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Incorporating Robustness in Diagonally-Relaxed
Orthogonal Projections Method for Proton

Computed Tomography
Paniz Karbasi[1], Blake Schultze[1], Valentina Giacometti[2],[4], Tia Plautz[3] Member, IEEE,

Keith E. Schubert[1],[4] Senior Member, IEEE, Reinhard W. Schulte[4] Member, IEEE, and Vladimir A. Bashkirov[4]

Abstract—Iterative algorithms such as ART, DROP, and CARP
are commonly used in reconstructing computed tomography
images, but only account for errors in the measurements. Errors
in the predicted path and intersection lengths, or even blocks
of missing measurements can result in degraded image quality.
Robust techniques allow for errors in other areas of the model
and produce good images that show less sensitivity. In this
paper we introduce a robust version of DROP and compare its
performance advantages to the standard DROP algorithm on on
real data.

I. INTRODUCTION

Proton computed tomography (pCT) is a novel medical
imaging modality developed for treatment planning of proton
radiation therapy [1]. In pCT, the goal is to find a good
approximation to the linear system of equations of the form
Ax = b. A is an m × n sparse matrix such that aij is the
intersection length of the ith proton history with the jth voxel
element, and bi is an m × 1 vector that contains the water-
equivalent path length (WEPL) measurements, which means
that if the proton has the given path-length in water, it will lose
the same amount of energy on average. Having this data, one
can reconstruct the relative stopping power (RSP) of protons
which is the image vector x.

Uncertainty due to multiple coulomb scattering and energy
straggling are known to be significant challenges [2]. These
errors not only effect the WEPL calculations of b, they also
effect the calculation of the elements of the A matrix. Errors
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in the A matrix can result in voxels getting the wrong amount
of update, or even the incorrect voxel being updated. The
resulting images could have boundaries with artifacts that
reflect voxels with the wrong RSP values, or inaccurate RSP
values related to the different materials inside the object. In
both cases, the accuracy of the results are affected negatively.
The goal of this work is to incorporate robust estimation in the
diagonally-relaxed orthogonal projections (DROP) algorithm
to account for uncertainties in the model and improve the
RSP’s accuracy. Based on the results of our experiments, the
robust iterative solver produces pCT images with less artifacts
on the boundary of the object and more accurate RSP values.

There are different reconstruction algorithms for finding the
solution of the pCT problem. Diagonally-relaxed orthogonal
projections (DROP) is a component averaging technique for
solving the linear system Ax = b. The structure of DROP is
outlined in Algorithm 1:

Algorithm 1 (DROP)
Initialization: choose an arbitrary x0 ∈ Rn

Iterative Step: Given xk, the next iteration xk+1 is

xk+1 = xk + λkS
k
∑

i∈It(k)

bi − 〈ai, xk〉
‖(ai)‖2

ai (1)

where S = diag( 1
sj
), such that sj is the number of times

voxel j is intersected by a path i ∈ It(k) [3].
For filling the cells of the A matrix, one needs to find an

approximation of the path traversed by each proton through
the object. The most likely path (MLP) formalism provides an
accurate method for estimating the path of a proton through
the object [4].

Regardless of the method that is used for proton path
estimation, these paths could have two possible sources of
uncertainties: the actual path itself, and the intersection length
between the proton and the voxels along its path. Having an
accurate estimation of the object hull significantly improves
the accuracy of path estimation [5], but these measurements
are still inaccurate to some extent, and these uncertainties
in our model can contribute to the accuracy of the RSP
values negatively, and can cause artifacts and boundary issues
in a reconstructed image. Therefore, we need to take these
uncertainties into account and re-model the pCT problem.
In this paper, we present a robust iterative solver that takes
into account the error associated with the intersection length
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between a proton traversing the object and the voxels along
its path.

II. METHODOLOGY

DROP (Algorithm1) generates accurate RSP values when
xj u 1, but when xj � 1 or xj � 1, DROP tends to make
the value of xj closer to one. In order to prevent DROP forcing
voxel values closer to one, we perform the update of xj based
on the value of (1−xj)η, such that ‖EAi

‖ ≤ η, where EAi
is

the error in the ith row of the A matrix. Therefore, we have
taken the uncertainty related to the A matrix into account.
Based on these facts, we have derived a modified version of
Algorithm 1 that is outlined in Algorithm 2.

Algorithm 2
Initialization: choose an arbitrary x0 ∈ Rn

Iterative Step: Given xk, the next iteration xk+1 is

xk+1 = xk + λkS
k
∑

i∈It(k)

∑
j

bi − 〈ai, xk〉
‖(ai)‖2 ± ψi

j

ai (2)

ψi
j = (1− xj)η (3)

III. RESULTS

In this section, we illustrate the results of reconstructing
pCT images with both Algorithms 1 and 2, while we have
calculated the mean cord length for each proton history based
on the entry and exit angles of the proton [6]. Therefore, for
a single proton, the intersection length with the voxels along
its path is fixed. The data set used for image reconstruction
contained about 120 million proton events generated by a
Geant4 simulated scan of the CTP404 phantom with 4◦

increments in projection angle.
In the first experiment, we have used the A matrix resulting

from the MLP calculations. In the second experiment, we have
added some Gaussian noise with zero mean and η2 variance
to each nonzero element of A as follows:

Aerror = AMLP + η ∗N(0, 1) (4)

Finally, in the third experiment, we have randomly removed
120000 of the histories from the data set and compared Robust
with DROP. This experiment simulates the situation that
during a scan, the rate at which protons have been shot towards
the object is higher than the processing rate of the recording
the histories, thus some of the protons have been missed during
the scan. This could lead to an uncertain path matrix, and
therefore inaccurate RSPs during the reconstruction.

