e∆D ·
(
2α−α

3

)2
; ΠA

2 = e∆D ·(
α−2α

3

)2
. When D1 > D2 = 0, platform 1 is a monopolist and its profits are ΠAM

1 = eD1·
(
α
2

)2
.

For D1 = D2, the Bertrand outcome prevails and platforms have zero profits.

Following Lemma 1 the profit function (2.1) rewrites

Πi = pBi Di(p
B, θ)− k(θi) + ΠA

i

(
e∆D(pB, θ)

)
(3.1)

where B-consumer demand takes the form Di = β − pBi −pBj
∆θ

, Dj =
pBi −pBj

∆θ
− β for θi > θj. As

usual, ∆θ = θi − θj and for convenience denote A =
(
2α−α

3

)2
and A =

(
α−2α

3

)2
.

3.2 B-side price subgame

From Lemma 1 three distinct configurations may arise on the equilibrium path. In the first

case platform 1 dominates the B market, in the second one both share the B market equally

and in the last one it is dominated by firm 2. Hence the profit function (3.1) rewrites

Πi = pBi Di(p
B, θ)− kθ2i +


Π

A

i , if Di > Dj;

0, if Di = Dj;

ΠA
i , if Di < Dj.

(3.2)
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Figure 1: Best replies and unique equilibrium

This function is continuous with a kink at the profile of prices p̃B such that D1 = D2. More

importantly it is not quasi-concave because of the externality generated by A-side revenue;

therefore the best response is discontinuous.5 It is nonetheless possible to construct a unique

equilibrium in pure strategies, which always exists. (Note that observing θ1 > θ2 acts like

a coordination device; it rules out multiple equilibria.) The demonstration is left to the

Appendix, Section 6.3; here we discuss it briefly and focus on its outcome.

First, from (3.2), it is immediate that any price profile pB such that D1 = D2 is dom-

inated. Next we can define ‘quasi best responses’ corresponding to platforms playing as if

either D1 > D2 or D1 < D2 (for example, p2, p2 in Figure 1), from which we can construct

the true best replies – discontinuous at the points p̂1, p̂2. The discontinuity set is not trivial:

mixed strategies cannot restore the second candidate equilibrium – see Figure 1. Indeed an

outcome such that θ1 > θ2 and D1 < D2 entails playing a weakly dominated strategy for

player 2. So the intuitive reasoning whereby the low-quality firm may find it profitable to

5The conditions of Theorem 2 of Dasgupta and Maskin (1986) are not met, and neither are those of Reny

(1999). The sufficient conditions (Proposition 1) of Baye et al (1993) also fail here, so their existence result

cannot be readily applied. A recent contribution by Philippe Bich (2008) establishes existence by introducing

a measure of the lack of quasi-concavity that resembles ironing. Our construction does remain essential in

that we face a potential multiplicity of equilibria and seek a characterization.
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behave very aggressively in order to access large advertising revenue does not hold true.6

Last, a necessary and sufficient condition for existence is verified by construction.

Proposition 1 Let θ1 > θ2 w.l.o.g. There may be two possible configurations arising in the

B-side price subgame. For each, there exists a unique Nash equilibrium in pure strategies:-

• For ∆θ > 2e(A+A)

β−2β

pB∗
1 =

1

3

[
∆θ
(
2β − β

)
+ 2e

(
A− 2A

)]
pB∗
2 =

1

3

[
∆θ
(
β − 2β

)
+ 2e

(
2A− A

)]
• If ∆θ ≤ 2e(A+A)

β−2β

pB∗
1 =

∆θβ

2
− eA; pB∗

2 = 0

B-side prices resemble the S&S prices but include a discount (A − 2A < 2A − A < 0) that

is linear in the A-side profits. Platforms internalize the full value of the B agents, which

intensifies competition for their patronage. The quality spread ∆θ, fixed in the first stage,

may be too narrow to sustain two firms. That is, the high-quality platform may be able to

pre-empt the market with its quality choice, thank to the cross-market externality.

3.3 Equilibrium

In the first stage, platforms face the profit function (3.2), which they each maximise by

choice of their quality variable θi. That is, each of them solves

max
θi∈[θ,θ]

Πi(θi, θj) ≡ pB∗
i Di

(
θi, θ

∗
j ,p

B∗)+ΠA
i

(
e,∆D(pB∗, θi, θ

∗
j )
)
− kθ2i

subject to

β̂ ≡
pB∗
i − pB∗

j

θi − θj
∈
[
β, β

]
(3.3)

6That is, playing θi < θ2 but offering a very low price pBi so that Di > Dj .
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2e(A+A)

β−2β

θ1

Πi

Figure 2: Profit functions for different values of the A-side profits

The constraint is a natural restriction guaranteeing that the endogenous threshold β̂ remain

within the exogenous bounds [β, β].7 On the equilibrium path it can be rearranged as a pair

of inequalities: ∆θ
(
2β − β

)
+ 2e(A + A) ≥ 0 and ∆θ

(
β − 2β

)
− 2e(A + A) ≥ 0. Only the

second one is constraining.

These profit functions are not necessarily well-behaved. Section 6.1 of the Appendix

studies Π1(θ1, θ2) in the details necessary to support our results.

3.3.1 Pure-strategy equilibrium

For e(A + A) small enough the function Π1(., .) remains increasing (and concave) on the

portion beyond θ1 = θ̃(e) ≡ θ + 2e(A+A)

β−2β
, where it admits a maximiser. This is illustrated in

Figure 2 (the higher curve corresponds to the complementary case). To ensure this is the

case we impose

Assumption 3 e < ē ≡ min
{
1,
(

(2β−β)2

27k
− θ
)

β−2β

2(A+A)

}
, 8

7θi → θj ⇒ β̂ → ∞.

8This arises from the condition (θ̂1 − θ)(β − 2β) > (θf1 − θ)(β − 2β) ≥ 2e(A+A), where θf1 =
(2β−β)2

27k is

defined in Section 6.1.
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which ensures that when θ̂1 solves the first-order condition, ∆θ ≥ 2e(A+A)

β−2β
so that both

platforms operate (Proposition 1). It is tantamount to saying the A market not too lucrative.

Proposition 2 Suppose Assumption 3 holds. The game Γ admits a unique equilibrium in

pure strategies in which both platforms operate and choose different qualities. It is character-

ized by the triplet
(
pB∗,pA∗, θ∗

)
defined by Proposition 1, Lemma 1, and the optimal actions

θ∗2 = θ and θ∗1 = θ̂1, where θ̂1 uniquely solves

(2β − β)2 = 18kθ1 +

(
2e(A+ A)

∆θ

)2

(3.4)

The term
(

2e(A+A)
∆θ

)2
is labeled the ‘cross-market effect’; it acts as an incentive to reduce

quality. Condition (3.4) trades off the marginal benefit of quality (the left-hand side) with

its total marginal cost. The latter includes the marginal loss of A-side profit induced by

differentiation. More differentiation leads to higher B-side prices; but higher prices means

surrendering market share B-side market share, thus foregoing A-side profits. This increases

the cost of differentiation, which now becomes sensitive to the magnitude of A-side profits

as well. This plays an important role for the very existence of a pure-strategy equilibrium.

Comparative statics show that θ1 is decreasing in e: the more attractive the A-side profit, the

more powerful the cross-market effect and the more muted is the Differentiation Principle.

We can expand on the insights of Proposition 2, where we take S&S to be the benchmark.

Corollary 1 In any pure-strategy equilibrium of the game Γ, quality is lower than it would

be absent the A-market externality.

Differentiation is known to soften price competition, but here the cross-market externality

puts emphasis back on market share and forces the platforms to engage in more intense

price competition for B consumers. Lower consumer prices relax the need to provide costly

quality: the marginal B consumer demands a lesser product. This result resembles DGO’s

equilibrium, which they call ‘minimal differentiation’. Here it owes to the increased value of

each B-side consumer, which renders differentiation costlier.
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3.3.2 Mixed strategies

When Assumption 3 is not satisfied, the necessary first-order condition (3.4) fails to hold

entirely. As can be seen on Figure 2, the high-quality firm would like to pick the point θ̃(e),

where Π1(., .) reaches is maximum. At that point its rival is excluded (∆θ is too low). But

this cannot be an equilibrium for firm 2 can “leap” over firm 1 and become the monopolist

at a negligible incremental cost k(θ1 + ε)2 − kθ21.

To appreciate the mechanics, the extent of the discount firm must offer, increases in

the A-side profits. The high-quality platform can further increase its price dominance by

lowering quality: its B price is pB∗
1 = 1

3

[
∆θ(2β − β) + 2e(A− 2A)

]
, while that of its rival

is pB∗
2 = 1

3

[
∆θ(β − 2β) + 2e(2A− A)

]
. This goes on until the quality spread is so narrow

that firm 2 faces preemption; the market tips.

In the Appendix (Section 6.3) we show that a mixed-strategy equilibrium always exists.

Let Hi(θi) be the probability distribution over i’s play and hi(.) the corresponding density,

ΘN
i the relevant support of Hi and θci the upper bound of the support. Let also H∗

i be a best

response and Ri(θi, θj) denote the revenue accruing to i.

Proposition 3 The symmetric mixed-strategy equilibrium of the game Γ is characterized by

the pair of distributions H1, H2 on ΘN
i ≡ {θ} ∪

[
θ̃(e), θc

]
, i = 1, 2 satisfying

Hi(θ)

∫
ΘN

j

Ri(θ, θj)dH
∗
j (θj)+

∫ θc

θi=θj

Ri(θi, θj)d(Hi(θi)×H∗
j (θj)) = k

∫ θci

θ̃(e)

θ2i d(Hi(θi)×H∗
j (θj))

(3.5)

with

H∗
i (θ) ∈ (0, 1), H(θc) = 1

and

hi(θi) = 0, θi ∈
(
θ, θ̃(e)

)
and θc defined by θc = max

{
θ′i|Πi(θ, θ

′
i) = 0,Πi(θ̃(e), θ

′
i) = 0

}
, i = 1, 2.9

9The notation θi = θj in the second integral of (3.5) reflects that for θ̃(e) ≤ θi < θj , firm i collects zero.
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Condition (3.5) balances the expected benefit from adopting the distribution Hi with its

expected cost, when platform j plays the best response H∗
j . The platforms do not mix over

all the pure actions that are available to them. To see why, recall that θ̃(e) is such that when

θ1 = θ̃(e) and θ2 = θ, platform 2 has no market share and 1’s profit are the highest. Suppose

firm 1 picks a higher action than firm 2 (θ1 > θ2); playing θ1 = θ̃(e) dominates any other

play below θ̃(e). In response, playing anything but θ2 = θ is dominated: θ secures 0 while

any other play generates a loss. Even if platform 1 selects a quality beyond the preemption

point (θ1 > θ̃(e)) firm 2’s profits are still maximized by playing θ because they decrease in

θ2. That is, the range
(
θ, θ̃(e)

)
is dominated and no mass should be assigned on it; but θ

remains a best response to any quality θ1 ≥ θ̃(e), so there must be an atom at that point.

Last, platform 1 must assign some probability mass on the range
(
θ̃(e), θc

]
otherwise it is

necessarily preempted by 2’s non-local deviation.

These equilibrium distributions do not rule out an outcome such that ∆θ is too small to

sustain two firms. However they guarantee that it does not happen with probability one.

To do so, platforms must (i) randomize and (ii) in doing so, try to sufficiently differentiate.

The next result further speaks to this point.

Proposition 4 Suppose e > ē. When no platform plays at the lower bound θ, the market is

necessarily monopolized ex post. Otherwise both operate.

Recall Proposition 1; depending on the choice of θ1, θ2, one or two platforms may operate

from the price subgame on. However the length of the interval [θ̃(e), θc] is not sufficient

to accommodate two firms: θc − θ̃(e) < 2e(A + A)/(β − 2β)–although clearly θc − θ ≥

2e(A + A)/(β − 2β).10 So for both platforms to survive, at least one of them must choose

the lowest quality.

Proposition 4 compares favorably to some industries’ idiosyncrasies. First, either monop-

olization or duopoly may be an ex post outcome, which fits some industry patterns.11 This

suggests an alternative rationale for the observed concentration in these markets. Accord-

10Corresponding to the condition ∆θ ≥ 2e(A+A)/(β − 2β).
11Markets such as print media, internet trading platforms or search engines are known to tip.

13



ing to this model, some players may be driven out not because of a market contraction on

the B side, but because of an expansion on the other one. Second, ex post profits are not

monotonically ranked: the play (θ1, θ
c
2) implies Π1 > Π2 = 0 although θ1 < θ2. So too in

media for example, where the higher-quality shows (e.g. HBO) or magazines (e.g. The New

Yorker) do not necessarily yield higher profits.

3.4 Zero prices on one side

Many two-sided markets feature zero prices on at least one side. This may be an equilibrium

outcome or an exogenous imposition (or both in the sense of binding constraint). Examples

include broadcasting, the Yellow Pages or internet search engine usage.

Proposition 5 Fix pB1 = pB2 = 0. A pure-strategy equilibrium does not exist. A mixed-

strategy equilibrium exists and is characterised as in Proposition 3.

Proposition 4 tells us we should expect pre-emption in these markets. The examples of

Google (users do not pay) or eBay (buyers do not pay fees) lend credence to this claim.

These outcomes do not arise in a model without competition on both sides.

4 Discussion

This Discussion is offered largely without proof. These proofs do exist and are available from

the author.

One-sided or two-sided externality

The model ignores any externality the side A exerts on B agents. Media consumers may

dislike advertising; game developers seek more gamers to market to, and these likely enjoy

games’ diversity.

Introducing a second externality from A to B does not modify the results qualitatively.

This means the results are quite widely applicable. A negative A-to-B externality effectively
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damages the B-side quality of the dominant platform more than that of the dominated one.

In response that dominant platform must offer a further discount. This narrows the range

of parameters on which the pure-strategy equilibrium can be sustained. This feedback thus

hardens competition on side B. This is in line with DGO’s results, for example, who show

that the negative externality associated with adverts leads to minimal differentiation.

To see why, rewrite the B-side utility function as ui = θib − pBi − δqi, where δqi is

a disutility from A-side consumption level. A-side demand is defined as before; suppose

θ1 > θ2, B demands are D1 = β− ∆pB+δ∆q̃
∆θ

and D2 =
∆pB+δ∆q̃

∆θ
−β. The new term is δ∆q̃: the

utility impact of the difference in A-side expected consumption levels; these can be computed

given (θ,p). It can be shown that ∆q̃ = (α+α)/3: a constant. Let (α+α)/3 ≡ Â, eventually

the condition for platform 2 to be active turns into D2 ≥ 0 ⇔ ∆θ(β− 2β) ≥ 2e(A+A)+ Â,

which is more restrictive than the one of Proposition 1.

Bottlenecks and preemption

Suppose that A-side agents are able to place at most one ad on each platform, as in GLS.