Figures 1a and 1b illustrate the results of reconstructing
images with Algorithms 1 and 2, respectively. Also, Table I
includes the reconstructed RSP values by DROP and Robust
algorithms.

Figures 2 and 3 illustrate the results of the reconstructed
images using Algorithms 1 and 2 when the A matrix contains
additive Gaussian noise while η = 1.0 and η = 2.0 respec-
tively. Based on the results in Figures 2 and 3, when using
DROP with the noisy path matrix, we have some voxels with
RSP values much less than or greater than one on the boundary
of the object. Clusters of voxels that have been marked in

(a) DROP (b) Robust DROP

Fig. 1: Reconstructed image of (a) Algorithm 1, and (b) Algorithm 2 after
6 iterations, using the path matrix calculated based on the MLP.

Material DROP Robust Predicted RSP
Air (bottom) 0.064 0.064 0.0013

Air (top) 0.076 0.075 0.0013
PMP 0.89 0.89 0.877
LDPE 1.01 1.01 0.997

Polystyrene 1.05 1.04 1.038
Acrylic 1.18 1.18 1.155
Delrin 1.37 1.37 1.356
Teflon 1.80 1.80 1.828

TABLE I: RSP values of reconstructed images in Figure 1

Figures 2a and 3a are between 1 and 5 in size, and the error
in RSP of these clusters is about 98%. These artifacts on the
boundary of the object should be prevented because of the fact
that incorrect RSP values along the boundary of the object
affect the accuracy of proton therapy. Based on the images in
Figures 2 and 3, and the reconstructed RSP values in Tables II
and III, the benefit of the robust technique mentioned in
Algorithm 2 is clearly visible, illustrating removal of artifacts
from the boundary of the object and generating much more
accurate RSP values than DROP itself.

(a) DROP (b) Robust DROP

Fig. 2: Reconstructed image of (a) Algorithm 1, and (b) Algorithm 2 after
12 iterations, using the path matrix calculated based on the MLP and adding
Gaussian noise (η = 1.0) to the elements of the path matrix.

Figures 4a and 4b illustrate the results of the reconstructed
images by DROP and Robust respectively, while we have
randomly removed 120000 of the histories from the data set.
Based on the result, in this case Robust does not necessarily
remove all of the artifacts on the boundary of the object, but at
least removes a few of them, also based on the RSP values in
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Material DROP Robust Predicted RSP
Air (bottom) 0.117 0.071 0.0013

Air (top) 0.119 0.074 0.0013
PMP 0.919 0.872 0.877
LDPE 1.038 0.99 0.997

Polystyrene 1.076 1.027 1.038
Acrylic 1.211 1.161 1.155
Delrin 1.39 1.34 1.356
Teflon 1.797 1.748 1.828

TABLE II: RSP values of reconstructed images in Figure 2

(a) DROP (b) Robust DROP

Fig. 3: Reconstructed image of (a) Algorithm 1, and (b) Algorithm 2 after
12 iterations, using the path matrix calculated based on the MLP and adding
Gaussian noise (η = 2.0) to the elements of the path matrix.

Table IV, Robust generates more accurate RSP values in some
of the materials and is never worse than DROP in generating
the RSP values for the rest of the materials.

(a) DROP (b) Robust DROP

Fig. 4: Reconstructed image of (a) Algorithm 1, and (b) Algorithm 2 after
6 iterations, while 120000 histories have been removed randomly from the
data set.

Material DROP Robust Predicted RSP
Air (bottom) 0.25 0.21 0.0013

Air (top) 0.24 0.2 0.0013
PMP 1.04 1.01 0.877
LDPE 1.17 1.12 0.997

Polystyrene 1.21 1.16 1.038
Acrylic 1.34 1.3 1.155
Delrin 1.52 1.4 1.356
Teflon 1.92 1.9 1.828

TABLE III: RSP values of reconstructed images in Figure 3

Material DROP Robust Predicted RSP
Air (bottom) 0.044 0.044 0.0013

Air (top) 0.057 0.056 0.0013
PMP 0.91 0.897 0.877
LDPE 1.004 1.001 0.997

Polystyrene 1.051 1.051 1.038
Acrylic 1.179 1.178 1.155
Delrin 1.354 1.354 1.356
Teflon 1.781 1.781 1.828

TABLE IV: RSP values of reconstructed images in Figure 4

IV. CONCLUSION

Proton CT is a promising imaging modality which could be
used in planning proton therapy treatment. In pCT, the goal is
to find a good approximation to the linear system of equations
of the form Ax = b. A is an m × n sparse matrix such that
aij is the intersection length of the ith proton history with the
jth voxel element, and bi is an m× 1 vector that contains the
water-equivalent path length (WEPL) measurements.

Because of uncertain measurements of the path that a proton
takes while traversing the object, and the intersection length
of a proton and a voxel, the path matrix A contains some
level of noise that causes reconstructing inaccurate RSP values
and also generating artifacts on the boundary of the object. In
this paper, we have taken the uncertainty associated with the
path matrix into account and incorporated robustness into the
diagonally-relaxed orthogonal projections algorithm (DROP)
to reduce noise associated with the RSP values and artifacts
on the object boundary. The images presented here make it
clear that the robust approach offers a way to successfully
reduce the RSP noise of regions of consistent material inside
the object and the noise on the boundary of the object.

In the future, we will investigate a variation of the robust
technique by assuming protons follow a cubic spline instead
of the computationally expensive MLP technique. Using the
the cubic spline as the path that traverses the object is a lot
easier than MLP calculations, but at the same time, it is more
uncertain. Thus, the robust reconstruction technique holds the
potential to generate reconstructed images with the same level
of accuracy using cubic splines to fill the cells of the path
matrix A.
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