Then they are a monopoly on side A with profits πA
i = α2eDi/4. Equilibrium prices can be

computed as

pB1 =
1

3

[
∆θ(2β − β)− 3eα2

4

]
; pB2 =

1

3

[
∆θ(β − 2β)− 3eα2

4

]
The standard price functions pi(θ) are only shifted by eα2/4 each – independently of what

the other platform does. After simple manipulations, the profits functions write

Π1 = ∆θ

(
2β − β

3

)2

− kθ21; Π2 = ∆θ

(
β − 2β

3

)2

− kθ22

exactly as in S&S. So the externality is present and affects prices, but not the quality

choices. When platforms are bottlenecks, the pass-through is perfect: consumers (B) receive

a discount that exactly exhausts what platforms can extract from the other side (A). Then

the incentives at the quality setting stage are standard. There is no incentive to decrease

quality nor for endogenous pre-emption through quality. The exact same outcome obtains

if introducing a A-to-B externality together with the bottleneck assumption.
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Robustness check: simultaneous moves

The three-stage game suits some industries well (e.g. media), but not necessarily all. For

example, Hagiu (2006) studies the problem of game console manufacturers, who must si-

multaneously commit to a price on each side of the platform. The analysis is robust to this

change in timing, except for one small variation.12. Consider the platforms’ problem at the

price-setting stage given some θ1 > θ2 and expected D̃1 > D̃2:-

max
pA1 ,pB1

Π1 = pB1

[
β − pB1 − pB2

∆θ

]
+ pA1 e

[
α− pA1 − pA2

∆D̃

]
max
pA2 ,pB2

Π2 = pB2

[
pB1 − pB2

∆θ
− β

]
+ pA2 e

[
pA1 − pA2

∆D̃
− α

]
The first-order condition with respect to pAi , i = 1, 2 remain standard; from this pA1 =

e∆D̃
3
[2α− α]; pA2 = ∆D̃

3
[α− 2α] as before. The first-order conditions w.r.t. pBi simplify to

∆θβ − (2pB1 − pB2 )−
2

9
e [(2α− α)(α + α)] = ∆θβ − (2pB1 − pB2 )− 2A1 = 0

−∆θβ + (pB1 − 2pB2 )−
2

9
e [(α− 2α)(α + α)] = −∆θβ + (pB1 − 2pB2 )− 2A2 = 0

These are linear equations in B prices, as in the sequential move model. This readily suggests

that little will change from this new timing. This linearity arises because A profits are still

linear in ∆D̃. The solution concept is Nash equilibrium, the best replies are discontinuous

and there is a unique equilibrium in prices, with a condition on ∆θ. That condition is also

less restrictive than in the sequential-move game.

Things do change a little in the first stage. When the pure-strategy equilibrium can

be sustained, both first-order conditions may bind, thus yielding interior solutions for both

platforms. This is in contrast to the sequential game. But this behavior is non-monotonic:

for naught A-side profits platform 2 benefits from maximal differentiation, for low A profits it

seeks less differentiation (smaller ∆θ), and for large enough A profits, maximal differentiation

again. The reason is that under simultaneous moves, the discount offered by the dominant

firm in the B market is smaller. So ∆D – the difference in their market share – is also

12Here we discuss the results; the derivations can be found in a supplement available from the author
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smaller. As a consequence it is also less dominant in the A market and the condition on ∆θ

is less tight. This creates an incentive for the low-quality firm to capture some market share

in B by increasing quality. In the sequential game, the discounts are such that platform 2

never has such an incentive.

This difference in discounts owes to the timing. By way of (imperfect) analogy, one

can consider the difference between a Cournot and a Stackelberg game. In the latter, the

dominant firm commits to a strategy and the follower takes it as given. By the time they

move in the Amarket, platforms are committed to a strategy in the B market. This generates

incentives for platforms to behave more aggressively in the B market in the fist place.

5 Conclusion

This paper has developed an analysis of differentiation in a duopoly of two-sided platforms,

where competition prevails on both sides of the market. This yields markedly different results,

as compared to those typically found in the literature. Direct competition on the A side puts

a premium on being the better platform (here meaning covering a larger share) on the B side.

This exacerbates competition in market B, with consequences on the nature of equilibrium.

Whether a pure-strategy equilibrium exists depends on the relative attractiveness of A-side

profits; that is, we can identify why it may break down. This paper thus complements prior

works, in particular GLS and DGO who analyzed cases of bottleneck competition.

When a pure-strategy equilibrium exists, differentiation is hampered because too costly

in terms of market share. The more attractive the A side, the narrower is differentiation. It

may be insufficient to sustain two active platforms, at which point the equilibrium breaks

down. Then platforms play in mixed strategies and one of them may be preempted ex post.

These results are robust to a change in timing; all carry over to quantity competition in the

B market and the mixed strategy equilibrium remains valid under horizontal differentiation.

Hence they are not exclusive to the chosen extensive form and may find applications in a

broad array of industries.
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Our ability to compute an equilibrium rests on the simple structure chosen, and in partic-

ular on two important assumptions: single-homing and independence between A and B-side

consumption decisions. Single-homing is not essential but it is convenient. What is essen-

tial is that platforms compete directly for consumers on both sides, which single-homing

captures. Independence in consumption decisions is important; it implies that the A side

only cares for the B-side market share, not its composition. For example, it asserts that the

choice of media consumption is not a signal for good consumption. But we do know that

media companies strive to segment their markets to suit advertisers. These characteristics

are so far left out for future research.

6 Appendix

The Appendix contains some additional material as well the proofs of the propositions.

6.1 Analysis of the high-quality firm’s profit function

Let C ≡
[
2e
(
A+ A

)]2
. With the reformulation of constraint (3.3), the objective function

of platform 1 writes

Π1 =


1
9

(
∆θ(2β − β)2 +B1 +

C
∆θ

)
− kθ21, if ∆θ > 2e(A+A)

β−2β
;

1
9

(
∆θ(2β − β)2 +B1 +

√
C(β − 2β)

)
− kθ21, if ∆θ ≤ 2e(A+A)

β−2β

(6.1)

where B1 = (2β − β)2e
(
2A− A

)
+ 3e

(
β + β

)
A is a constant. From the first line of (6.1)

we can see why (3.3) is necessary: depending on C, the platform may seek a large or small

∆θ. The second line of (6.1) rules out the artificial case of firm 1 facing a demand larger

than the whole market.13 For platform 2, profits are

Π2 =


1
9

(
∆θ(β − 2β)2 +B2 +

C
∆θ

)
− kθ22, if ∆θ(β − 2β) > 2e(A+ A);

0, ∆θ(β − 2β) ≤ 2e(A+ A) and θ2 = 0;

−kθ22, ∆θ(β − 2β) ≤ 2e(A+ A) and θ2 > 0;

(6.2)

13It is derived by taking C
∆θ as fixed at its lowest value, that is, where ∆θ =

√
C

β−2β
= 2e(A+A)

β−2β
.
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with B2 = (β − 2β)2e
(
A− 2A

)
+ 3e

(
β + β

)
A. In the sequel θ1 > θ2 without loss of

generality. For this Section, take Proposition 1 as established. The profit function Π1(., .) is

obviously continuous for θ1 < θ +
√
C

β−2β
or the converse. Furthermore, assume e < ∞, then

Claim 1 The function Π1 is continuous for ∆θ =
√
C

β−2β

Proof: For ease of notation, let Π1 = ΠL
1 for all ∆θ ≥

√
C

β−2β
and Π1 = ΠR

1 otherwise. These

are the definitions of Π1(θ1, θ) to the left and the right of the point such that ∆θ =
√
C

β−2β

for any pair (θ1, θ2). To the left platform 1 is a monopolist whose profits ΠL
1 are necessarily

bounded. The function is defined as ΠL
1 : Θ1×Θ2 ⊆ R2 7→ R, therefore Theorem 4.5 in Haaser

and Sullivan ([17], page 66) applies: a mapping from a metric space into another metric space

is continuous if and only if the domain is closed when the range is closed. So ΠL
1 (θ1, θ2) is

continuous at ∆θ =
√
C

β−2β
, and is necessary the left-hand limit of the same function ΠL

1 . Now

consider a sequence θn1 such that ∆θ >
√
C

β−2β
converging to

√
C

β−2β
from above for some fixed

θ2. This sequence exists and always converges for Θ1 ⊆ R is complete. As e < ∞ and A and

A are necessarily bounded, C is finite so there is some n and some arbitrarily small δ such

that ΠR
1 (θ

n
1 , θ2)−ΠL

1 (θ2 +
√
C

β−2β
, θ2) < δ. That is, lim

θn1→θ2+
√

C
β−2β

ΠR
1 (θ

n
1 ) = ΠL

1 (θ2 +
√
C

β−2β
, θ2).

Hence Π1 is continuous for ∆θ =
√
C

β−2β
.

When C becomes large enough, Π1(., .) is no longer well behaved.

Claim 2 There exists some Cf ≡
[
(2β−β)2

27k
− θ
]2 (

(2β−β)2

3

)
such that Π1(., .) admits a binding

first-order condition for C ≤ Cf only. When C > Cf , its maximum is reached at the kink:

θ1 = θ +
√
C

β−2β
.

Proof: Seeking first-order conditions of Π1(., .) with respect to θ1 yields

∂Π1

∂θ1
=



(
2β−β

3

)2
− 2kθ1 = 0, for ∆θ ≤

√
C

β−2β
;(

2β−β

3

)2
− C

(3∆θ)2
− 2kθ1 = 0, for ∆θ >

√
C

β−2β
and C ≤ Cf ;(

2β−β

3

)2
− C

(3∆θ)2
− 2kθ1 < 0, for ∆θ >

√
C

β−2β
and C > Cf ;

(6.3)

When binding, the second line of system (6.3) can be rearranged as
(
2β − β

)2
= ϕ(θ1), with

slope ϕ′(θ1) = 18k − 2C
(∆θ)3

. Since ∆θ > 0, this FOC has at most two solutions: one where
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ϕ′(θ1) < 0 and the other with ϕ′(θ1) > 0. The SOC requires ϕ′(θ1) ≥ 0 for the FOC to

identify a maximiser, so there exists a unique local maximiser of Π1, denoted θ̂1. Let θ01 be

the (unique) maximiser of the first line of system (6.3). It is immediate that θ̂1 < θ01 and

consequently θ01 − θ2 ≤
√
C

β−2β
, θ1 ∈ BR1(θ2) can never be true. That is, the two statements

of the first line of (6.3) cannot be simultaneously satisfied: firm 1 would not play the first

line of (6.1), but the second one. We rewrite:

∂Π1

∂θ1
=

(
2β − β

3

)2

− 2kθ1 > 0; for ∆θ ≤
√
C

β − 2β

Because Π1 is monotonically increasing below θ̂1 and the SOC is monotonic beyond θ̂1, it

is concave for C ≤ Cf and θ̂1 is a global maximiser. The binding first-order condition

defines a function C(θ1, θ2) ≡ (∆θ)2
[
(2β − β)2 − 18kθ1

]
, whence dC(.)

dθ1
= 0 ⇔ θf1 =

(2β−β)2

27k
.

Substituting back into C(θ1, θ2) gives the cut-off value Cf ≡
[
(2β−β)2

27k
− θ2

]2 (
(2β−β)2

3

)
. When

C > Cf , the first-order condition (6.3) is everywhere negative, hence

dΠ1

dθ1
|
θ1<θ+

√
C

β−2β

> 0;
dΠ1

dθ1
|
θ1>θ+

√
C

β−2β

< 0

and is not differentiable at ∆θ =
√
C

β−2β
. By Claim 1 it is continuous, and monotonic on either

side of ∆θ =
√
C

β−2β
. Therefore, θ̂1 such that ∆θ =

√
C

β−2β
is the unique maximiser of Π1(θ1, θ2)

given some fixed θ2.

6.2 Existence of a mixed-strategy equilibrium

Take Proposition 1 as established.

Proposition 6 A mixed-strategy equilibrium of the game Γ always exists.

This assertion holds trivially when Assumption 3 holds. The balance focuses on the case

where it fails. It is not immediate that the game admits a mixed strategy equilibrium, for

the payoff correspondences are not upper-hemicontinuous and their sum is not necessarily

so either. See Dasgupta and Maskin (1986). We need some preliminaries to establish the

Proposition.
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Denote θ̃ = θ +
√
C

β−2β
from now on. It is not immediate that the game Γ admits a

mixed-strategy equilibrium, for the payoffs are not everywhere continuous. First define by

θc1 the threshold such that Π1(θ
c
1, θ) = 0 when θ1 > θ2. This point exists and exceeds

θ̃1 because dΠ1

dθ1
|θ1>θ̃1

< 0 and the cost function is convex. Neither platform will want to

exceed that threshold, so we restrict the set of pure actions over which firms randomise to

be [θ, θci ] ⊆ Θi, i = 1, 2. Next, any distribution over this set must assign zero mass to

any θi ∈ (θ, θ̃) by Claim 3: any action in this interval is dominated by either θ or θ̃. For

[θ̃, θci ] large enough (and θ2 ≥ θ̃) there may be outcomes such that ∆θ >
√
C

β−2β
, in which

case both platforms are active, or ∆θ ≤
√
C

β−2β
, in which case only the high-quality firm

operates. Take θ1 > θ2 > θ and suppose ∆θ >
√
C

β−2β
and Π1 > Π2 > 0. Let θ2 increase,

both Π1 and Π2 vary smoothly. But while limθn2 ↑θ1 Π1 = Π1 > 0, limθn2 ↓θ1 Π1 = −kθ21, and

similarly for firm 2. Both payoff functions are discontinuous at the point θ1 = θ2. In this

case neither the payoffs nor their sum are even upper-hemicontinous. Following Dasgupta

and Maskin’s (1986) Theorem 5, it is first necessary to characterise the discontinuity set. If

it has Lebesgue measure zero, a mixed-strategy equilibrium does exist. Consider the case

where θ1 ≥ θ2 w.l.o.g. and define Υ0 =
{
(θ1, θ2)|θ1 = θ2, θi ∈ [θ̃i, θ

c
i ] ∀i

}
, the set on which

the payoffs are discontinuous. Further define the probability measure µ(θ1, θ2) over the set

ΘN = {θ1} ∪ [θ̃1, θ
c
1]×{θ2} ∪ [θ̃2, θ

c
2]. It is immediate that Υ0 has Lebesgue measure zero, so

that Pr ((θ1, θ2) ∈ Υ0) = 0. Next we claim

Lemma 2 Suppose θ1 = θ2 = θ, an equilibrium in mixed strategies exists in the B-side price

subgame.

As each platform’s payoffs are bounded below at zero and only one of them can operate

(except at pB1 = pB2 ), their sum is almost everywhere continuous, except for the set of pairs

(pB1 = pB2 ), which has measure zero.

Proof: Let θ1 = θ2 = θ. The sum of profits Π = Π1+Π2 is almost everywhere continuous.

Either Π = Π1 > 0 ∀pB1 < pB2 , or Π = Π2 > 0 ∀pB1 > pB2 , both of which are continuous except

at pB1 = pB2 , where Π = Π1 + Π2 = 0. But the set Ψ =
{
(pB1 , p

B
2 )|pB1 = pB2 , (p

B
1 , p

B
2 ) ∈ R2

}
has Lebesgue measure zero. Theorem 5 of Dasgupta and Maskin (1986) directly applies and
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guarantees existence of an equilibrium in mixed strategies.

Therefore the pair θ1 = θ2 = θ may be part of an equilibrium of the overall game. Then

Proposition 6 asserts that a mixed-strategy equilibrium of the game Γ exists, which can now

be easily proven.

Proof: We only need showing that the payoff functions Πi i = 1, 2 are lower-

hemicontinuous in their own argument θi. Without loss of generality, fix θ1 > θ2. We

know that Π1 is continuous for any θ1 > θ2 (refer Section 6.1). From Claim 3 it is immediate

that Π2 is continuous for θ1 > θ2. Last, for i = 1, 2

Πi =

 0, if θ1 = θ2 = θ;

−kθ2i , if θ1 = θ2 > θ.

that is, Πi, i = 1, 2 is l.h.c. Since (θ2, θ1) s.t θ2 = θ1 ∈ Υ0, Theorem 5 in Dasgupta and

Maskin (1986) can be applied, whence an equilibrium in mixed strategies must exist.

6.3 Proofs

Proof of Proposition 1: The proof begins by showing existence of an equilibrium, then

characterizes it. Denote ∆θ = θ1 − θ2, A =
(
2α−α

3

)2
and A =

(
α−2α

3

)2
.

Definition 1 For i = 1, 2, the platforms’ ‘quasi-best responses’ are defined as the solution

to the problem maxpBi Πi

(
pBi , Di(p

B, θ); ΠA
i (Di, Dj)

)
, where the profit function is defined

by (3.2). Therefore, letting θ1 > θ2 w.l.o.g,

pB1
(
pB2
)
=


pB
1

(
pB2
)
= 1

2

(
pB2 +∆θβ − 2eA

)
, if D1 > D2;

1
2

(
pB2 +∆θβ

)
, if D1 = D2;

pB1
(
pB2
)
= 1

2

(
pB2 +∆θβ + 2eA

)
, if D1 < D2;

and

pB2
(
pB1
)
=


pB
2

(
pB1
)
= 1

2

(
pB1 −∆θβ − 2eA

)
, if D1 < D2;

1
2

(
pB1 −∆θβ

)
, if D1 = D2;

pB2
(
pB1
)
= 1

2

(
pB1 −∆θβ + 2eA

)
, if D1 > D2;
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While it is always possible to find some point where ‘quasi-best responses’ intersect (e.g.

such that both play as if D1 < D2), it by no means defines an equilibrium. Doing so assumes

that in some sense platforms coordinate on a particular market configuration – for example,

such that D1 < D2. We first need to pin down the firms’ true best replies.

Lemma 3 Let θ1 > θ2 w.l.o.g. There exists a pair of actions (p̂1, p̂2) such that the best

response correspondences are defined as

pB1
(
pB2
)
=

 pB
1

(
pB2
)
, for p2 ≥ p̂2;

pB1
(
pB2
)
, for p2 < p̂2;

(6.4)

and

pB2
(
pB1
)
=

 pB2
(
pB1
)
, for p1 < p̂1;

pB
2

(
pB1
)
, for p1 ≥ p̂1;

(6.5)

Lemma 3 thus defines the ‘true’ best-response of each player. It says that platform 1, for

example, prefers responding with pB
1

(
pB2
)
for any prices p2 ≥ p̂2 and switches to pB1

(
pB2
)

otherwise. The best reply correspondence is discontinuous at that point where platforms are

indifferent between being the dominant platform and not, that is, between the combination

of prices
(
pB
i
(pBj ), p

A
i (p

B
i
)
)
and

(
pBi (p

B
j ), p

A
i (p

B
i )
)
.

Proof: Any profile p̃B such that D1 = D2 can never be an equilibrium. When D1 = D2

A profits ΠA
i are nil for both platforms. Both players have a deviation strategy pBi + ε

in either direction since Π
A

i > ΠA
i > 0, i = 1, 2 as soon as Di ̸= D−i. Maximizing the

profit function (3.2) leaves us with two ‘quasi-reaction correspondences’, for each competitor,

depending on whether D1 > D2 or the converse. Depending on firm 2’s decision, platform

1’s profit is either

Π1 =

 Π1

(
pB
1
(pB2 ), p

B
2 ; Π

A
i

)
= Π1

(
1
2

(
pB2 +∆θβ − 2eA

)
, pB2 ; Π

A
i

)
, or;

Π1

(
pB1 (p

B
2 ), p

B
2 ; Π

A
i

)
= Π1

(
1
2

(
pB2 +∆θβ + 2eA

)
, pB2 ; Π

A
i

)
.

Define g1(p
B
2 ) ≡ Π1

(
pB1 (p

B
2 ), p

B
2 ; Π

A
i

)
−Π1

(
pB
1
(pB2 ), p

B
2 ; Π

A
i

)
. This is the difference in profits

generated by firm 1 when it chooses one ‘quasi-best response’ over the other. For pB2 suffi-

ciently low, g1 > 0. This function is continuous and a.e differentiable. Using the definitions
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of equilibrium A-side profits, dg1
dpB2

=
dΠA

1 (pB1 ,pB2 )

dpB2
− dΠA

1 (pB
1
,pB2 )

dpB2
< 0, and d2g1

d(pB2 )2
= 0, whence

there exists a point p̂B2 such that g1(p̂
B
2 ) = 0. At p̂B2 , Π1

(
pB
1
(p̂B2 ), p̂

B
2

)
= Π1

(
pB1 (p̂

B
2 ), p̂

B
2

)
;

platform 1 is indifferent between either best response pB
1
(p̂B2 ) or p

B
1 (p̂

B
2 ). The same follows

for platform 2, which defines p̂B1 . It follows that

Π1

(
pB
1
(pB2 ), p

B
2 ; Π

A
i

)
≥ Π1

(
pB1 (p

B
2 ), p

B
2 ; Π

A
i

)
⇔ pB2 ≥ p̂B2 ≡ −

(
∆θβ + e(A− A)

)
and

Π2

(
pB1 , p

B

2
(pB1 ); Π

A
i

)
≥ Π2

(
pB1 , p

B
2 (p

B
1 ); Π

A
i

)
⇔ pB1 ≥ p̂B1 ≡ ∆θβ − e(A− A)

For each firm, its action must be an element of the best reply correspondence and these

correspondences must intersect. We define a condition that captures both these features.

From the ‘quasi-best responses’, an equilibrium candidate is a pair of prices such that

(
p∗B1 , p∗B2

)
=

 pB
1

(
pB2
)
∩ pB2

(
pB1
)
, if D1 > D2 or;

pB1
(
pB2
)
∩ pB

2

(
pB1
)
, if D1 < D2;

An equilibrium exists only if these intersections are non-empty. Together, the definitions of

a best-response profile (relations (6.4) and (6.5)) and of an equilibrium candidate sum to

Condition 1 Either

p̂B1 ≥ p∗B1 and p̂B2 ≤ p∗B2

or

p̂B1 ≤ p∗B1 and p̂B2 ≥ p∗B2

or both.

Consider an action profile p∗B satisfying this condition; from Lemma 3 each p∗Bi is an element

of i’s best response. For it to be an equilibrium the reaction functions must intersect. This

is exactly what Condition 1 requires. For example, the first pair of inequalities tells us that

player 1’s optimal action has to be low enough and simultaneously that of 2 must be high

enough. When they hold, player 2’s reaction correspondence is continuous until 1 reaches

the maximizer p∗B1 , and similarly for firm 1.
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Lemma 4 Condition 1 is necessary and sufficient for at least one equilibrium p∗B =(
p∗B1 , p∗B2

)
to exist. When both inequalities are satisfied, the game admits two equilibria.

When Condition 1 holds, the Nash correspondence pB1 (p
B
2 )× pB2 (p

B
1 ) has a closed graph and

standard theorems apply.

Proof: Each platform’s action set pBi ⊆ R is compact and convex, and so can be parti-

tioned into two subsets PB
i =

[
pR,min
i , p̂Bi

]
and P

B

i =
[
p̂Bi , p

R,max
i

]
, on which the best-response

correspondences defined by (6.4) and (6.5) are continuous for each platform i. Consider

any equilibrium candidate
(
p∗B1 , p∗B2

)
. By construction it is defined as the intersection of

the ‘quasi-best responses’, which is not necessarily an equilibrium. But when Condition 1

holds, following the definitions given by equations (6.4) and (6.5), either p∗B1 ∈ pB
1
(pB2 )

and p∗B2 ∈ pB2 (p
B
1 ), or p∗B1 ∈ pB1 (p

B
2 ) and p∗B2 ∈ pB

2
(pB1 ) (or both, if two equilibria exist).

Thus at the point
(
p∗B1 , p∗B2

)
the reaction correspondences necessarily intersect at least once,

whence the Nash correspondence has a closed graph and the Kakutani fixed-point theorem

applies. To show necessity, suppose a pair
(
p∗B1 , p∗B2

)
is a Nash equilibrium. By defini-

tion, pB2
(
pB1
)
∩ pB1

(
pB2
)
̸= ∅, and by Lemma 3, either

(
p∗B1 , p∗B2

)
= pB

1

(
pB2
)
∩ pB2

(
pB1
)
or(

p∗B1 , p∗B2
)
= pB1

(
pB2
)
∩ pB

2

(
pB1
)
, or both if two equilibria exist. For the first equality to hold,

the first line of Condition 1 must hold, and for the second one, the second line of Condition 1

must be satisfied.

Condition 1 provides us with a pair of easy-to-verify conditions in terms of prices.

Lemma 5 Existence. An equilibrium in pure strategies of the B-side price subgame always

exists.

Proof: First construct a candidate equilibrium as follows. Suppose that platforms maximise

ΠH
1 = pB1 D1(p

B, θ)− kθ21 +Π
A

1 and ΠH
2 = pB2 D2(p

B, θ)− kθ22 +ΠA
2 , respectively. Solving for

the first-order conditions laid out in Definition 1 yields

p∗B1 = 1
3

[
∆θ
(
2β − β

)
+ 2e

(
A− 2A

)]
p∗B2 = 1

3

[
∆θ
(
β − 2β

)
+ 2e

(
2A− A

)]
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From equilibrium prices it is straightforward to compute consumer demand: D1 =

1
3∆θ

[
∆θ(2β − β) +

√
C
]

and D2 = 1
3∆θ

[
∆θ(β − 2β)−

√
C
]
, hence D2 > 0 provided

∆θ >
√
C

β−2β
and

p∗B1 =
∆θβ

2
− eA; p∗B2 = 0

otherwise. Thus it easy to verify that the first line of Condition 1 is satisfied and that(
p∗B1 , p∗B2

)
indeed constitutes an equilibrium by Lemma 4. This equilibrium always exists

because p̂B1 ≥ p∗B1 and p̂B2 ≤ p∗B2 are always satisfied. Indeed, either both hold when both

platforms are active, for ∆θ
(
β + β

)
+e
(
A+ A

)
≥ 0 is always true, or p∗B2 = 0 > p̂B2 and p̂B1 >

p∗B1 can be immediately verified when only firm 1 is active. Another candidate equilibrium(
p∗∗B1 , p∗∗B2

)
can be constructed by letting platform 1 play as if ΠL

1 = pB1 D1(p
B, θ)−kθ21+ΠA

1

and platform 2 as if ΠL
2 = pB2 D2(p

B, θ)− kθ22 +Π
A

2 , whence

p∗∗B1 = 1
3

[
∆θ
(
2β − β

)
+ 2e

(
2A− A

)]
p∗∗B2 = 1

3

[
∆θ
(
β − 2β

)
+ 2e

(
A− 2A

)]
with D1 = 1

3

[
(2β − β)2 −

√
C
]
and D2 = 1

3

[
(β − 2β)2 +

√
C
]
, therefore D1 > 0 if ∆θ >

√
C

2β−β
. An equilibrium such that p∗B1 = 0; p∗B2 = −∆θβ

2
− eA cannot exist, for these prices are

not best response to each other. At the price-setting stage, the cost of quality is sunk, so for

θ1 > θ2 there always exists some price pB1 ≥ pB2 such that consumers prefer purchasing from

platform 1. Then when both firms are active Condition 1 holds as long as ∆θ
(
β + β

)
−

e
(
A+ A

)
≤ 0. Given that ∆θ ≥

√
C

2β−β
, take the lower bound and substitute into the second

line of Condition 1:

e(A+ A)

(
2(β + β)

β − 2β
− 1

)
> 0, ∀β ≥ 0

which violates the second pair of inequalities of the necessary Condition 1. So the second

candidate can never be an equilibrium. For completeness, Condition 1 is also sufficient

to rule out deviations from the pairs
(
p∗B1 , p∗B2

)
and

(
p∗∗B1 , p∗∗B2

)
. The SOC of the profit

function (3.2) is satisfied at prices p∗Bi and p∗∗Bi ∀i, ∀pB−i, there cannot be any local deviation.

Consider now deviations involving inconsistent actions, that is, such that both platforms

maximise either pBi Di(p
B, θ)− kθ2i +Π

A

i or pBi Di(p
B, θ)− kθ2i +ΠA

i . Since
(
p∗B1 , p∗B2

)
always
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exists, the first line of Condition 1 always holds. It immediately follows from (6.4) and (6.5)

that pB1
(
pB2
)
∩ pB2

(
pB1
)
= ∅ and pB

1

(
pB2
)
∩ pB

2

(
pB1
)
= ∅ as well.

Finally, directly from Lemma 5, we can conclude the proof. In particular no alternative

equilibrium can exist when ∆θ <
√
C

2β−β
. Consider such a situation, then the prices pB1 =

∆θβ
2

− eA; pB2 = 0 do form an equilibrium for they satisfies Condition 1. But again the pair

pB1 = 0; pB2 = −∆θβ

2
− eA cannot be best responses to each other.

Proof of Proposition 2: We begin by characterising the first-stage actions

Lemma 6 Let θ1 > θ2 w.l.o.g. and Assumption 3 hold. Optimal actions consist of θ∗2 = θ

and θ∗1 = θ̂1, where θ̂1 uniquely solves

(2β − β)2 = 18kθ1 +
C

(∆θ)2
(6.6)

Both platforms operate.

Proof: The following simplifies the analysis and lets us focus on platform 1’s problem.

Claim 3 In any pure-strategy Nash equilibrium (θ∗1, θ
∗
2) such that θ∗1 > θ∗2, θ

∗
2 = θ necessarily.

Proof: Assume the FOC (6.3) binds so that θ∗1 = θ̂1. Computing the slope of the profit

function Π2 yields

dΠ2

dθ2
=

 −(β − 2β)2 + C
(∆θ)2

− 2kθ2 < −2kθ2, if ∆θ(β − 2β) >
√
C;

−2kθ2, if ∆θ(β − 2β) ≤
√
C.

whence it is immediate that dΠ2

dθ2
|θ2>θ <

dΠ2

dθ2
|θ < 0.

Firm 1’s first-order condition reads
(
2β − β

)2 − C
(∆θ)2

− 18kθ1 = 0 and admits a unique

maximiser θ̂1. Suppose firm 1 plays θ̂1; by Claim 3, platform 2 cannot increase its quality

to any θ2 ∈
(
θ, θ̂1

)
. So the pair

(
θ̂1, θ

)
is an equilibrium as long as firm 2 cannot ‘jump’

over firm 1 and become the high-quality firm. It will necessarily do so if platform 1 turns

out to be a monopolist. To guarantee firm 2 operates we need (θ̂1 − θ)(β − 2β) >
√
C

(Assumption 3). The smallest ‘leap’ firm 2 can undertake is such that θ̃2 ≥ θ̂1 + ε. Hence
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the no-deviation condition is Π2

(
θ̂1, θ

)
≥ Π2

(
θ̂1, θ̂1 + ε

)
, or

(θ̂1 − θ)(β − 2β)2 +B2 +
C

(θ̂1−θ)
≥ B1 +

√
C(β − 2β)− 9k(θ̂1 + ε)2

(θ̂1 − θ)
[
(β − 2β)2 + (2β − β)2

]
− 9kθ̂21 +B2 ≥ B1 +

√
C(β − 2β)

using the FOC (2β − β)2 − 18kθ̂1 − C

(θ̂1−θ)2
= 0 and the fact that kθ̂1θ = kθ2 = 0 (by

assumption). When θ̂1 − θ >
√
C

β−2β
, this condition is always satisfied.

The optimality of θ∗2 = θ and θ∗1 = θ̂1 is established by Lemma 6. The rest of the claim

follows immediately under Assumption 3.

Proof of Corollary 1: In the first stage of the Shaked and Sutton (1982) model, firms

solve

max
θi∈Θi

p∗iDi(p
∗, θi, θ

∗
j )− kθ2i

for i = 1, 2 and with demand D1 = 1
3

(
2β − β

)
, D2 = 1

3

(
β − 2β

)
and prices p1 =

∆θ
3

(
2β − β

)
, p2 = ∆θ

3

(
β − 2β

)
, respectively. This problem is concave and given equilib-

rium prices p∗i , has obvious maximizers θ02 = θ and θ01 = 1
2k

(
2β−β

3

)2
with θ01 < θ thanks

to k >
(2β−β)2

18θ
. These individually optimal maximizers also form a Nash equilibrium, for

although Π1 (θ
0
1, θ

0
2) > Π2 (θ

0
1, θ

0
2) ∀k > 0, it is also true that

Claim 4 @ θ̃2 > θ01 such that Π2

(
θ01, θ̃2

)
≥ Π2 (θ

0
1, θ

0
2).

Proof: Consider a deviation θ̃2 = θ01 + ϵ, ϵ arbitrarily small. We can compute firm 2

profit from this deviation as Π2

(
θ01, θ̃2

)
= ϵ

(
2β−β

3

)2
− kθ̃22 < 0 and the marginal profit(

2β−β

3

)2
− 2k(θ01 + ϵ) < 0.

To complete the proof of Corollary 1, observe that firm 1’s first-order condition in the

benchmark problem reads
(

2β−β

3

)2
− 2kθ01 = 0 and compare it to equation (6.6).

Proof of Proposition 3: Sharkey and Sibley (1993) provide an appealing approach to

characterize mixed strategies in a problem of entry with sunk cost, but it does not quite apply

here. There is no proper entry stage; in particular, playing θi = θ cannot be interpreted

as a decision to not enter the market because Πi(θi, θj) > 0 for θj such that ∆θ > 2e(A+A)

β−2β
.

Also, the payoffs depend not just on the ranking of the firms’ decisions (θ1, θ2), but on the

difference θ1 − θ2.
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Let θci denote the upper bound of the support of the distribution of the pure action space,

a precise definition of which will soon be provided. Let Hi(θi) be the distribution over i’s

pure actions θi ∈ {θ} ∪
[
θ̃, θc

]
. For any equilibrium mixing probability H∗

2 (θ2), write the

expected profit of firm 1 as

Eθ2 [Π1] =

∫
Π1(θ1, θ2)d(H1 ×H∗

2 ) +

∫ θ′1=θ2

θ̃1

Π1(θ1, θ2)d(H1 ×H∗
2 )

+

∫ θc1

θ′1=θ2

Π1(θ1, θ2)d(H1 ×H∗
2 )

= H1(θ1)

∫
Π1(θ1, θ2)d(H

∗
2 ) +

∫ θ′1=θ2

θ̃1

Π1(θ1, θ2)d(H1 ×H∗
2 )

+

∫ θc1

θ′1=θ2

Π1(θ1, θ2)d(H1 ×H∗
2 )

with possibly an atom at θ1. With probability
∫ θ′1=θ2

θ̃1
d(H1 ×H∗

2 ) it plays θ1 > θ such that

2 is the dominant firm (θ2 ≥ θ1); in this case, Π1(θ1, θ2) = −kθ21 < 0. With probability∫ θc1
θ′1=θ2

d(H1 ×H∗
2 ) it is the dominant firm (the second integral). We first claim

Lemma 7 There is a mass point at θi. More precisely, ∀ i, Hi(θi) ∈ (0, 1).

Proof: Suppose H1(θ1) = 1, then argmaxEθ1 [Π2(θ1, θ2)] = θ̃2, so H2(θ2) = 0 and H2(θ2)

assigns full mass at θ̃2 : h2(θ̃2) = 1. But then firm 1 should play some θ1 > θ̃2 and become

the monopolist for sure. If H1(θ1) = 0, then 1 necessarily plays on
[
θ̃, θc

]
and playing θ̃2

is a dominated strategy for firm 2. It therefore assigns no mass at this point. But then

∀ θ2 ∈
(
θ̃2, θ

c
2

]
, Π1(θ1, θ2) > 0 and platform 1 should shift some mass to θ1.

The equilibrium conditions write ∀θi ∈ ΘN
i ,

Eθj [Πi(θi, θj)] = Πi(θi, θ̃j)

Πi(θi, θ̃j) = 0
(6.7)

The first line asserts that i’s expected payoff cannot be worse than if not investing for

sure, in which case j’s best response is θ̃j. The second one sates that if not investing for

sure, a platform can only expect zero profits. Thus expected profits in the mixed-strategy
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equilibrium must be zero. We next need to determine the upper bound θci of the support of

Hi(θi) for each platform i = 1, 2. As a consequence of Lemma 7 it solves either

Πi(θj, θ
c
i ) = 0 or Πi(θ̃j, θ

c
i ) = 0

hence

Lemma 8 θci = max
{
θ′i|Πi(θj, θ

′
i) = 0,Πi(θ̃j, θ

′
i) = 0

}
Proof: Let θ′i solve Πi(θj, θ

′
i) = 0 and θ′′i solve Πi(θ̃j, θ

′′
i ) = 0. Suppose θ′i < θ′′i and θci = θ′i:

there is a measure θ′′i − θ′i on which i places zero weight. Then j should shift at least some

weight to θ′i + ϵ, ϵ > 0 and small, to obtain EĤ(θi)
[Πj] > 0 = Eθi [Πj(θi, θj)] (where Ĥ(.) is

an alternative distribution). Clearly this extends to any θi ∈ [θ′i, θ
′′
i ).

Rewriting the equilibrium condition (6.7), ∀ θi ∈ ΘN
i ,

Hi(θi)

∫
ΘN

j

Ri(θi, θj)dH
∗
j (θj)+

∫ θci

θ′i=θj

Ri(θi, θj)d(Hi(θi)×H∗
j (θj)) = k

∫ θci

θ̃i

θ2i d(Hi(θi)×H∗
j (θj))

where Ri(θi, θj) stands for platform i’s revenue (gross of costs). For any play θj, total

revenue Ri(θi, θj) is decreasing in θi ∈ ΘN
i \ θi – refer Conditions (6.1) and (6.2). Thus for

any distribution Hi(θi)×H∗
j (θj) the LHS is bounded as well, and decreasing in θi.

Proof of Proposition 4: When e is large enough platform 1 (the high-quality firm)

prefers playing such that ∆θ = 2e(A+A)

β−2β
≡ z(e) for any θ2 (and θ1 not so large as to induce

negative profits). Its payoffs when ∆θ ≤ z(e) are given by the second line of (6.1), where

B1(e) = 2e(2β − β)(2A− A). This can be re-arranged as

π1(e, θ) =
1

9

[
∆θ
(
2β − β

)2
+ 2e[A(5β − 4β)− A(β + β)]

]
− kθ21

for ∆θ ≤ z(e) and

π1(e, θ) =
1

9

[
∆θ
(
2β − β

)2
+B1(e) +

[2e(A+ A)]2

∆θ

]
− kθ21

if ∆θ > z(e). Let π1(e, θ) = max π1(e, θ) for any pair θ1 > θ2 such that ∆θ = z(e). This is

an upper bound on firm 1’s profits for any play by firm 2. We know π1(e, θ) is maximized
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for θ2 = θ. Recall that we denote the corresponding value of θ1 by θ̃1. For any e and

θ2,
∂π1(e,θ)

∂θ1
> 0 when ∆θ < z(e) and ∂π1(e,θ)

∂θ1
< 0 when ∆θ = z(e) and θ2 > θ. Therefore

π1(e, θ) reaches zero for some value θ′1 ≤ θc1. Thus no firm will play out of these bounds.

More precisely,

∂π1(e,θ)
∂θ1

=
2β−β

9
− 2kθ1 > 0, when ∆θ < z(e) and

∂π1(e,θ)
∂θ1

=
2β−β

9
− 2kθ1 < 0, for ∆θ = z(e), θ2 > θ.

with max ∂π1(e,θ)
∂θ1

reached for θ2 = θ. Since argmax Π1(θ1, θ2) > θ̃1 when θ2 > θ, it follows

that
∂π1(e, θ)

∂θ1
< |∂π1(e, θ)

∂θ1
|

and therefore | θ̃1 − θc1 |< z(e).

Proof of Proposition 5: We first need

Lemma 9 When consumer prices are identical a pure strategy equilibrium cannot exist.

Proof: Given pB1 = pB2 , B demand is given by

Di =


1, if θi > θj;

1
2
, if θi = θj; and

0, if θi < θj.

for i ̸= j, i = 1, 2, whence platform i faces payoffs

Πi =

 eDi

(
α
2

)2 − kθ2i ≥ 0, if θi > θj ≥ θ;

−kθ2i ≤ 0, if θ ≤ θi ≤ θj;

Any profile θ1 = θ2 can never be an equilibrium. Suppose so, then D1 = D2 and platforms

are Bertrand competitors in the A market, realising −kθ2i ≤ 0 each. When −kθ2i < 0, firm

i possesses a unilateral deviation: set θi = θ. When −kθ2i = 0, it also possesses a unilateral

deviation: set θi > θ.

To complete, let pB1 = pB2 = 0 and apply Lemma 9, Proposition 6, and the characterization

in Proposition 3.

31



References

[1] Argentesi E. and Lapo Filistrucchi (2007) “Estimating market power in a two-sided

market: the case of newspapers.”J. Appl Econ., 22, pp. 1247-1266

[2] Armstrong, M. (2006) “Competition in two-sided markets”, Rand Journal of Economics,

Vol. 37, pp. 668-691.

[3] Armstrong, M. and Julian Wright (2007) “Two-sided Markets, Competitive Bottlenecks

and Exclusive Contracts”, Economic Theory, Vol. 32(2), pp. 353-380

[4] Bardey, D and J.-C. Rochet (2010) “Competition among health plans: a two-sided

market approach”, Journal of Economics and Management Strategy, vol. 19, n. 2, May

2010, p. 435-451.

[5] Bardey, D., Helmuth Cremer and J.-M. Lozachmeur (2010) “Competition in two-sided

markets with common network externalities.”, IDEI working paper series, #578, IDEI,

Toulouse.

[6] Baye, M. Guoqiang Tian and Jianxin Zhou (1993) “Characterizations of the existence

of equilibria in games with discontinuous and non-quasiconcave payoffs.” The Review

of Economic Studies, N. 60, pp. 935-948

[7] Bich, Ph. (2008) “An extension of Reny’s theorem without quasiconcavity.” mimeo,

Paris I Sorbonne, UMR 8174.

[8] Caillaud, B. and Bruno Jullien (2003) “Chicken & Egg: Competition Among Interme-

diation Service Providers.” Rand Journal of Economics, Vol. 34, pp. 309-328.

[9] Dasgupta, Partha and Eric Maskin (1986) “The Existence of Equilibrium in Discontin-

uous Economic Games, I: Theory”, The Review of Economic Studies, Vol. 53, No. 1,

pp. 1-26

32



[10] Dukes, A. and Esther Gal-Or (2003) “Minimum differentitation in commercial media

markets.”Journal of Economics and Management Strategy, Vol. 12 (3).

[11] Ferrando, J. Jean-J. Gabszewicz, Didier Laussel and Nathalie Sonnac (2008) “Inter-

market network externalities and competition: an application to the media industry.”,

International Journal of Economic Theory, vol.4 (3), pp. 357-379.

[12] Gabszewicz, J.-J. Didier Laussel and Nathalie Sonnac, (2001) “Press advertising and

the ascent of of the pensée unique.”European Economic Review, 45, pp. 641-651.

[13] Gabszewicz, J.-Jaskold and Thisse, J.-F. (1979) “Price competition, quality and income

disparities,”Journal of Economic Theory, vol. 20(3), pages 340-359

[14] Gabszewicz, J.-J. and Xavier Wauthy (2004) “Two-sided markets and price competition

with multi-homing.”mimeo, Universite Catholique de Louvain.

[15] Hagiu, A. (2006) “Pricing and commitment by two-sided platforms.”Rand Journal of

Economics, Vol. 37 (3).

[16] Hagiu, A. (2009) “Quality vs. quantity and exclusion by two-sided platforms”Working

Paper, Harvard Business School

[17] Hasser, N. and Joseph Sullivan (1991) “Real Analysis”Dover Publications, New York.

[18] Jin, G. Z. and Marc Rysman (2010) “Platform Pricing at Spartscard Conven-

tions.”Working paper, Boston University.

[19] Kaiser, Ulrich and Julian Wright (2006) “Price structure in two-sided markets: Ev-

idence from the magazine industry,”International Journal of Industrial Organization

Vol. 24(1), pp. 1-28

[20] Kreps, D., and Jose Scheinkman (1983) “Quantity Precommitment and Bertrand Com-

petition Yield Cournot Outcomes.”Bell Journal of Economics, The RAND Corporation,

vol. 14(2), pages 326-337.

33



[21] Reisinger, M. (2012) “Platform Competition for Advertisers and Users in Media Mar-

kets,”International Journal of Industrial Organization, 2012, 30 (2), pp. 243-252

[22] Reny, P. (1999) “On the Existence of Pure and Mixed Strategy Nash Equilibria in

Discontinuous Games”Econometrica, Vol. 67, No. 5 (Sep., 1999), pp. 1029-1056

[23] Shaked, A. and John Sutton (1982) “Relaxing price competition through product dif-

ferentiation.”The Review of Economic Studies.

[24] Sharkey, W. and David Sibley (1993)“A Bertrand model of pricing and entry.”, Eco-

nomic Letters, Vol. 41 (2), pp 199-206 3 (1).

34


	University of Wollongong
	Research Online
	2016

	Two-sided competition with vertical differentiation
	Guillaume Roger
	Publication Details

	Two-sided competition with vertical differentiation
	Abstract
	Publication Details


	tmp.1491534019.pdf.VjTff

